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Abstract

In this article, we study the internal stabilization and control of the critical nonlinear Klein–Gordon
equation on 3-D compact manifolds. Under a geometric assumption slightly stronger than the classical
geometric control condition, we prove exponential decay for some solutions bounded in the energy space
but small in a lower norm. The proof combines profile decomposition and microlocal arguments. This
profile decomposition, analogous to the one of Bahouri and Gérard (1999) [2] on R

3, is performed by
taking care of possible geometric effects. It uses some results of S. Ibrahim (2004) [21] on the behavior of
concentrating waves on manifolds.
© 2010 Elsevier Inc. All rights reserved.

Résumé

Dans cet article, on étudie la stabilisation et le contrôle interne de l’équation de Klein–Gordon critique sur
des variétés de dimension 3. Sous des conditions géométriques légèrement plus fortes que la condition de
contrôle géométrique classique, on prouve la décroissance exponentielle de solutions bornées dans l’espace
d’énergie mais petites dans des normes plus faibles. La preuve combine la décomposition en profils et des
arguments microlocaux. Cette décomposition, analogue à celle de Bahouri et Gérard (1999) [2] sur R

3,
nécessite l’analyse de certains effets dus à la géométrie. Elle utilise des résultats de S. Ibrahim (2004) [21]
sur le comportement d’ondes de concentration sur les variétés.
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

In this article, we study the internal stabilization and exact controllability for the defocussing
critical nonlinear Klein–Gordon equation on some compact manifolds:{�u = ∂2

t u − �u = −u − |u|4u on [0,+∞[ × M,(
u(0), ∂tu(0)

)= (u0, u1) ∈ E ,
(1)

where � is the Laplace–Beltrami operator on M and E is the energy space H 1(M) × L2(M).
The solution displays a conserved energy

E(t) = 1

2

(∫
M

|∂tu|2 +
∫
M

|u|2 +
∫
M

|∇u|2
)

+ 1

6

∫
M

|u|6. (2)

This problem was already treated in the subcritical case by B. Dehman, G. Lebeau and
E. Zuazua [11]. The problem is posed in a different geometry but their proof could easily be
transposed in our setting. Yet, their result fails to apply to the critical problem for two main
reasons, as explained in their paper:

(a) The bootstrap argument they employed to improve the regularity of solutions vanishing in
the zone of control ω so that the existing results on unique continuation apply, does not work
for this critical exponent.

(b) They cannot use the linearizability results by P. Gérard [19] to deduce that the microlocal
defect measure for the nonlinear problem propagates as in the linear case.

In this paper, we propose a strategy to avoid the second difficulty at the cost of an additional
condition for the subset ω. It was already performed by B. Dehman and P. Gérard [8] in the case
of R

3 with a flat metric. In fact, in that case, this defect of linearizability is described by the profile
decomposition of H. Bahouri and P. Gérard [2]. The purpose of this paper is to extend a part of
this proof to the case of a manifold with a variable metric. This more complicated geometry leads
to extra difficulties, in the profile decomposition and the stabilization argument. We also mention
the recent result of L. Aloui, S. Ibrahim and K. Nakanishi [1] for R

d . Their method of proof is
very different and uses Morawetz-type estimates. They obtain uniform exponential decay for a
damping around spatial infinity for any nonlinearity, provided the solution exists globally. This
result is stronger than ours, but their method does not seem to apply to the more complicated
geometries we deal with.

We will need some geometrical condition to prove controllability. The first one is the classical
geometric control condition of Rauch and Taylor [33] and Bardos, Lebeau and Rauch [3], while
the second one is more restrictive.

Assumption 0.1 (Geometric Control Condition). There exists T0 > 0 such that every geodesic
travelling at speed 1 meets ω in a time t < T0.

Definition 0.1. We say that (x1, x2, t) ∈ M2 × R
∗+ is a couple of focus at distance t if the set

Fx ,x ,t := {ξ ∈ S∗
x M
∣∣ expx tξ = x2

}

1 2 1 1
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of directions of geodesics stemming from x1 and reaching x2 in a time t has a positive surface
measure.

We denote by Tfocus the infimum of the t > 0 such that there exists a couple of focus at
distance t .

If M is compact, we have necessarily Tfocus > 0.

Assumption 0.2 (Geometric control before refocusing). The open set ω satisfies the Geometric
Control Condition in a time T0 < Tfocus.

For example, for T
3, there is no refocusing and the geometric assumption is the classical

Geometric Control Condition. Yet, for the sphere S3, our assumption is stronger. For example, it
is fulfilled if ω is a neighborhood of {x4 = 0}. We can imagine some geometric situations where
the Geometric Control Condition is fulfilled while our condition is not, for example if we take
only a neighborhood of {x4 = 0, x3 � 0} (see Remark 0.1 and Fig. 1 for S2). We do not know if
the exponential decay is true in this case.

The main result of this article is the following theorem.

Theorem 0.1. Let R0 > 0 and ω satisfy Assumption 0.2. Then, there exist T > 0 and δ > 0 such
that for any (u0, u1) and (ũ0, ũ1) in H 1 × L2, with∥∥(u0, u1)

∥∥
H 1×L2 � R0;

∥∥(ũ0, ũ1)
∥∥

H 1×L2 � R0,∥∥(u0, u1)
∥∥

L2×H−1 � δ; ∥∥(ũ0, ũ1)
∥∥

L2×H−1 � δ

there exists g ∈ L∞([0, T ],L2) supported in [0, T ] × ω such that the unique strong solution of{�u + u + |u|4u = g on [0, T ] × M,(
u(0), ∂tu(0)

)= (u0, u1)

satisfies (u(T ), ∂tu(T )) = (ũ0, ũ1).

Let us discuss the assumptions on the size. In some sense, our theorem is a high frequency
controllability result and expresses in a rough physical way that we can control some “small
noisy data”. In the subcritical case, two similar kind of results were proved: in Dehman, Lebeau
and Zuazua [11] similar results were proved for the nonlinear wave equation but without the
smallness assumption in L2 × H−1 while in Dehman and Lebeau [10], they obtained similar
high frequency controllability results for the subcritical equation but in a uniform time which is
actually the time of linear controllability (see also the work of the author [30] for the Schrödinger
equation). Actually, this smallness assumption is made necessary in our proof because we are not
able to prove the following unique continuation result.

Missing theorem. u ≡ 0 is the unique strong solution in the energy space of

{�u + u + |u|4u = 0 on [0, T ] × M,

∂tu = 0 on [0, T ] × ω.
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In the subcritical case, this kind of theorem can be proved with Carleman estimates under
some additional geometrical conditions and once the solution is known to be smooth. Yet, in the
critical case, we are not able to prove this propagation of regularity. Note also that H. Koch and
D. Tataru [27] managed to prove some unique continuation result in the critical case, but in the
case u = 0 on ω instead of ∂tu = 0. In the case of R

3 with flat metric and ω the complementary
of a ball, B. Dehman and P. Gérard [8] proved this theorem using the existence of the scattering
operator proved by K. Nakanishi [32], which is not available on a manifold.

Moreover, as in the subcritical case, we do not know if the time of controllability does depend
on the size of the data. This is actually still an open problem for several nonlinear evolution
equations such as nonlinear wave or Schrödinger equation (even in the subcritical case). For the
nonlinear wave equation, by finite speed of propagation, we do not expect the controllability in
arbitrary short time, but at least to compare with the time of geometric control condition of the
linear equation. Note that for certain nonlinear parabolic equations, it has been proved that we
cannot have controllability in arbitrary short time, while it is the case for the linear equation,
see [15] or [14].

The strategy for proving Theorem 0.1 consists in proving a stabilization result for a damped
nonlinear Klein–Gordon equation and then, by a perturbative argument using the linear control,
to bring the solution to zero once the energy of the solution is small enough. Namely, we prove

Theorem 0.2. Let R0 > 0, ω satisfy Assumption 0.2 and a ∈ C∞(M) satisfy a(x) > η > 0 for all
x ∈ ω. Then, there exist C,γ > 0 and δ > 0 such that for any (u0, u1) in H 1 × L2, with∥∥(u0, u1)

∥∥
H 1×L2 � R0;

∥∥(u0, u1)
∥∥

L2×H−1 � δ,

the unique strong solution of{�u + u + |u|4u + a(x)2∂tu = 0 on [0, T ] × M,(
u(0), ∂tu(0)

)= (u0, u1)
(3)

satisfies E(u)(t) � Ce−γ tE(u)(0).

This theorem is false for the classical nonlinear wave equation (see Section 3.1.1) and it is
why we have chosen the Klein–Gordon equation instead.

Let us now discuss the proof of Theorem 0.2, following B. Dehman and P. Gérard [8] for the
case of R

3. We have the energy decay

E(u)(t) = E(u)(0) −
t∫

0

∫
M

∣∣a(x)∂tu
∣∣2.

So, the exponential decay is equivalent to an observability estimate for the nonlinear damped
equation. We prove it by contradiction. We are led to proving the strong convergence to zero
of a normalized sequence un of solutions contradicting observability. In the subcritical case, the
argument consisted in two steps

• to prove that the limit is zero by a unique continuation argument,
• to prove that the convergence is actually strong by linearization and linear propagation of

compactness thanks to microlocal defect measures of P. Gérard [18] and L. Tartar [36].
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By linearization, we mean (according to the terminology of P. Gérard [19]) that we have |||un −
vn||| −→

n→∞ 0 where vn is a solution of the linear Klein–Gordon equation with same initial data:

{�vn + vn = 0 on [0, T ] × M,(
vn(0), ∂t vn(0)

)= (un(0), ∂tun(0)
)
.

In our case, the smallness assumption in the lower regularity L2 × H−1 makes that the limit
is automatically zero, which allows to skip the first step. In the subcritical case, any sequence
weakly convergent to zero is linearizable. Yet, for critical nonlinearity, there exist nonlinearizable
sequences. Hopefully, in the case of R

3, this defect can be precisely described. It is linked to
the non-compact action of the invariants of the equation: the dilations and translations. More
precisely, the work of H. Bahouri and P. Gérard [2] states that any bounded sequence un of
solutions to the nonlinear critical wave equation can be decomposed into an infinite sum of: the
weak limit of un, a sequence of solutions to the free wave equation and an infinite sum of profiles
which are translations–dilations of fixed nonlinear solutions. This decomposition was used by the
authors of [8] to get the expected result in R3. Therefore, we are led to make an analog of this
profile decomposition for compact manifolds. We begin by the definition of the profiles.

Definition 0.2. Let x∞ ∈ M and (f, g) ∈ Ex∞ = (Ḣ 1 ×L2)(Tx∞M). Given [(f, g),h, x] ∈ Ex∞ ×
(R∗+ ×M)N such that limn(hn, xn) = (0, x∞). We call the associated concentrating data the class
of equivalence, modulo sequences convergent to 0 in E , of sequence in E that take the form

h
− 1

2
n ΨU(x)

(
f,

1

hn

g

)(
x − xn

hn

)
+ o(1)E (4)

in some coordinate patch UM ≈ U ⊂ R
d containing x∞ and for some ΨU ∈ C∞

0 (U) such that
ΨU(x) = 1 in a neighborhood of x∞. (Here we have identified xn, x∞ with its image in U .)

We will prove later (Lemma 1.3) that this definition does not depend on the coordinate charts
and on ΨU : two sequences defined by (4) in different coordinate charts are in the same class.
In what follows, we will often call concentrating data associated to [(f, g),h, x] an arbitrary
sequence in this class.

Definition 0.3. Let (tn) be a bounded sequence in R converging to t∞ and (fn, gn) a concen-
trating data associated to [(f, g),h, x]. A damped linear concentrating wave is a sequence vn

solution of {�vn + vn + a(x)∂tvn = 0 on R × M,(
vn(tn), ∂t vn(tn)

)= (fn, gn).
(5)

The associated damped nonlinear concentrating wave is the sequence un solution of{�un + un + a(x)∂tun + |un|4un = 0 on R × M,(
un(0), ∂tun(0)

)= (vn(0), ∂t vn(0)
)
.

(6)

If a ≡ 0, we will only write linear or nonlinear concentrating wave.
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It might seem counterintuitive to take the initial data at t = 0 (and not at t = tn) for the
nonlinear concentrating wave. This will, actually, be more convenient in the nonlinear profile
decomposition where we want to compare the linear and nonlinear solution with same initial
data.

Energy estimate yields that two representatives of the same concentrating data have the same
associated concentrating wave modulo strong convergence in L∞

loc(R, E ). This is not obvious for
the nonlinear evolution but will be a consequence of the study of nonlinear concentrating waves.

It can be easily seen that this kind of nonlinear solutions are not linearizable. Actually, it can
be shown that this concentration phenomenon is the only obstacle to linearizability. We begin
with the linear decomposition.

Theorem 0.3. Let (vn) be a sequence of solutions to the damped Klein–Gordon equation (5)
with initial data, at time t = 0, (ϕn,ψn) bounded in E . Then, up to extraction, there exist a
sequence of damped linear concentrating waves (p(j)), as defined in Definition 0.3, associated

to concentrating data [(ϕ(j),ψ(j)), h(j), x(j), t (j)], such that for any l ∈ N
∗,

vn(t, x) = v(t, x) +
l∑

j=1

p
(j)
n (t, x) + w(l)

n (t, x), (7)

∀T > 0, lim
n→∞
∥∥w(l)

n

∥∥
L∞([−T ,T ],L6(M))∩L5([−T ,T ],L10)

−→
l→∞ 0, (8)

∥∥(vn, ∂tvn)
∥∥2

E =
l∑

j=1

∥∥(p(j)
n , ∂tp

(j)
n

)∥∥2
E + ∥∥(w(l)

n , ∂tw
(l)
n

)∥∥2
E + o(1), as n → ∞, (9)

where o(1) is uniform for t ∈ [−T ,T ].

The nonlinear flow map follows this decomposition up to an error term in the strong following
norm

|||u|||I = ‖u‖L∞(I,H 1(M)) + ‖∂tu‖L∞(I,L2(M)) + ‖u‖L5(I,L10(M)).

Theorem 0.4. Let T < Tfocus/2. Let un be the sequence of solutions to damped nonlinear Klein–

Gordon equation (6) with initial data, at time 0, (ϕn,ψn) bounded in E . Let p
(j)
n be the linear

damped concentrating waves (resp. v the weak limit) given by Theorem 0.3 and q
(j)
n the asso-

ciated nonlinear damped concentrating wave (resp. u the associated solution of the nonlinear
equation with (u, ∂tu)t=0 = (v, ∂t v)t=0). Then, up to extraction, we have

un(t, x) = u +
l∑

j=1

q
(j)
n (t, x) + w(l)

n (t, x) + r(l)
n , (10)

lim
n→∞
∣∣∣∣∣∣r(l)

n

∣∣∣∣∣∣[−T ,T ] −→
l→∞ 0 (11)

where w
(l)
n is given by Theorem 0.3.
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The same theorem remains true if M is the sphere S3 and a ≡ 0 (undamped equation) without
any assumption on the time T .

The more precise result we get for the sphere S3 will not be useful for the proof of our
controllability result. Yet, we have chosen to give it because it is the only case where we are able
to describe what happens when some refocusing occurs.

This profile decomposition has already been proved for the critical wave equation on R
3

by H. Bahouri and P. Gérard [2] and on the exterior of a convex obstacle by I. Gallagher and
P. Gérard [17]. The same decomposition has also been performed for the Schrödinger equa-
tion by S. Keraani [26] and quite recently for the wave maps by Krieger and Schlag [28]. Note
that such decomposition has proved to be useful in different contexts: the understanding of the
precise behavior near the threshold for well-posedness for focusing nonlinear wave see Kenig
and Merle [25] and Duyckaerts and Merle [13], the study of the compactness of Strichartz esti-
mates and maximizers for Strichartz estimates, (see Keraani [26]), the global existence for wave
maps [28], for NLS in the hyperbolic space [23]. . . Maybe our decomposition on manifolds could
be useful in one of these contexts. Let us also mention that, this kind of decomposition appears
for a long time in the context of Palais–Smale sequences for critical elliptic equation and optimal
constant for Sobolev embedding, but with a finite number of profiles, see Brezis and Coron [4],
the book [12] and the references therein. . .

Let us describe quickly the proof of the decomposition. The linear decomposition of Theo-
rem 0.3 is made in two steps: first, we decompose our sequence in a sum of an infinite number
of sequences oscillating at different rate h

(j)
n . Then, for each part oscillating at a fixed rate, we

extract the possible concentration at certain points. We only have to prove that this process pro-
duces a rest wl

n that gets smaller in the norm L∞L6 at each stage. Once the linear decomposition
is established, Theorem 0.4 says, roughly speaking, that the nonlinear flow map acts almost lin-
early on the linear decomposition. To establish the nonlinear decomposition we have to prove
that each element of the decomposition do not interact with the others. For each element of the
linear decomposition, we are able to describe the nonlinear solution arising from this element
as initial data. The linear rest wl

n is small in L∞([−T ,T ],L6) for l large enough and so the
associated nonlinear solution with same initial data is very close to the linear one. The behavior
of nonlinear concentrating waves is described in [21] (see Section 2.2.1 for a short review). Be-
fore the concentration, linear and nonlinear waves are very close. For times close to the time of
concentration, the nonlinear rescaled solution behaves as if the metric was flat and is subject to
the scattering of R3. After concentration, the solution is close to a linear concentrating wave but
with a new profile obtained by the scattering operator on R

3.
We finish this introduction by a discussion on the geometric conditions we imposed to get our

main theorem. For the linear wave equation, the controllability is known to be equivalent to the
so-called Geometric Control Condition (Assumption 0.1). This was first proved by Rauch and
Taylor [33] in the case of a compact manifold and by Bardos, Lebeau and Rauch [3] for boundary
control (see Burq and Gérard [5] for the necessity). For the nonlinear subcritical problem, the re-
sult of [10] only requires the classical Geometric Control Condition. Our assumption is stronger
and we can naturally wonder if it is really necessary. It is actually strongly linked with the critical
behavior and nonlinear concentrating waves. Removing this stronger assumption would require a
better understanding of the scattering operator of the nonlinear equation on R3 (see Remark 0.1).
However, we think that the same result could be obtained with the following weaker assump-
tion.
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Fig. 1. Possible situation on the sphere.

Assumption 0.3. ω satisfies the Geometric Control Condition. Moreover, for every couple of
focus (x1, x2, t) at distance t , according to Definition 0.1, each geodesic starting from x1 in
direction ξ such that expx1

tξ = x2 meets ω in a time 0 � s < t .

Finally, we note that our theorem can easily be extended to the case of R
3 with a metric flat

at infinity. In this case, our stabilization term a(x) should fulfill the two assumptions:

• there exist R > 0 and ρ > 0 such that a(x) > ρ for |x| > R,
• a(x) > ρ for x ∈ ω where ω satisfies Assumption 0.2.

The proof would be very similar. The only difference would come from the fact that the domain
is not compact. So the profile decomposition would require the “compactness at infinity” (see
property (1.6) of [2]). Moreover, the equipartition of the energy could not be made only with
measures but with an explicit computation (see (3.14) of [8]).

Remark 0.1. In order to know if our stronger Assumptions 0.2 or 0.3 are really necessary com-
pared to the classical Geometric Control Condition, we need to prove that the following scenario
cannot happen. We take the example of S3 with ω a neighborhood of {x4 = 0, x3 � 0}.

Take some data concentrating on the north pole, with a Fourier transform (on the tangent
plane) supported around a direction ξ0. The nonlinear solution will propagate linearly as long as
it does not concentrate: at time t it will be supported in a neighborhood of the point x(t) where
x(t) follows the geodesic stemming from the north pole at time 0 in direction ξ0. Then, if ξ0 is
well chosen, it can avoid ω during that time. Yet, at time π , the solution will concentrate again in
the south pole. According to the description of S. Ibrahim [21], in a short time, the solution will
be transformed following the nonlinear scattering operator on R

3. So, at time π + ε the solution
is close to a linear concentrating wave but it concentrates with a new profile which is obtained
with the nonlinear scattering operator on R

3. This operator is strongly nonlinear and we do not
know whether the new profile will be supported in Fourier near a new direction ξ1. If it happens,
the solution will then be supported near the point y(t) where y(t) follows the geodesic stemming
from the south pole at time π in direction ξ1. In this situation, it will be possible that the trajectory
y(t) still avoids ω. If this phenomenon happens several times, we would have a sequence that
concentrates periodically on the north and south pole but always avoiding the region ω (which in
that case satisfies Geometric Control Condition).
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We are led to the following informal question. If S is the scattering operator on R
3, then it is

possible that for some data (f, g) ∈ Ḣ 1 ×L2 supported in Fourier near a direction ξ0, the Fourier
transform of S(f,g) is supported near another direction ξ1. In other words, can the nonlinear
wave operator change the direction of the light?

Note, that in this specific example of S3, the use of the momentum on R
3 should allow to

conclude. This will be detailed in a forthcoming article.

The structure of the article is as follows. The first section contains some preliminaries that
will be used all along the article: the existence theorem for damped nonlinear equation, the de-
scription of the main properties of concentrating waves and the useful properties of the scales
necessary for the linear decomposition. The second section contains the proof of the profile de-
composition of Theorems 0.3 and 0.4. It is naturally divided in two steps corresponding to the
linear decomposition and the nonlinear one. We close this section by some useful consequences
of the decomposition. The third section contains the proof of the main theorems: the control and
stabilization.

Note that the main argument for the proof of stabilization is contained in the last Section 3: in
Proposition 3.1 we apply the linearization argument to get rid of the profiles while Theorem 3.1
contains the proof of the weak observability estimates. We advise the hurried reader to have a
first glance at these two proofs in order to understand the global argument.

0.1. Notation

For an interval I , denote

|||u|||I = ‖u‖L∞(I,H 1(M)) + ‖∂tu‖L∞(I,L2(M)) + ‖u‖L5(I,L10(M)).

Moreover, when we work in local coordinate, we will need the similar norm (except for Ḣ 1

instead of H 1)

|||u|||I×R3 = ‖u‖L∞(I,Ḣ 1(R3)) + ‖∂tu‖L∞(I,L2(R3)) + ‖u‖L5(I,L10(R3)).

Note that if I =R, then |||u|||I×R3 is invariant by the translation and scaling u → 1√
h
u(

t−t0
h

,
x−x0

h
).

The energy spaces are denoted by

E = H 1(M) × L2(M),

Ex∞ = Ḣ 1(Tx∞M) × L2(Tx∞M)

with the respective norms

∥∥(f, g)
∥∥2

E = ‖f ‖2
L2(M)

+ ‖∇f ‖2
L2(M)

+ ‖g‖2
L2(M)

,∥∥(f, g)
∥∥2

E∞ = ‖∇f ‖2
L2(Tx∞M)

+ ‖g‖2
L2(Tx∞M)

.

We will denote by 〈·,·〉E and 〈·,·〉E the associated scalar products.
∞



C. Laurent / Journal of Functional Analysis 260 (2011) 1304–1368 1313
When dealing with solutions of nonlinear wave equations on M (or on Tx∞M), “the unique
strong solution” will mean the unique solution in the Strichartz space L5

loc(R,L10(M)) (or
L5

loc(R,L10(Tx∞M))) such that (u, ∂tu) ∈ C(R, E ) (or C(R, Ex∞)).
All along the article, for a point x ∈ M , we will sometimes not distinguish x with its image

in a coordinate patch and will write R
3 instead of Tx∞M . M will always be smooth, compact

and the number of coordinate charts we use is always assumed to be finite. We also assume
that all the charts are relatively compact. In all the article, C will denote any constant, possibly
depending on the manifold M and the damping function a. We will also write � instead of � C

for a constant C.
Bs

2,∞(M) denotes the Besov space on M defined by

‖u‖Bs
2,∞(M) = ∥∥1[0,1[(

√−�M)u
∥∥

L2(M)
+ sup

k∈N

∥∥1[2k,2k+1[(
√−�M)u

∥∥
Hs(M)

.

We use the same definition for Bs
2,∞(R3) with �M replaced by �R3 which can be expressed

using the Fourier transform and the Littlewood–Paley decomposition. Of course, Bs
2,∞(M) is

linked with Bs
2,∞(R3) by the expression in coordinate charts. This will be precised in Lemma 2.1.

From now on, a = a(x) will always denote a smooth real-valued function defined on M .

1. Preliminaries

1.1. Existence theorem

The existence of solutions to our equation is proved using two tools: Strichartz and Morawetz
estimates. Strichartz estimates take the following form.

Proposition 1.1 (Strichartz and energy estimates). Let T > 0 and (p, q) satisfy

1

p
+ 3

q
= 1

2
, p > 2.

Then, there exists C > 0 such that any solution u of

{�v + v + a(x)∂tv = f on [−T ,T ] × M,(
v(0), ∂tu(0)

)= (u0, u1)

satisfies the estimate

∥∥(v, ∂tv)
∥∥

L∞([−T ,T ],E )
+ ‖v‖Lp([−T ,T ],Lq(M)) � C

(∥∥(u0, u1)
∥∥

E + ‖f ‖L1([−T ,T ],L2)

)
.

Proof. The case with a ≡ 0 for the wave equation can be found in L.V. Kapitanski [24]. To
treat the case of damped Klein–Gordon, we only have to absorb the additional terms and get the
desired estimate for T small enough. We can then reiterate the operation to get the result for large
times. �
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Then, we are going to prove the global existence for the equation

{�u + u + |u|4u = a(x)∂tu + g on [−T ,T ] × M,(
u(0), ∂tu(0)

)= (u0, u1) ∈ E
(12)

with g ∈ L1([−T ,T ],L2(M)) and a ∈ C∞(M).
The proof is now very classical, see for example [37] for a survey of the subject. The critical

defocussing nonlinear wave equation on R
3 was proved to be globally well posed by Shatah and

Struwe [35,34] using Morawetz estimates. Later, S. Ibrahim and M. Majdoub managed to apply
this strategy in the case of variable coefficients in [22], but without damping and forcing term. In
this subsection, we extend this strategy to the case with these additional terms. We also refer to
the appendix of [2] where the computation of Morawetz estimates on R

3 is made with a forcing
term. We also mention the result of N. Burq, G. Lebeau and F. Planchon [7] in the case of 3-D
domains.

We only have to check that the two additional terms do not create any trouble. Actually, the
main difference is that the energy in the light cones is not decreasing, but it is locally “almost
decreasing” (see formula (13)) and this will be enough to conclude with the same type of argu-
ments.

As usual in critical problems, the local problem is well understood thanks to Strichartz esti-
mates while we have to prove global existence. We only consider Shatah–Struwe solutions, that
are satisfying Strichartz estimates and we have uniqueness for local solutions in this class. We
assume that there is a maximal time of existence t0 and we want to prove that it is infinite. The
solution considered will be limit of smooth solutions of the nonlinear equation with smoothed
initial data and nonlinearity. Therefore, the integrations by part are licit by a limiting argument.

We need some notations. To simplify the notations, the space–time point where we want to
extend the solution will be z0 = (t0, x0) = (0,0). ϕ is the geodesic distance on M to x0 = 0
defined in a neighborhood U of 0. Denote for some small α < β < 0 by

Kβ
α := {z = (t, x) ∈ [α,β] × U

∣∣ ϕ � |t |} backward truncated cone,

Mβ
α := {z = (t, x) ∈ [α,β] × U

∣∣ ϕ = |t |} mantle of the truncated cone,

D(t) := {x ∈ U
∣∣ ϕ � |t |} spacelike section of the cone at time t.

In what follows, the gradient, norm, density are computed with respect to the Riemannian metric
on M (for example, we have |∇ϕ| = 1). We also define by

e(u)(t, x) := 1

2

(|∂tu|2 + |∇u|2)+ 1

6
|u|6 local energy,

E
(
u,D(t)

) := ∫
D(t)

e(u)(t, x) dx energy at time t in the section of the cone,

Flux
(
u,Mβ

α

) := 1√
2

∫
M

β
α

1

2
|∂tu∇ϕ − ∇u|2 + 1

6
|u|6 dσ flux getting out of the truncated cone.
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Lemma 1.1. Let u be a solution of Eq. (12). The function E(u,D(t)) satisfies for α < β < 0

E
(
u,D(β)

)+ Flux
(
u,Mβ

α

)= E
(
u,D(α)

)+ ∫ ∫
K

β
α

a(x)|∂tu|2 − �
∫ ∫
K

β
α

u∂t ū + �
∫ ∫
K

β
α

g∂t ū

and it has a left limit in t = 0 as a function of t .

Proof. The identity is obtained by multiplying the equation by ∂tu to get ∂t e(u) −
�div(∂tu∇xu) = a(x)|∂tu|2 − u∂t ū + �g∂tu, then, we integrate over the truncated cone K

β
α

and use Stokes formula. Denote f (t) = E(u,D(t)). Using the positivity of the flux and the
Hölder inequality, we estimate

‖f ‖L∞([α,β]) � f (α) + C(β − α)‖f ‖L∞([α,β]) + C|α|(β − α)‖f ‖2/3
L∞([α,β])

+ ‖g‖L1([α,β],L2)‖f ‖1/2
L∞([α,β]).

Using C|α|(β − α)‖f ‖2/3
L∞([α,β]) � C(β − α)(‖f ‖1/2

L∞([α,β]) + ‖f ‖L∞([α,β])), we get for β − α

small enough

f (β)1/2 � 1

1 − 2C(β − α)

[
f (α)1/2 + C(β − α) + ‖g‖L1([α,β],L2)

]
. (13)

This property will replace the decrease of the energy that occurs without damping and forcing
term in all the rest of the proof. It easily implies that f has a left limit. �
Lemma 1.2. For u and g being a strong solution of

�u + |u|4u = g on [−T ,0[ × M

we have the estimate∫
D(α)

|u|6 � C

(
β

α

(
f (β) + f (β)1/3)+ ∣∣f (β) − f (α)

∣∣+ ‖g‖
L1L2(K

β
α )

‖∂tu‖
L∞L2(K

β
α )

+ (∣∣f (β) − f (α)
∣∣+ ‖g‖

L1L2(K
β
α )

‖∂tu‖
L∞L2(K

β
α )

)1/3

+ ‖g‖
L1L2(K

β
α )

(‖∂tu‖
L∞L2(K

β
α )

+ ‖∇u‖
L∞L2(K

β
α )

+ ‖u‖
L∞L6(K

β
α )

)
+ (β − α) sup

t∈[α,β]
[
f (t) + f (t)1/3])

where we have used the notation f (t) = E(u,D(t)).

Proof. It is a consequence of Morawetz estimates. The only difference is the presence of the
forcing term g and the metric. The case of flat metric is treated in [2]. The metric leads to
the same estimates with an additional term (β − α) supt∈[α,β] f (t) + f (t)1/3 as treated in [22].
Another minor difference is that in the presence of a forcing term, the energy does not decrease
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and f (β) + f (β)1/3 have to be replaced by the supremum on the interval. Note also that our
estimate is made in the backward cone while the computation is made in the future cone in these
references. We leave the easy modifications to the reader. �

The previous estimates will be the main tools of the proof. It will be enough to prove some
non-concentration property in the light cone for L∞L6, L5L10 and finally in energy space. It is
the object of the following three corollaries.

Corollary 1.1. ∫
D(α)

∣∣u(α, x)
∣∣6 dx −→

α→0
0.

Proof. We are going to use the previous Lemma 1.2, replacing g by g − u + a(x)∂tu and with
β = εα, 0 < ε < 1. Denote by L the limit of f (t) as t tends to 0 given by Lemma 1.1. So for α

small enough, we have for a constant C > 0

‖∂tu‖
L∞L2(K

β
α )

+ ‖∇u‖
L∞L2(K

β
α )

+ ‖u‖
L∞L6(K

β
α )

� 1 + C
(
L1/2 + L1/6).

We also use∥∥g − u + a(x)∂tu
∥∥

L1L2(K
β
α )

� ‖g‖
L1L2(K

β
α )

+ C(β − α)‖u‖
L∞L2(K

β
α )

+ C(β − α)‖∂tu‖
L∞L2(K

β
α )

� ‖g‖
L1L2(K

β
α )

+ C(β − α)
(
1 + L1/6 + L1/2)

which tends to 0 as β tends to 0. This yields

lim
α→0

∫
D(α)

∣∣u(α, x)
∣∣6 dx � Cε

(
L + L1/3). �

Corollary 1.2.

u ∈ L5L10(K0−T

)
.

Proof. Localized Strichartz estimates in cones (see Proposition 4.4 of [22]) give

‖u‖L4L12(K0
s )

� CE
(
u,D(s)

)1/2 + ‖u‖5
L5L10(K0

s )
+ ∥∥a(x)∂tu − u + g

∥∥
L1L2(K0

s )

� CE
(
u,D(s)

)1/2 + ‖u‖L∞L6(K0
s )

(
1 + ‖u‖4

L4L12(K0
s )

)+ ‖∂tu‖L∞L2(K0
s ) + ‖g‖L1L2(K0

s ).

A bootstrap argument and Corollary 1.1 give that for s sufficiently close to 0, ‖u‖L4L12(K0
s ) is

bounded. We get the announced result by interpolation between L4L12 and L∞L6. �
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Corollary 1.3.

E
(
u,D(s)

)−→
s→0

0.

Proof. Let ε > 0. Corollary 1.2 allows to fix s < 0 close to 0 so that ‖u‖L5L10(K0
s ) � ε. Denote

by vs the solution to the linear equation

�vs + vs + a(x)∂tvs = 0, (vs, ∂t v)t=s = (u, ∂tu)t=s

then, the difference ws = u − vs is a solution of

�ws + ws + a(x)∂tws = −|u|4u, (ws, ∂tws)t=s = (0,0).

Then, for s < t < 0, the linear energy estimates give

E0
(
ws,D(t)

)1/2 � C‖u‖5
L5L10(K0

s )
� Cε5

where we have set

E0
(
ws,D(t)

)= 1

2

∫
D(t,z0)

[|∇ws |2 + |∂tws |2
]
dx.

The triangular inequality yields

E0
(
u,D(t)

)1/2 � E0
(
vs,D(t)

)1/2 + Cε5.

Since vs is a solution of the free damped linear equation, we have E0(vs,D(t))−→
t→0

0. This yields
the result with E0 instead of E. The final result is obtained thanks to Corollary 1.1. �

We can now finish the proof of the global existence.
Let ε > 0 be chosen later. By Corollary 1.3, E(u,D(s)) � ε for s close enough to 0. By

dominated convergence, for any s < 0 close to 0, there exists η > 0 so that∫
ϕ(x)�t0−s+η

e(u)(s) = E
(
u,D(s, η)

)
� 2ε

where E(u,D(s, η)) is the spacelike energy at time s of the cone centered at (t0 = η, x0 = 0)

(see Fig. 2). For s close enough to 0 and s < s′ < 0, we apply estimate (13) in this cone. It gives

E
(
u,D
(
s′, η
))1/2 � C

(
E
(
u,D(s, η)

)1/2 + ∣∣s′ − s
∣∣+ ‖g‖L1([s,s′],L2)

)
� Cε1/2.

In particular, ‖u‖L∞L6(K) � Cε1/2 on the truncated cone

K = {(s′, x
) ∣∣ ϕ(x) � η − s′, s < s′ < 0

}
.
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Fig. 2. The truncated cone K .

Therefore, choosing ε small enough to apply the same proof as Corollary 1.2, we get

‖u‖L5L10(K) < +∞.

Since x0 = 0 is arbitrary, a compactness argument yields one s < 0 such that ‖u‖L5([s,0[,L10(M)) <

+∞. Therefore, by the Duhamel formula, (u(t), ∂tu(t)) has a limit in E as t tends to 0 and u can
be extended for some small t > 0 using local existence theory.

Remark 1.1. It is likely that the global existence can also be proved using the Kenig–Merle
argument [25] and the profile decomposition below (assuming only local existence) as it is done
for example in [28] for the wave maps.

1.2. Concentration waves

In this subsection, we give the details about concentrating waves that will be useful in the
profile decomposition. The first lemma states that Definition 0.2 of concentrating data does not
depend on the choice of coordinate patch and cut-off function ΨU .

Lemma 1.3. Let [(f, g),h, x] ∈ E × (R∗+ × M×)N be such that limn(hn, xn) = (0, x∞) then, all
the sequences defined by formula (4) in different coordinates charts and the cut-off function ΨU

are equivalent, modulo convergence in E .

Proof. It is very close to the one of S. Ibrahim [21] where the concentrating data are given in
geodesic coordinates. So, let VM ≈ V be another coordinate patch and Φ : V → U the associated
transition map. Without loss of generality, we can suppose that x∞ is represented by 0 in U

and V . We have to prove that the sequences

h
− 1

2
n Φ∗ΨU(x)

(
f,

1

hn

g

)(
x − Φ(xn)

hn

)
= h

− 1
2

n ΨU

(
Φ(x)
)(

f,
1

hn

g

)(
Φ(x) − Φ(xn)

hn

)
and

h
−1/2
n ΨV (x)

(
f ◦ DΦ(0),

1

hn

g ◦ DΦ(0)

)(
x − xn

hn

)
are equivalent in the energy space associated to M or R

3 (the volume form and the gradient
are not the same but the energies are equivalent). By approximation, we can assume (f, g) ∈
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(C∞
0 (R3))2. We make the proof for the Ḣ 1 part for f , the proof being simpler for g. We remark

that the terms coming from derivatives hitting on ΨU(x) tend to 0 in L2. Therefore, we have to
prove the convergence to 0 of

h−3
n

∥∥∥∥ΨU

(
Φ(x)
)
DΦ(x)∇f

(
Φ(x) − Φ(xn)

hn

)

− ΨV (x)DΦ(0)∇f

(
DΦ(0)x − DΦ(0)xn

hn

)∥∥∥∥2
L2(V )

.

First, we prove that the cut-off functions ΨU and ΨV can be replaced by a unique Ψ . Let δ be
so that B(0, δ) ⊂ V . Let Ψ ∈ C∞

0 (B(0, δ)) be such that Ψ ≡ 1 in a neighborhood of 0 and has
a support included in the set of x such that ΨV (x) = ΨU(Φ(x)) = 1, so that Ψ ΨV = Ψ and
Ψ (ΨU ◦ Φ) = Ψ . Then, on the support of 1 − Ψ , we have ‖Φ(x) − Φ(xn)‖ > ε for some ε > 0
and some n large enough. Therefore, we have

h−3
n

∥∥∥∥(1 − Ψ (x)
)
ΨU

(
Φ(x)
)
DΦ(x)∇f

(
Φ(x) − Φ(xn)

hn

)∥∥∥∥2
L2(V )

� Ch−3
n

∥∥∥∥∇f

(
Φ(x) − Φ(xn)

hn

)∥∥∥∥2
L2(‖Φ(x)−Φ(xn)‖>ε)

which is 0 for n large enough since f has compact support. Making the same proof for the other
term, we are led to prove the convergence to 0 of

h−3
n

∥∥∥∥Ψ (x)DΦ(x)∇f

(
Φ(x) − Φ(xn)

hn

)
− Ψ (x)DΦ(0)∇f

(
DΦ(0)x − DΦ(0)xn

hn

)∥∥∥∥2
L2(B(0,δ))

�
∥∥∥∥DΦ(hnx + xn)∇f

(
Φ(hnx + xn) − Φ(xn)

hn

)
− DΦ(0)∇f

(
DΦ(0)x

)∥∥∥∥2
L2({x: |xn+hnx|�δ})

.

(14)

By the fundamental theorem of calculus, there exists zn(x) ∈ [xn,hnx + xn] such that
|Φ(hnx+xn)−Φ(xn)

hn
| = |DΦ(zn)x| > C|x| for some uniform C > 0. As ∇f is compactly sup-

ported, we deduce that for |x| large enough, the integral is zero. So, we are led with the norm
(14) with L2(B(0,C)) instead of L2({x: |xn + hnx| � δ}). We conclude by dominated conver-
gence. �

Using the previous lemma in geodesic coordinates, we get that our definition of concentrating
data is the same as Definition 1.2 of S. Ibrahim [21].

Remark that for a concentrating data, xn −x∞ cannot be defined invariantly on Tx∞M , we can
only define the limit of (xn − x∞)/hn. The change of coordinates must act on xn as an element
of M and not Tx∞M even if it converges to x∞. Yet, the functions (f, g) of a concentrating data
“live” on the tangent space. Moreover, the norm in energy of a concentrating data is the one of
its data.
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Lemma 1.4. Let (un, vn) be a concentrating data associated to [(ϕ,ψ),h, x], then, we have∥∥(un, vn)
∥∥

E = ∥∥(ϕ,ψ)
∥∥

Ex∞
+ o(1)

where ∇x∞ and L2(Tx∞M) are computed with respect to the frozen metric.

The proof is a direct consequence of Lemmas 1.5 and 1.6 below or by a direct computation in
coordinates.

The next definition is the tool that will be used to “track” the concentrations.

Definition 1.1. Let x∞ ∈ M and (f, g) ∈ Ex∞ . Given [(f, g),h, x] ∈ Ex∞ × (R∗+ ×M)N such that
limn(hn, xn) = (0, x∞). Let (fn, gn) be a sequence bounded in E , we set

Dhn(fn, gn) ⇀ (f,g)

if in some coordinate patch UM ≈ U ⊂ R
d containing x∞ and for some ΨU ∈ C∞

0 (U) such that
ΨU(x) = 1 in a neighborhood of x∞, we have

h
1
2
n (ΨUfn,hnΨUgn)(xn + hnx) ⇀ (f,g) weakly in Ex∞

where we have identified ΨU(fn, gn) with its representation on Tx∞M in the local trivialization.
If this holds for one (U,ΨU), it holds for any other coordinate chart with the induced transition

map.
We denote D1

hn
fn ⇀ f if we only consider the first part concerning Ḣ 1 and D2

hn
gn ⇀ g for

the L2 part convergence.

Of course, this definition depends on the core of concentration h and x. In the rest of the
paper, the rate h and x will always be implicit. When several rates of concentration [h(j), x(j)],
j ∈ N, are used in a proof, we use the notation D

(j)
h to distinguish them.

The fact that this definition is independent of the choice of a coordinate chart can be seen with
the following lemma which will also be useful afterward.

Lemma 1.5. Dhn(fn, gn) ⇀ (f,g) is equivalent to∫
M

∇Mfn · ∇Mun −→
n→∞

∫
Tx∞M

∇x∞f · ∇x∞ϕ,

∫
M

gnvn −→
n→∞

∫
Tx∞M

gψ

where (un, vn) is any concentrating data associated with [(ϕ,ψ),h, x].

The ∇ is computed with respect to the metric on M when the integral is over M and with
respect to the frozen metric in x∞ when the integral is over Tx∞M .
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Proof of Lemma 1.5. We only compute the first term for the H 1 norm and assume ϕ ∈ C∞
0 (R3).

dω(y) denotes the Riemannian volume form at the point y, ·y the scalar product at the point y

and ∇hnx+xn = g(hnx + xn)
−1∇ .

We denote Vh = V −xn

h
and Ln,V = h

1
2
n

∫
Vh

∇x∞[ΨV fn(xn + hnx)] · ∇x∞ϕ(x)dω(0).

Ln,V = h
1
2
n

∫
Vh

∇xn+hnx

[
ΨV fn(xn + hnx)

] ·(xn+hnx) ∇xn+hnxϕ(x) dω(xn + hnx) + o(1)

= h
3
2
n

∫
Vh

ΨV (xn + hnx)(∇xn+hnxfn)(xn + hnx) ·(xn+hnx) ∇xn+hnxϕ(x) dω(xn + hnx)

+ o(1)

= h
− 3

2
n

∫
V

∇yfn(y) ·y ΨV (y)∇yϕ

(
y − xn

hn

)
dω(y) + o(1)

= h
− 1

2
n

∫
V

∇yfn(y) ·y ∇y

[
ΨV (y)ϕ

(
y − xn

hn

)]
dω(y) + o(1)

=
∫
M

∇Mfn · ∇Mun + o(1).

Therefore, Ln,V tends to
∫ ∇f (x) · ∇ϕ(x)dω(0) if and only if

∫
M

∇Mfn · ∇Mun has the same
limit. �

An easy consequence of this lemma is the link with concentrating waves.

Lemma 1.6. Let (fn, gn) be some concentrating data associated with [(f, g),h, x], then, we
have

Dhn(fn, gn) ⇀ (f,g).

Proof. Lemma 1.3 permits to work in geodesic coordinates so that the metric g is the identity at

the point x∞. In this chart, we have fn(xn + hnx) = ΨU(xn + hnx)h
− 1

2
n f . So, the computation

of Lemma 1.5 gives
∫ ∇∞f ·∇∞ϕ dω(0) = ∫

M
∇Mfn ·∇Mun +o(1) which gives the result. �

We conclude this subsection by a definition of orthogonality that will discriminate concen-
trating data.

Definition 1.2. We say that two sequences [h(1), x(1), t (1)] and [h(2), x(2), t (2)] are orthogonal if
either

• log |h
(1)
n

h
(2)
n

| −→
n→∞ +∞,

• x
(1)∞ �= x

(2)∞ ,or
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• h
(1)
n = h

(1)
n = h and x

(1)∞ = x
(2)∞ = x∞ and in some coordinate chart around x∞, we have

|t (1)
h − t

(2)
h |

h
+ |x(1)

h − x
(2)
h |

h
−→
h→0

+∞.

We note [h(1), x(1), t (1)] ⊥ [h(2), x(2), t (2)] and (x(1), t (1)) ⊥h (x(2), t (2)) if h(1) = h(2) = h.

This definition does not depend on the coordinate chart. This can be seen because we have the
estimate 1

C
|x(1)

h − x
(2)
h | � |Φ(x

(1)
h ) − Φ(x

(2)
h )| � C|x(1)

h − x
(2)
h | if Φ is the transition map.

1.3. Scales

In this subsection, we precise a few facts that will be useful in the first part of the proof of
linear profile decomposition which consists of the extration of the scales of oscillation h

j
n.

On the Hilbert space E = H 1(M) × L2(M), we define the self-adjoint operator AM by:

D(AM) = H 2
M × H 1

M,

AM(u, v) = ((−�M)1/2v, (−�M)1/2u
)
.

We define similarly ARd with the flat laplacian. We denote by ARd ,N the obvious operator on
(H 1(Rd) × L2(Rd))N obtained by applying ARd on each “coordinate”.

The following definition is taken from Gallagher and Gérard [17].

Definition 1.3. Let A be a self-adjoint (unbounded) operator on a Hilbert space H . Let (hn) be
a sequence of positive numbers converging to 0. A bounded sequence (un) in H is said to be
(hn)-oscillatory with respect to A if

lim
n→∞‖1|A|� R

hn

un‖H −→
R→∞ 0. (15)

(un) is said to be strictly (hn)-oscillatory with respect to A if it satisfies (15) and

lim
n→∞‖1|A|� ε

hn
un‖H −→

ε→0
0.

At the contrary, (un) is said to be (hn)-singular with respect to A if we have

‖1 a
hn

|A|� b
hn

un‖H −→
n→∞ 0 for all 0 < a < b.

Remark that 1|x|�1 can easily be replaced by a well-chosen function ϕ ∈ C∞
0 (R). Moreover,

if a sequence (un) is strictly (hn)-oscillatory while a second sequence (vn) is (hn)-singular, then
we have the interesting property that 〈un, vn〉H −→

n→∞ 0.

Proposition 1.2. Let M =⋃N
i=1 Ui be a finite covering of M with some associated local coordi-

nate patch Φi :Ui → Vi ⊂ R
3. Let 1 =∑i Ψi be an associated partition of the unity of M with

Ψi ∈ C∞(Ui). Let (un, vn) be a bounded sequence in the M energy space and hn a sequence
0
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converging to 0. Then (un, vn) is (strictly) (hn)-oscillatory with respect to AM , if and only if all
the Φi∗Ψi(un, vn) are (strictly) (hn)-oscillatory with respect to ARd .

Proof. First, we remark that a sequence is (strictly) (hn)-oscillatory with respect to A if and
only if it is (strictly) (h2

n)-oscillatory with respect to A2. So we can replace AM and AR3 by
−(�M,�M) and −(�R3 ,�R3). We apply a proposition taken from [17] that makes the link
between oscillation with different operators.

Proposition 1.3. (See Proposition 2.2.3 of [17].) Let Λ : H1 → H2 be a continuous linear map
between Hilbert spaces H1, H2. Let A1 be a self-adjoint operator on H1, A2 be a self-adjoint
operator on H2. Assume there exists C > 0 such that Λ(D(A1)) ⊂ D(A2), Λ∗(D(A2)) ⊂ D(A1)

and for any u ∈ D(A1), v ∈ D(A2),

‖A2Λu‖ � C
(‖A1u‖ + ‖u‖), (16)∥∥A1Λ

∗v
∥∥ � C

(‖A2v‖ + ‖v‖). (17)

If a bounded sequence (un) in H1 is (strictly) (hn)-oscillatory with respect to A1, then (Λun) is
(strictly) (hn)-oscillatory with respect to A2.

To prove the first implication, we apply the proposition with Λ(u,v) = (Φ1∗Ψ1(u, v), . . . ,

ΦN∗ΨN(u, v)). We only prove the necessary estimates, the inclusions of domains being a direct
consequence of the inequalities and of the density of smooth functions. To simplify the notation,
we denote (ui, vi) = Φi∗Ψi(u, v). The proof of (16) mainly uses the equivalent definitions of the
Hs norm on a manifold.

∥∥A2
R3(ui, vi)

∥∥
H 1

R3×L2
R3

= ‖�R3ui‖H 1
R3

+ ‖�R3vi‖L2
R3

� ‖ui‖H 3
R3

+ ‖vi‖H 2
R3

� ‖u‖H 3
M

+ ‖v‖H 2
M

� ‖u‖H 1
M

+ ‖�Mu‖H 1
M

+ ‖v‖L2
M

+ ‖�Mv‖L2
M

�
∥∥A2

M(u, v)
∥∥

H 1
M×L2

M
+ ∥∥(u, v)

∥∥
H 1

M×L2
M

.

Let us prove (17) for the duality H 1 × L2 of the scalar product. Let (f, g) = (fi, gi)i=1,...,N ∈
(C∞

0 (R3) × C∞
0 (R3))N and (u, v) ∈ C∞(M).

(
(u, v),A2

MΛ∗(f, g)
)
H 1(M)×L2(M)

= (ΛA2
M(u, v), (f, g)

)
(H 1(R3)×L2(R3))N

=
∑

i

(Φi∗Ψi�Mu,fi)H 1
R3

+
∑

i

(Φi∗Ψi�Mv,gi)L2

�
∑

‖Φi∗Ψi�Mu‖
H−1

R3
‖fi‖H 3

R3
+
∑

‖Φi∗Ψi�Mv‖
H−2

R3
‖gi‖H 2

R3

i i
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� ‖u‖H 1
M

∑
i

‖fi‖H 3
R3

+ ‖�Mv‖
H−2

M

∑
i

‖gi‖H 2
R3

�
∥∥(u, v)

∥∥
H 1

M×L2
M

(∑
i

∥∥(�R3fi,�R3gi)
∥∥

H 1
R3×L2

R3
+ ∥∥(fi, gi)

∥∥
H 1

R3×L2
R3

)
.

Therefore, we get ‖A2
MΛ∗(f, g)‖H 1

M×L2
M

� C(‖A2
R3,N

(f, g)‖(H 1
R3×L2

R3 )N +‖(f, g)‖(H 1
R3×L2

R3 )N )

and Proposition 1.3 implies that (strict) (hn)-oscillation of (un) with respect to AM implies
(strict) (hn)-oscillation of Λun with respect to AR3,N .

To prove the other implication, we use a quite similar operator. Denote by ϕi some other
cut-off functions in C∞

0 (Vi) ⊂ C∞
0 (R3) such that ϕi ≡ 1 on Supp(Φi∗Ψi). We define by Γ the

bounded operator from (H 1
R3 × L2

R3)
N to H 1

M × L2
M given by

Γ (f,g) =
∑

i

Φ−1
i∗ ϕi(fi, gi)

Then, we have Γ ◦Λ = Id and we only have to prove that (strict) (hn)-oscillation of (fn, gn) with
respect to AR3,N implies (strict) (hn)-oscillation of Γ (fn, gn) with respect to AM . The needed
estimates are quite similar and we omit them. �
Remark 1.2. Another way to prove Proposition 1.2 would have been to use the pseudodifferential
operators ϕ(h2�M) as in [6].

Now, we will prove that the (hn)-oscillation is conserved by the equation, even with a damping
term.

Proposition 1.4. Let T > 0. Let (ϕn,ψn) be a bounded sequence of E that is (strictly) (hn)-
oscillatory with respect to AM . Let un be the solution of{�un + un = a(x)∂tun on [0, T ] × M,(

un(0), ∂tun(0)
)= (ϕn,ψn).

(18)

Then, (un(t), ∂tun(t)) are (strictly) (hn)-oscillatory with respect to AM , uniformly on [0, T ].
At the contrary, if (ϕn,ψn) is (hn)-singular with respect to AM , (un(t), ∂tun(t)) is (hn)-

singular with respect to AM , uniformly on [0, T ].

Proof. Let χ ∈ C∞
0 (R) be such that 0 � χ(s) � 1 and χ(s) = 1 for |s| � 1. The (hn)-oscillation

(resp. strict oscillation) is equivalent to limn→∞ ‖(1 − χ)(R2h2
n�)(un, ∂tun)‖E −→

R→∞ 0 (resp.

limn→∞ ‖χ(
h2

n�

R2 )(un, ∂tun)‖E −→
R→∞ 0).

vn = (1 − χ)(R2h2
n�)un is a solution of{�vn + vn = a(x)∂tvn − [χ(R2h2

n�
)
, a
]
∂tun on [0, T ] × M,(

vn(0), ∂t vn(0)
)= (1 − χ)

(
R2h2

n�
)
(ϕn,ψn)

(19)

and energy estimates give



C. Laurent / Journal of Functional Analysis 260 (2011) 1304–1368 1325
∥∥(vn(t), ∂t vn(t)
)∥∥

E � CT

∥∥(1 − χ)
(
R2h2

n�
)
(ϕn,ψn)

∥∥
E + CT

∥∥[a,χ
(
R2h2

n�
)]

∂tun

∥∥
L1([0,t],L2)

� CT

∥∥(1 − χ)
(
R2h2

n�
)
(ϕn,ψn)

∥∥
E + CT Rhn,

where the last inequality comes from the fact that χ(−h2�) is a semiclassical pseudodifferential
operator, as proved in Burq, Gérard and Tzvetkov [6, Proposition 2.1] using the Helffer–Sjöstrand
formula.

Therefore, passing to the limitsup in n and using the oscillation assumption, we get the ex-
pected result uniformly in t for 0 � t � T . The results for strict oscillation and singularity are
proved similarly. �
Proposition 1.5. There exists CT > 0 such that for every (ϕn,ψn) bounded sequence of E weakly
convergent to 0, we have the estimate

lim
n→∞
∥∥(un, ∂tun)

∥∥
L∞([0,T ],B1

2,∞(M)×B0
2,∞(M))

� CT lim
n→∞
∥∥(ϕn,ψn)

∥∥
B1

2,∞(M)×B0
2,∞(M)

where un is the solution of (18).

Proof. Without loss of generality and since the equation is linear, we can assume that
‖(ϕn,ψn)‖E is bounded by 1. Let ε > 0. Let χ0, χ ∈ C∞

0 (R) be so that 1 = χ0 +∑∞
k=1 χ(2−2kx).

We denote uk
n = χ(2−2k�)un. Using the same estimates as in the previous lemma, we get

∥∥(uk
n(t), ∂tu

k
n(t)
)∥∥

E � CT

∥∥(uk
n(0), ∂tu

k
n(0)
)∥∥

E + CT 2−k.

Take K large enough so that CT 2−k � ε for k � K so that we have

∥∥(uk
n(t), ∂tu

k
n(t)
)∥∥

E � CT

∥∥(ϕn,ψn)
∥∥

B1
2,∞(M)×B0

2,∞(M)
+ ε. (20)

Then, for k < K , using again some energy estimates for the equation verified by uk
n, we get

∥∥(uk
n(t), ∂tu

k
n(t)
)∥∥

E � CT

∥∥(uk
n(0), ∂tu

k
n(0)
)∥∥

E + CT

∥∥[a,χ
(−2−2k�

)]
∂tun

∥∥
L1([0,T ],L2)

.

Yet, for fixed k, [a,χ(−2−2k�)] is an operator from L2 into H 1 (for instance) and we conclude
by the Aubin–Lions Lemma that for fixed k � K

lim
n→∞
∥∥(uk

n(t), ∂tu
k
n(t)
)∥∥

E � CT lim
n→∞
∥∥(uk

n(0), ∂tu
k
n(0)
)∥∥

E . (21)

We get the expected result with an additional ε by combining (20) and (21). �
We end this subsection by two lemmas that will be useful in the nonlinear decomposition. The

first one is Lemma 3.2 of [17].
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Lemma 1.7. Let hn and h̃n be two orthogonal scales, and let (fn) and f̃n be two sequences such
that ∇fn (resp. ∇f̃n) is strictly (hn) (resp. h̃n)-oscillatory with respect to �R3 . Then, we have

lim
n→∞‖fnf̃n‖L3(R3) = 0.

Then, we easily deduce the following result.

Lemma 1.8. Let hn and h̃n be two orthogonal scales and vn, ṽn be two sequences that are
strictly hn (resp. h̃n)-oscillatory with respect to �M (considered on the Hilbert space H 1), uni-
formly on [−T ,T ]. Then, we have

‖vnṽn‖L∞([−T ,T ],L3(M)) −→
n→∞ 0.

Moreover, the same result remains true if ṽn is a constant sequence v ∈ H 1 and h̃n = 1.

Proof. Using a partition of unity 1 =∑i Ψ
2
i adapted to coordinate charts, we have to compute

‖Φi∗ΨivnΨi ṽn‖L∞([−T ,T ],L3(R3)).

Using Proposition 1.2, we infer that Φi∗Ψivn is strictly (hn)-oscillatory with respect to �R3

(defined on H 1) and the same result holds for ∇(Φi∗Ψivn) with respect to �R3 defined on L2.
We conclude by applying Lemma 1.7 to Φi∗Ψivn and Φi∗Ψivn. �
1.4. Microlocal defect measure and energy

In this subsection, we state without proof the propagation of the measure for the damped wave
equation. We refer to [18] for the definition and to [19, Section 4] or [16] in the specific context
of the wave equation. It will be used several times in the article.

Lemma 1.9 (Measure for the damped equation and equicontinuity of the energy). Let un, ũn be
two sequences of solution to

�un + un = a(x)∂tun,

weakly convergent to 0 in E . Then, there exists a subsequence (still denoted by un, ũn) such that
for any t ∈ [0, T ] there exists a (nonnegative if un = ũn) Radon measure μt on S∗M such that
for any classical pseudodifferential operator B of order 0, we have with a uniform convergence
in t

(
B(−�)1/2un(t), (−�)1/2ũn(t)

)
L2(M)

+ (B∂tun(t), ∂t ũn(t)
)
L2(M)

−→
n→∞

∫
S∗M

σ0(B)dμt . (22)

Moreover, one can decompose

μt = 1(
μt+ + μt−

)

2
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which satisfy the following transport equation

∂tμ±(t) = ±H|ξ |x μ±(t) + a(x)μ±(t).

Furthermore, if tn −→
n→∞ t , we have the same convergence with t replaced by tn in (22).

The microlocal defect measure of a concentrating data [(ϕ,ψ),h, x] can be explicitly com-
puted, as follows

μ± = (2π)−3δx∞(x) ⊗
+∞∫
0

∣∣ψ̂(rξ) ± i|rξ |∞ϕ̂(rξ)
∣∣2r2 dr.

This can be easily computed, for instance, with the next lemma.

Lemma 1.10. Let (ϕn,ψn) = [(ϕ,ψ),h, x] be a concentration data and A(x,Dx),B(x,Dx) two
polyhomogeneous pseudodifferential operators of respective order 0. Then∥∥(A(x,Dx)ϕn,B(x,Dx)ψn

)− [(A0(x∞,Dx)ϕ,B0(x∞,Dx)ψ
)
, h, x
]∥∥

H 1×L2 −→
n→∞ 0

where A0(x∞,Dx) is the Fourier multiplier of homogeneous symbol a0(x∞, ξ) defined on
T ∗

x∞M.

Proof. We only give a sketch of the proof for B(x,Dx)ψn. By approximation, we can assume
that ψ̂ ∈ C∞

0 (R3\0). In local coordinates centered at x∞ = 0, we have for an o(1) small in L2

B(x,Dx)ψn = h
− 3

2
n B(x,Dx)

[
ΨU(x)(χψ)

(
x − xn

hn

)]
+ o(1)

= h
− 3

2
n

[
Bn(y,Dy)ψ

](x − xn

hn

)
+ o(1)

where Bn(y,Dy) is the operator of symbol bn(y, ξ) = b0(hny + xn, ξ/hn). Here b0 is the prin-
cipal symbol of B , homogeneous for large ξ . We write b0(hny + xn, ξ/hn) = b0(xn, ξ/hn) +
hny
∫ 1

0 (∂yb0)(xn + thn, ξ/hn) dt . The first term converges to b0(0, ξ) by homogeneity while the
second produces a term small in L2. �

The previous lemma is made interesting when combined with the propagation of microlocal
defect measure.

Lemma 1.11. Let un be a sequence of solutions of �un + un = a(x)∂tun weakly convergent to 0
and pn = [(ϕ,ψ),h, x, t] a linear damped concentrating wave. We assume Dh(un, ∂tun) ⇀ 0.
Then, for any classical pseudodifferential operators A(x,Dx) of order 0, we have uniformly for
t ∈ [−T ,T ](

A(−�)1/2pn(t), (−�)1/2un(t)
)

2 + (A∂tpn(t), ∂tun(t)
)

2 −→ 0.

L (M) L (M) n→∞
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In particular, we have

∇pn · ∇un + ∂tpn∂tun ⇀ 0 in D′(]−T ,T [ × M
)
.

Proof. We first check the property for t = tn. Using Lemma 1.10 several times, we are led to
estimate (

(−�)1/2ϕn, (−�)1/2un(tn)
)
L2(M)

+ (ψn, ∂tun(tn)
)
L2(M)

where (ϕn,ψn) are the concentrating data associated with [(A(x∞,Dx)ϕ,B(x∞,Dx)ψ),h, x].
Then, the hypotheses Dh(un, ∂tun) ⇀ 0 and Lemma 1.5 yields the convergence to 0 for this
particular case t = tn. We conclude by equicontinuity and by the propagation of joint measures
stated in Lemma 1.9. �
2. Profile decomposition

2.1. Linear profile decomposition

The main purpose of this section is to establish Theorem 0.3. It is completed in two main
steps: the first one is the extraction of the scales h

(j)
n where we decompose vn in an infinite

sum of sequence v
(j)
n which are respectively h

(j)
n -oscillatory and the second step consists in

decomposing each v
(j)
n in an infinite sum of concentrating wave at the rate h

(j)
n . Actually, in

order to perform the nonlinear decomposition, we will need that, in some sense, each profile of
the decomposition do not interact with the other. It is stated in this orthogonality result.

Theorem 0.3’. With the notation of Theorem 0.3, we have the additional following properties.
If 2T < Tfocus, we have (h(k), x(k), t (k)) ⊥ (h(j), x(j), t (j)) for any j �= k, according to Defini-

tion 1.2.
If M = S3 and a ≡ 0 (undamped solutions), but with T eventually large, we have

(h(k), (−1)mx(k), t (k) + mπ) orthogonal to (h(j), x(j), t (j)) for any m ∈ Z and j �= k.

2.1.1. Extraction of scales

Proposition 2.1. Let T > 0. Let (ϕn,ψn) be a bounded sequence of E and vn the solution of{�vn + vn = a(x)∂tvn on [−T ,T ] × M,(
vn(0), ∂t vn(0)

)= (ϕn,ψn).
(23)

Then, up to an extraction, vn can be decomposed in the following way: for any l ∈ N∗

vn(t, x) = v(t, x) +
l∑

j=1

v
(j)
n (t, x) + ρ(l)

n (t, x),

where v
(l)
n is a strictly (h(j)

n )-oscillatory solution of the damped linear wave equation (23) on M .
The scales h

(j)
n satisfy h

(j)
n −→ 0 and are orthogonal:
n→∞
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∣∣∣∣log
h

(k)
n

h
(j)
n

∣∣∣∣ −→
n→∞ +∞ if j �= k. (24)

Moreover, we have

lim
n→∞
∥∥ρ(l)

n

∥∥
L∞(]−T ,T [,L6(M))

−→
l→∞ 0, (25)

∥∥(vn, ∂tvn)(t)
∥∥2

E = ∥∥(v, ∂tv)(t)
∥∥2

E +
l∑

j=1

∥∥(v(j)
n , ∂t v

(j)
n

)
(t)
∥∥2

E

+ ∥∥(ρ(l)
n , ∂tρ

(l)
n

)
(t)
∥∥2

E + o(1)(t), (26)

where o(1)(t) −→
n→∞ 0 uniformly for t ∈ [−T ,T ].

Proof. We first make this decomposition for the initial data as done in [20] (see also [2]). Then,
using the propagation of (hn)-oscillation proved in Proposition 1.4, we extend it for all time.

More precisely, by applying the same procedure as in [20], with the operator AM , we decom-
pose

(ϕn,ψn) = (ϕ,ψ) +
l∑
j

(
ϕ

(j)
n ,ψ

(j)
n

)+ (Φ(l)
n ,Ψ (l)

n

)
where (ϕ

(j)
n ,ψ

(j)
n ) is (h

(j)
n )-oscillatory for AM , h

(j)
n −→

n→∞ 0, and

lim
n→∞ sup

k∈N

∥∥1[2k,2k+1[(AM)
(
Φ(l)

n ,Ψ (l)
n

)∥∥
E −→

l→∞ 0. (27)

Moreover, we have the orthogonality property:

∥∥(ϕn,ψn)
∥∥2

E = ∥∥(ϕ,ψ)
∥∥2

E +
l∑
j

∥∥(ϕ(j)
n ,ψ

(j)
n

)∥∥2
E + ∥∥(Φ(l)

n ,Ψ (l)
n

)∥∥2
E + o(1), n → ∞,

and the h
(j)
n are orthogonal each other as in (24). Moreover, (Φ

(l)
n ,Ψ

(l)
n ) is (h(j)

n )-singular for
1 � j � l.

This decomposition for the initial data can be extended to the solution by

vn(t, x) = v(t, x) +
l∑
j

v
(j)
n (t, x) + ρ(l)

n (t, x),

where each v
(j)
n is a solution of{�v

(j)
n + v

(j)
n = a(x)∂tv

(j)
n on Rt × M,(

v
(j)

(0), ∂ v
(j)

(0)
)= (ϕ(j)

,ψ
(j))

.
n t n n n
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Thanks to Proposition 1.4, each (v
(j)
n (t), ∂t v

(j)
n (t)) is strictly (h(j)

n )-oscillatory and (ρ
(l)
n (t),

∂tρ
(l)
n (t)) is (h(j)

n )-singular for 1 � j � l. So, we easily infer for instance that 〈(ρ(l)
n (t), ∂tρ

(l)
n (t)),

(v
(j)
n (t), ∂t v

(j)
n (t))〉E −→

n→∞ 0 uniformly on [−T ,T ] where 〈 , 〉E is the scalar product on E . This is

also true for the product between v
(j)
n and v

(k)
n , j �= k thanks to the orthogonality (24). The same

convergence holds for the product with v by weak convergence to 0 of the other terms. Then, we
get

∥∥(vn, ∂tvn)
∥∥2

E = ∥∥(v, ∂tv)
∥∥2

E +
l∑
j

∥∥(v(j)
n , ∂t v

(j)
n

)∥∥2
E + ∥∥(ρ(l)

n , ∂tρ
(l)
n

)∥∥2
E + o(1), n → ∞.

Let us now prove estimate (25) of the remaining term in L∞(L6). (27) gives the convergence
to zero of (ρ

(l)
n (0), ∂tρ

(l)
n (0)) in B1

2,∞(M) × B0
2,∞(M). We extend this convergence for all time

with Proposition 1.5 and get

sup
t∈[0,T ]

lim
n→∞
∥∥(ρ(l)

n (t), ∂tρ
(l)
n (t)
)∥∥

B1
2,∞×B0

2,∞
−→
l→∞ 0.

The following lemma will transfer this information in local charts.

Lemma 2.1. There exists C > 0 such that

1

C
‖Λf ‖B0

2,∞(R3)N � ‖f ‖B0
2,∞(M) � C‖Λf ‖B0

2,∞(R3)N ,

1

C
‖Λf ‖B1

2,∞(R3)N � ‖f ‖B1
2,∞(M) � C‖Λf ‖B1

2,∞(R3)N

where Λ is the operator described in Proposition 1.2 of cut-off and transition in N local charts.

We postpone the proof of this lemma and continue the proof of the proposition. Using this
lemma, we get for every coordinate patch (Ui,Φi) and Ψi ∈ C∞

0 (Ui)

lim
n→∞
∥∥Φ∗

i Ψiρ
(l)
n

∥∥
L∞([−T ,T ],B1

2,∞(R3))
−→
l→∞ 0.

The refined Sobolev estimate, Lemma 3.5 of [2], yields for any f ∈ H 1(R3)

‖f ‖L6(R3) �
∥∥(−�R3)

1/2f
∥∥1/3

L2

∥∥(−�R3)
1/2f
∥∥2/3

Ḃ0
2,∞

� ‖f ‖1/3
H 1(R3)

‖f ‖2/3
B1

2,∞(R3)
.

Therefore, we have

lim
n→∞
∥∥Φ∗

i Ψiρ
(l)
n

∥∥
L∞([−T ,T ],L6(R3))

−→
l→∞ 0

and finally

lim
n→∞
∥∥ρ(l)

n

∥∥
L∞([−T ,T ],L6(M))

−→
l→∞ 0.

This completes the proof of Proposition 2.1, up to the proof of Lemma 2.1. �
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Proof of Lemma 2.1. We essentially use the following fact: see Lemma 3.1 of [2]. Let fn be a
sequence of L2(R3) weakly convergent to 0 and compact at infinity

lim
n→+∞

∫
|x|>R

∣∣f (x)
∣∣2 dx −→

R→+∞ 0.

Then, fn tends to 0 in Ḃ0
2,∞(R3) if and only if fn is hn singular for every scale hn.

Actually, the same result holds for �M , with the same demonstration. The compactness at
infinity in R

3 is only assumed to ensure

lim
n→+∞‖1[−A,A](�

R3 )fn‖L2 = 0 for any A > 0,

which is obvious in the case of �M because of weak convergence and discrete spectrum.
Using Proposition 1.2, we obtain that fn is (hn)-singular with respect to �M if and only if

Λfn is (hn)-singular with respect to �R3 . Combining the two previous results, we obtain that the
two norms we consider have the same converging sequences and are therefore equivalent. �
2.1.2. Description of linear concentrating waves (after S. Ibrahim)

In this subsection, we describe the asymptotic behavior of linear concentrating waves as de-
scribed in [21] of S. Ibrahim. In [21], it is stated for the linear wave equation without damping.
We give some sketch of the proof when necessary to emphasize the tiny modifications.

The following lemma yields that for times close to concentration, the linear damped concen-
trating wave is close to the solution of the wave equation with flat metric and without damping.
It is Lemma 2.2 of [21], except that there is an additional damping term which disappears af-
ter rescaling. We do not give the proof and refer to the more complicated nonlinear case (see
estimate (53)).

Lemma 2.2. Let vn = [(ϕ,ψ),h, x, t] be a linear damped concentrating wave and v solution of

{�∞v = 0 on R × Tx∞M,

(v, ∂tv)|t=0 = (ϕ,ψ).
(28)

Denote by ṽn the rescaled function associated to v, that is ṽn = Φ∗Ψ 1√
hn

v( t−tn
hn

, x−xn

hn
) where

(U,Φ) is a coordinate chart around x∞ and Ψ ∈ C∞
0 (U) is constant equal to 1 around x∞.

Then, we have

lim
n→∞|||ṽn − vn|||[tn−Λhn,tn+Λhn]×M −→

Λ→∞ 0.

Corollary 2.1. With the notation of the lemma, if t̃n = tn + (C + o(1))hn, then (vn, ∂tvn)|t=t̃n
is

a concentrating data associated with [(v(C), ∂t v), h, x].

Moreover, Lemma 2.3 of S. Ibrahim [21] yields the “non-reconcentration” property for linear
concentrating waves.



1332 C. Laurent / Journal of Functional Analysis 260 (2011) 1304–1368
Lemma 2.3. Let v = [(ϕ,ψ),h, x, t] be a linear (possibly damped) concentrating wave. Con-
sider the interval [−T ,T ] containing t∞, satisfying the following non-focusing property (see
Definition 0.1)

mes(Fx,x∞,s) = 0 ∀x ∈ M and s �= 0 such that t∞ + s ∈ [−T ,T ]. (29)

Then, if we set I
1,Λ
n = [−T , tn − Λhn] and I

3,Λ
n = ]tn + Λhn,T ], we have

lim
n

‖vn‖L∞(I
1,Λ
n ∪I

3,Λ
n ,L6(M))

−→
Λ→∞ 0,

lim
n

‖vn‖L5(I
1,Λ
n ∪I

3,Λ
n ,L10(M))

−→
Λ→∞ 0.

Sketch of the proof of Lemma 2.3 in the damped case. To simplify the notation, we can as-
sume tn = 0. In [21], the proof is made by contradiction, assuming the existence of a subsequence
(still denoted by vn) such that ‖vn(sn)‖L6(M) → C > 0 and |sn|

hn
→ ∞. If sn → τ �= 0, using the

concentration-compactness principle of [31], we are led to prove that the microlocal defect mea-
sure μ associated to vn(tn) satisfies μ({y} × S2) = 0 for any y ∈ M . We use the same argument
for the damped equation except that in that case, the measure μt associated to vn(t) is not so-
lution of the exact transport equation but of a damped transport equation (see Lemma 1.9). Yet,
the non-focusing assumption (29) still implies μt({y} × S2) = 0 for all y ∈ M and t �= 0, which
allows to conclude similarly.

In the case τ = 0, we use in local coordinates the rescaled function ṽn(s, y) =√
snvn(sns, sny + xn). ṽn at time s = 0 is a concentrating data at scale hn/sn. We prove

lim‖ṽn(1, ·)‖L6(R3) = 0. Again by concentration compactness, it is enough to prove that the
microlocal defect measure μs of ṽn propagates along the curves of the hamiltonian flow with
constant coefficient H|ξ |. Since vn is a solution of �vn + vn + a(x)∂tvn = 0, ṽn is a solution of�nṽn + s2

nṽn + sna(sn ·+xn)∂t ṽn = 0 where �n is a suitably rescaled d’Alembert operator. Since
the additional terms s2

nṽn + sna(sn · +xn)∂t ṽn converge to 0 in L1L2, we can finish the proof as
in Lemma 2.3 of [21] by proving that μs propagates as if �n was replaced by �∞, that is along
the hamiltonian H|ξ |.

The estimate in norm L5L10 is obtained by interpolation of L∞L6 with another bounded
Strichartz norm. �

In the specific case of S3, Lemma 4.2 of [21] allows to describe precisely the behavior of
concentrating wave for large times, as follows.

Lemma 2.4. Let p be a sequence of solutions of

{�pn = 0 on [0,+∞[ × M,(
pn(0), ∂tpn(0)

)= (ϕn,ψn)

where (ϕn,ψn) is weakly convergent to (0,0) in E . Then, we have

pn(t + π,x) = −pn(t,−x) + o(1)(t)

where the o(1)(t) is small in the energy space. The same holds for solutions of �un + un.
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In particular, if p is a concentrating wave associated with data [(ϕ,ψ),h, x, t], then, for

any j ∈ N, pn(t + jπ, x) is a linear concentrating wave associated with [(−1)j (ϕ,ψ)((−1)j .),

h, (−1)j x, t].

In the previous lemma, −x refers to the embedding of S3 into R
4. Moreover, the notation

(ϕ,ψ)(−.) could be written more rigorously (ϕ,ψ)(D∞I.) where D∞I is the differential at the
point x∞ of the application I : x → −x defined from S3 into itself. Actually, we are identifying
the tangent plane at the south pole with the one on the north pole by the application x → −x

on R
4.

The fact that the result remains true for the equation �u + u = 0 comes from the fact that for
initial data weakly convergent to zero, the solutions of �u = 0 and �v + v = 0 with same data
are asymptotically close in the energy space. This can be proved by observing that for a weakly
convergent sequence of solutions un the Aubin–Lions Lemma yields that un converges strongly
to 0 in L∞([−T ,T ],L2). So rn = un − vn is a solution of �rn = un and converges strongly in
E .

2.1.3. Extraction of times and cores of concentration
In this subsection, hn is a fixed sequence in R

∗+ converging to 0. For simplicity, we will denote
it by h and uh for sequences of functions. The main purpose of this subsection is the proof of the
following proposition, which is the profile decomposition for h-oscillatory sequences. It easily
implies Theorem 0.3 when combined with Proposition 2.1.

Proposition 2.2. Let (uh) be an h-oscillatory sequence of solutions to the damped Klein–Gordon
equation (23). Then, up to extraction, there exist damped linear concentrating waves pk

h, as
defined in Definition 0.3, associated to concentrating data [(ϕ(k),ψ(k)), h, x(k), t (k)], such that
for any l ∈ N

∗, and up to a subsequence,

vh(t, x) =
l∑

j=1

p
(j)
n (t, x) + w(l)

n (t, x), (30)

∀T > 0, lim
n→∞
∥∥w(l)

h

∥∥
L∞(]−T ,T [,L6(M))

−→
l→∞ 0, (31)

∥∥(vh, ∂tvh)
∥∥2

E =
l∑

j=1

∥∥(p(j)
h , ∂tp

(j)
h

)∥∥2
E + ∥∥(w(l)

h , ∂tw
(l)
h

)∥∥2
E + o(1), as h → ∞,

uniformly for t ∈ [−T ,T ]. (32)

Moreover, if 2T < Tfocus, for any j �= k, we have (x(k), t (k)) ⊥h (x(j), t (j)) according to Defini-
tion 1.2.

If M = S3 and a ≡ 0 (undamped solutions), but with T eventually large, ((−1)mx(k), t (k) +
mπ) is orthogonal to (x(j), t (j)) for any m ∈ Z and j �= k.

Remark 2.1. The assumptions to get the orthogonality of the cores of concentration are related
to our lack of understanding of the solutions concentrating in a point x1 where (x1, x2, t) is a
couple of focus at distance t . We know that the solution reconcentrates after a time t in the other
focus x2 but we do not know precisely how: can it split into several concentrating waves on x2
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with different “rate of concentration”? That is to say with some different xn converging to x2 but
which are orthogonal.

Before getting into the proof of the proposition, we state two lemmas that will be useful in the
proof. Using the notation of Definition 1.1, denote

δx(v) = sup
x

{‖∇ϕ‖2
L2(Tx∞M)

,D1
hvh ⇀ ϕ, up to a subsequence

}
where the supremum is taken over all the sequences x in M .

If vh ∈ L∞([−T ,T ],H 1(M)), we denote

δ(v) = sup
x,t

{‖∇ϕ‖2
L2(Tx∞M)

,D1
hvh(th) ⇀ ϕ, up to a subsequence

}= sup
t

δx
(
v(th, ·)

)
where the supremum is taken over all the sequences x = (xh) in M and t = (th) in [−T ,T ].

Lemma 2.5. Let Ψ ∈ C∞(M). Then, there exists C > 0 such that for any v, we have the estimate

δx(Ψ v) � Cδx(v).

The proof is left to the reader.

Lemma 2.6. There exists C > 0 such that for any v = (vh) a bounded strictly (hn)-oscillatory
sequence in H 1(M)

lim
n→+∞‖vh‖L6 � Cδx(v)1/3 lim

n→+∞‖vh‖1/6
H 1(M)

.

Proof. This lemma is already known in the case of R
3 where the definition of δx

R3 is the same

except that D1
h is only considered in the trivial coordinate chart. It is estimate (4.19) of [20] in

the case of a 1-oscillatory sequence, which can be easily extended to (hn)-oscillatory sequence
by dilation.

Let Ψi ∈ C∞
0 (Ui) be associated to a coordinate patch Φi . By Proposition 1.2, Φ∗

i Ψivh is still
(hn)-oscillatory and we can apply the estimate on R

3. We get

lim
n→+∞

∥∥Φ∗
i Ψivh

∥∥
L6(R3)

� Cδx
R3(Φi∗Ψiv)1/3 lim

n→+∞
∥∥Φ∗

i Ψivh

∥∥1/6
H 1(R3)

� Cδx
R3

(
Φ∗

i Ψiv
)1/3

lim
n→+∞‖vh‖1/6

H 1(M)
.

Then, by definition of the convergence Dh, we easily get

δx
R3

(
Φ∗

i Ψiv
)
� Cδx(Ψiv).

We conclude by using Lemma 2.5 and partition of unity. �
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Lemma 2.7. Let T > 0. There exists C > 0 such that for any sequence v = (vh) (hn)-oscillatory,
solution of the damped linear Klein–Gordon equation on M with bounded energy, we have

lim
n→+∞‖vh‖L∞([−T ,T ],L6(M)) � Cδ(v)1/3 lim

n→+∞
∥∥(vh(0), ∂t vh(0)

)∥∥1/6
E .

Proof. Let th be an arbitrary sequence in [−T ,T ]. We apply Lemma 2.6 to the sequence vh(th)

and get

lim
n→+∞

∥∥vh(th, ·)
∥∥

L6 � Cδx
(
v(th, ·)

)1/3 lim
n→+∞

∥∥vh(th)
∥∥1/6

H 1(M)

� Cδ(v)1/3 lim
n→+∞

∥∥(vh(0), ∂t vh(0)
)∥∥1/6

E

by definition of δ and by energy estimates. �
Proof of Proposition 2.2. It is based on the same extraction argument as in [2] and [17]: the
concentration will be tracked using our tool Dh and we will extract concentrating waves so that
δ(v) decreases. We conclude with Lemma 2.7 to estimate the L∞(L6) norm of the remainder
term.

More precisely, if δ(v) = 0, Lemma 2.7 shows that there is nothing to be proved. Otherwise,
pick (x

(1)
h , t

(1)
h ) converging to (x

(1)∞ , t
(1)∞ ) and (ϕ(1),ψ(1)) ∈ Ex∞ , such that

∥∥∇ϕ(1)
∥∥2

L2(Tx∞M)
+ ∥∥ψ(1)

∥∥2
L2(Tx∞M)

�
∥∥∇ϕ(1)

∥∥2
L2(Tx∞M)

� 1

2
δ(v)

and

D
(1)
h (vh, ∂tvh)

(
t
(1)
h

)
⇀

h→0

(
ϕ(1),ψ(1)

)
.

The existence of the weak limit ψ(1) (up to a subsequence) is ensured by the boundedness in
L2(R3) of ∂tvh (considered in a coordinate chart) by conservation of energy.

Then, we choose p
(1)
h as the damped linear concentrating profile associated with [(ϕ(1),ψ(1)),

h, x(1), t (1)] (actually, we pick one representative in the equivalence class modulo sequences
converging to 0 in the energy space as in Definition 0.2). Remark here that the assumption t

(1)
h ∈

[−T ,T ] ensures t
(1)∞ ∈ [−T ,T ], which will always be the case for all the concentrating waves

we consider. Then, we give a lemma that will be the main step to the orthogonality of energies.

Lemma 2.8. Let w
(1)
h = vh − p

(1)
h . Then,

∥∥(vh, ∂tvh)(t)
∥∥2

E = ∥∥(p(1)
h , ∂tp

(1)
h

)
(t)
∥∥2

E + ∥∥(w(1)
h , ∂tw

(1)
h

)
(t)
∥∥2

E + o(1)

where the o(1) is uniform for t in bounded intervals.

Proof. We first compute the energy at time t
(1)
h . We denote by B the bilinear form associated

with the energy:
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B(a, b) =
∫
M

ab + ∇a · ∇b + ∂ta∂tb.

We have to prove

B
(
p

(1)
h

(
t
(1)
h

)
,w

(1)
h

(
t
(1)
h

))= B
(
p

(1)
h

(
t
(1)
h

)
, vh

(
t
(1)
h

)− p
(1)
h

(
t
(1)
h

))= o(1).

By weak convergence to 0 in H 1 of vh, p
(1)
h and w

(1)
h , we can omit the term

∫
M

ab

of B . By construction and Lemma 1.6, we have D
(1)
h (vh, ∂tvh)(t

(1)
h ) ⇀

h→0
(ϕ(1),ψ(1)) and

D
(1)
h (p

(1)
h , ∂tp

(1)
h ) ⇀

h→0
(ϕ(1),ψ(1)). Therefore, D

(1)
h (w

(1)
h , ∂tw

(1)
h )(t

(1)
h ) ⇀

h→0
(0,0). Lemma 1.11

gives the expected result. Remark that if a ≡ 0, this is just a consequence of the conservation of
scalar product for solution of linear wave equation. �

We get the expansion of uh announced in Proposition 2.2 by induction iterating the same
process.

Let us assume that

vh(t, x) =
l∑

j=1

p
(j)
n (t, x) + w(l)

n (t, x),

∥∥(vh, ∂tvh)
∥∥2

E =
l∑

j=1

∥∥(p(j)
h , ∂tp

(j)
h

)∥∥2
E + ∥∥(w(l)

h , ∂tw
(l)
h

)∥∥2
E + o(1),

uniformly in t, as h → 0, (33)

and where p
(j)
h is a linear damped concentrating wave, associated with data [(ϕ(k),ψ(k)),

h, x(k), t (k)] mutually orthogonal.
We argue as before: we can assume δ(w(l)) > 0 and we can pick (ϕ(l+1),ψ(l+1)), x(l+1), t (l+1)

such that:

∥∥∇ϕ(l)
∥∥2

L2(T
x
(l+1)∞

M)
+ ∥∥ψ(l)

∥∥2
L2(T

x
(l+1)∞

M)
� 1

2
δ
(
w(l)
)
,

D
(l+1)
h

(
w

(l)
h , ∂tw

(l)
h

)(
t
(l+1)
h

)
⇀

h→0

(
ϕ(l+1),ψ(l+1)

)
, (34)

and we define p
(l+1)
h as a linear damped concentrating wave, associated with data [(ϕ(l+1),

ψ(l+1)), h, x(l+1), t (l+1)]. Again, Lemma 2.8 applied to w
(l)
h and p

(l+1)
h implies estimates (32)

with w
(l+1)
h = w

(l)
h − p

(l+1)
h .

Let us now deal with estimate (31). Lemma 1.4 combined with energy estimates gives for
some C > 0 only depending on T and a∥∥∇ϕ(j)

∥∥2
L2(T

x
(j)∞

M)
+ ∥∥ψ(j)

∥∥2
L2(T

x
(j)∞

M)
� C
∥∥(p(j)

h , ∂tp
(j)
h

)
t=0

∥∥2
E + o(1).

From this and estimate (32), we infer



C. Laurent / Journal of Functional Analysis 260 (2011) 1304–1368 1337
l∑
j=1

(∥∥∇ϕ(j)
∥∥2

L2(T
x
(j)∞

M)
+ ∥∥ψ(j)

∥∥2
L2(T

x
(j)∞

M)

)
� C lim

h→0

∥∥(uh, ∂tuh)
∥∥2

E � C.

So, the series of general term (‖∇ϕ(j)‖2
L2(T

x
(j)∞

M)
+ ‖ψ(j)‖2

L2(T
x
(j)∞

M)
) converges. Using esti-

mate (34), we get

lim
l→∞ δ

(
w(l)
)= 0.

Lemma 2.7 yields

lim
h→0

∥∥w(l)
h

∥∥
L∞([−T ,T ],L6(M))

−→
l→∞ 0.

This completes the proof of the first part of Proposition 2.2. Let us now deal with the orthogo-
nality result. We will need the following two lemmas.

Lemma 2.9. Let (x(1), t (1)) �⊥h (x(2), t (2)). Let vh be an h-oscillatory sequence solution of the
damped linear wave equation such that

D
(1)
h (vh, ∂tvh)

(
t
(1)
h

)
⇀

h→0

(
ϕ(1),ψ(1)

)
. (35)

Then, there exists (ϕ(2),ψ(2)) such that, up to a subsequence

D
(2)
h (vh, ∂tvh)

(
t
(2)
h

)
⇀

h→0

(
ϕ(2),ψ(2)

)
. (36)

Moreover, we have ∥∥(ϕ(1),ψ(1)
)∥∥

Ex∞
= ∥∥(ϕ(2),ψ(2)

)∥∥
Ex∞

. (37)

Proof. First, we assume x(1) = x(2). By translation in time, we can assume t (1) = 0. The non-
orthogonality assumption yields, up to extraction, t

(2)
h /h = C + o(1) with C constant.

Let (ϕ,ψ) ∈ E∞ be arbitrary and ph the linear damped concentrating wave associated with
[(ϕ,ψ),h, x(1),0]. We use the equivalent definition stated in Lemma 1.5: (35) is equivalent to∫

M

∇vh(0) · ∇ph(0) −→
n→∞

∫
Tx∞M

∇ϕ(1) · ∇ϕ,

∫
M

∂tvh(0)∂tph(0) −→
n→∞

∫
Tx∞M

ψ(1)ψ.

As both vh and ph are solutions of the damped wave equation on M and t
(2)
h −→

h→0
0, we have by

equicontinuity (see Lemma 1.9).
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∫
M

∇vh

(
t
(2)
h

) · ∇ph

(
t
(2)
h

)+ ∫
M

∂tvh

(
t
(2)
h

)
∂tph

(
t
(2)
h

) −→
n→∞

∫
Tx∞M

∇ϕ(1) · ∇ϕ +
∫

Tx∞M

ψ(1)ψ.

Let v, w satisfy on Tx∞M

�∞v = 0, (v, ∂tv)|t=0 = (ϕ(1),ψ(1)
)
,

�∞w = 0, (w, ∂tw)|t=0 = (ϕ,ψ).

Conservation of the scalar product yields∫
Tx∞M

∇ϕ(1) · ∇ϕ +
∫

Tx∞M

ψ(1)ψ =
∫

Tx∞M

∇v(C) · ∇w(C) +
∫

Tx∞M

∂tv(C)∂tw(C).

But according to Corollary 2.1, (ph, ∂tph)|t=t
(2)
h

is a concentrating data according to [(w(C),

∂tw(C)),h, x(1)]. Since the wave equation is reversible and (ϕ,ψ) is arbitrary, we have proved
that for any concentrating data (fh, gh) associated with [(ϕ̃, ψ̃), h, x(1)], we have∫

M

∇vh

(
t
(2)
h

) · ∇fh +
∫
M

∂tvh

(
t
(2)
h

)
gh −→

n→∞

∫
Tx∞M

∇v(C) · ∇ϕ̃ +
∫

Tx∞M

∂tv(C)ψ̃.

This gives the result for x
(1)
h = x

(2)
h by taking (ϕ(2),ψ(2)) = (v(C), ∂t v(C)) which satisfies (37)

by conservation of the energy.
In the general case x(1) �⊥h x(2), we have in a local coordinate chart and up to a subse-

quence x
(2)
h = x

(1)
h + ( �D + o(1))h where �D ∈ Tx∞M is a constant vector. We remark that if

a bounded sequence (fh, gh) satisfies D
(1)
h (fh, gh) ⇀

h→0
(ϕ,ψ), it also fulfills D

(2)
h (fh, gh) ⇀

h→0
(ϕ(. + �D),ψ(. + �D)). �

We will also need the following lemma which is the analog of Lemma 3.7 of [17]. We keep
the notation of the algorithm of extraction for further use.

Lemma 2.10. Let {j, j ′} ∈ {1, . . . ,K}2 be such that(
x(j), t (j)

) �⊥h

(
x(K+1), t (K+1)

)
and

(
x(j), t (j)

)⊥h

(
x(j ′), t (j

′)).
Then, D

(K+1)
h (w

(K+1)
h , ∂tw

(K+1)
h )(t

(K+1)
h ) ⇀ 0 implies D

(j)
h (w

(K+1)
h , ∂tw

(K+1)
h )(t

(j)
h ) ⇀ 0.

Moreover, if we assume |t (j)∞ − t
(j ′)∞ | < Tfocus (see Definition 0.1), then D

(j)
h (p

(j ′)
h ,

∂tp
(j ′)
h )(t

(j)
h ) ⇀ (0,0) for any concentrating wave p

(j ′)
h associated with [(ϕ(j ′),ψ(j ′)),

h, x(j ′), t (j
′)].

Proof. The first result is a particular case of Lemma 2.9. The proof of the second part is very
similar to Lemma 3.7 of [17]. To simplify the notation, we can assume by translation in time that

t
(j ′) = 0. We have to distinguish two cases: time and space orthogonality.
h
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In the case of time orthogonality, that is | t
(j)
h

h
| −→
h→0

+∞, we first prove D
1,(j)
h (p

(j ′)
h )(t

(j)
h ) ⇀ 0

(recall that the exponent 1 in D
1,(j)
h means that we only consider the H 1 part of the weak limit).

Thanks to the nonfocusing assumption, Lemma 2.3 yields

∥∥p(j ′)
h

(
t
(j)
h , .
)∥∥

L6(M)
−→
h→0

0.

We choose (U,ΦU) some local chart around x
(j)∞ and ΨU ∈ C∞

0 (U) equals to 1 around x
(j)∞ .

Then, ‖ΨUp
(j ′)
h (t

(j)
h , .)‖L6(M) −→

h→0
0 and h

1
2 ‖ΨUp

(j ′)
h (t

(j)
h , xh + hx)‖L6(R3) −→

h→0
0 (here we

have identified ΨUp
(j ′)
h with its local representation in R

3). In particular h
1
2 ΨUp

(j ′)
h (t

(j)
h , xh +

hx) ⇀ 0 and D
1,(j)
h (p

(j ′)
h )(t

(j)
h ) ⇀ 0. Now, we want to prove more precisely D

(j)
h (p

(j ′)
h ,

∂tp
(j ′)
h )(t

(j)
h ) ⇀ 0. Suppose D

(j)
h (p

(j ′)
h , ∂tp

(j ′)
h )(t

(j)
h ) ⇀ (0,ψ). Take s ∈ R arbitrary. t̃

(j )
h =

t
(j)
h + sh fulfills the same assumption | t̃

(j )
h

h
|−→
h→0

+∞ and the nonfocusing property |t̃ (j )∞ | < Tfocus.

So, we conclude similarly that D
1,(j)
h (p

(j ′)
h )(t̃

(j)
h ) ⇀ 0. But the proof of Lemma 2.9 gives that

D
(j)
h (p

(j ′)
h , ∂tp

(j ′)
h )(t̃

(j)
h ) ⇀ (v, ∂tv)(s) where v is a solution of

�∞v = 0, (v, ∂tv)(0) = (0,ψ).

So, we have v(s) = 0 for any s ∈ R, which gives ψ = 0 and D
(j)
h (p

(j ′)
h , ∂tp

(j ′)
h )(t

(j)
h ) ⇀ (0,0).

In the case of t
(j)
h �⊥h t

(j ′)
h and space orthogonality, Lemma 2.9 allows us to assume that

t
(j)
h = t

(j ′)
h = 0. In local coordinates, we have

(
p

(j ′)
h , ∂tp

(j ′)
h

)
(0) = h− 1

2 ΨU(x)

(
ϕ(j ′),

1

h
ψ(j ′)
)(

x − x
(j ′)
h

h

)
.

If x
(j ′)∞ �= x

(j)∞ , the conclusion is obvious. If it is not the case, take g ∈ C∞
0 (R3). For the first part,

we have to estimate

∫
R3

Ψ 2
U

(
x

(j)
n + hy

)
ϕ(j ′)
(

y + x
(j)
h − x

(j ′)
h

h

)
g(y)dy

which goes to 0 as h tends to 0 because g is compactly supported. The same result holds for the

second part for ∂tp
(j ′)
h . �

Let us come back to the proof of the orthogonality of cores in Proposition 2.2. Define

jK = max
{
j ∈ {1, . . . ,K} ∣∣ (t (j)

h , x
(j)
h

) �⊥h

(
t
(K+1)
h , x

(K+1)
h

)}
assuming that such an index exists.
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We list a few consequences of our algorithm

D
(l+1)
h

(
w

(l)
h , ∂tw

(l)
h

)(
t
(l+1)
h

)
⇀

h→0

(
ϕ(l+1),ψ(l+1)

)
with ϕ(l+1) �= 0 if l � K, (38)

w
(l)
h = p

(l+1)
h + w

(l+1)
h , (39)

w
(jK)
h =

K+1∑
j=jK+1

p
(j)
h + w

(K+1)
h . (40)

The definition of p
(l)
h and Lemma 1.6 implies D

(l)
h (p

(l)
h , ∂tp

(l)
h )(t

(l)
h ) ⇀ (ϕ(l),ψ(l)). Then, we get

from (38) and (39) that D
(l+1)
h (w

(l+1)
h , ∂tw

(l+1)
h )(t

(l+1)
h ) ⇀ (0,0). We apply this to l + 1 = jK

and it gives D
(K+1)
h (w

(jK)
h , ∂tw

(jK)
h )(t

(K+1)
h ) ⇀ (0,0) thanks to the first part of Lemma 2.10 and

the definition of jK .
The definition of jK and the second part of Lemma 2.10 gives D

1,(K+1)
h (p

(l)
h ,

∂tp
(l)
h )(t

(K+1)
h ) ⇀ (0,0) for jK + 1 � l � K .

To conclude, we “apply” D
1,(K+1)
h to equality (40) and get D

1,(K+1)
h w

(jK)
h (t

(K+1)
h ) ⇀ ϕ(K+1)

while we have just proved D
(K+1)
h (w

(jK)
h , ∂tw

(jK)
h )(t

(K+1)
h ) ⇀ (0,0) which is a contradiction

and complete the proof of the proposition for 2T < Tfocus.
In the case of S3 and large times, the orthogonality result is a consequence of the orthogonality

in short times and the almost periodicity. Denote

jK = max
{
j ∈ {1, . . . ,K} ∣∣ ∃m ∈ Z s.t.

(
t
(j)
h + mπ, (−1)mx

(j)
h

) �⊥h

(
t
(K+1)
h , x

(K+1)
h

)}
.

Then, for any jK + 1 � j � K , we can find m(j) ∈ Z such that

∣∣t (j)∞ + m(j)π − t
(jK)∞
∣∣� π/2 < Tfocus,(

t
(j)
h + m(j)π, (−1)m

(j)

x
(j)
h

)⊥h

(
t
(K+1)
h , x

(K+1)
h

)
,

and we denote m(jK) ∈ Z such that (t
(jK)
h + m(jK)π, (−1)m

(jK )
x

(jK)
h ) �⊥h (t

(K+1)
h , x

(K+1)
h ).

We remark that p
(j)
h (t

(j)
h + m(j)π, .) is still a nonzero concentrating data associated with

[(−1)m
(j)

(ϕ,ψ)((−1)m
(j)

.), h, (−1)j x] thanks to Lemma 2.4 (note that it is at this stage that we
use M = S3 and a ≡ 0: it is the only case where we are able to describe this phenomenon of
reconcentration). So, we are in the same situation as before, and we get a contradition.

This completes the proof of Proposition 2.2. �
Proof of Theorem 0.3. We only have to combine the two decompositions we made. Denote by
v

j
n (and the rest ρ

(l)
n ) the h

(j)
n -oscillatory component obtained by decomposition (24) and p

(j,α)
n

the concentrating waves obtained from decomposition (30) (and the rest w
(j,Aj )
n ). We enumerate

them by the bijection σ from N2 into N defined by

σ(j,α) < σ(k,β) if j + α < k + β or j + α = k + β and j < k.
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For l and Aj fixed, 1 � j � l, the rest can be written as

w(l,A1,...,Al)
n = ρ(l)

n +
l∑

j=1

w
(j,Aj )
n .

Let ε > 0. To get the result, it suffices to prove that for l0 large enough, ‖w(l,A1,...,Al)
n ‖L∞(L6) � ε

for all (l,A1, . . . ,Al) satisfying l � l0 and σ(j,Aj ) � σ(l0,1).
(9) can easily be deduced from the same orthogonality result in the two other decompositions.

In particular, it gives that the series of general term
∑

(j,α) limn→∞ ‖(p(j,α)
n , ∂tp

(j,α)
n )t=0‖2

E is
convergent. In particular, we can find l0 large enough such that we have∑

σ(j,α)>σ(l0,1)

lim
n→∞
∥∥(p(j,α)

n , ∂tp
(j,α)
n

)
t=0

∥∥2
E � ε. (41)

Moreover, for l0 large enough, we have for l � l0

lim
n→∞
∥∥ρ(l)

n

∥∥
L∞(L6)

� ε.

Then, for any l � l0, one can find one Bl such that for any 1 � j � l, Ãj � Bl implies

lim
n→∞
∥∥w(j,Ãj )

n

∥∥
L∞(L6)

� ε/l.

The rest can be decomposed by

w(l,A1,...,Al)
n = ρ(l)

n +
l∑

j=1

w
(j,max(Aj ,Bl))
n + S

(j,A1,...,Al)
n ,

where

S
(j,A1,...,Al)
n =

∑
1�j�l,Aj <Bl

(
w

(j,Aj )
n − w

(j,Bl)
n

)= l∑
j=1

∑
Aj <α�Bl

p
j,α
n .

Since S
(j,A1,...,Al)
n is a solution of the damped wave equation, energy estimates and Sobolev

embedding give

lim
n→∞
∥∥S(j,A1,...,Al)

n

∥∥2
L∞(L6)

� C lim
n→∞
∥∥(S(j,A1,...,Al)

n , ∂tS
(j,A1,...,Al)
n

)
t=0

∥∥2
E

� C

l∑
j=1

∑
Aj <α�Bl

∥∥(p(j,α)
n , ∂tp

j,α
n

)
t=0

∥∥2
E ,

where we have used almost orthogonality in the last estimate. But the sum is restricted to some
(j,α) satisfying σ(j,α) > σ(j,αj ) > σ(l0,1) and is indeed smaller than Cε thanks to (41).
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Combining our estimates, we get that limn→∞ ‖w(l,A1,...,Al)
n ‖L∞(L6) is smaller than (2 + C)ε

for all (l,A1, . . . ,Al) satisfying l � l0 and σ(j,Aj ) � σ(l0,1). We get the same estimates
with the L5(L10) norm by interpolation between L∞(L6) and L4(L12). The second norm be-
ing bounded by Strichartz estimates and the fact that w

(l,A1,...,Al)
n is uniformly bounded in the

energy space. �
We also state a few consequences of the algorithm of Theorem 0.3 that will be used below.

The following two lemmas use the notation and the assumptions of Theorem 0.3.

Lemma 2.11. Let 2T < Tfocus. For any l ∈ N and 1 � j � l, we have, with the notation and
assumptions of Theorem 0.3

D
(j)
n

(
w(l)

n , ∂tw
(l)
n

)(
t
(j)
n

)
⇀ (0,0).

Proof. Assume D
(j)
n (w

(l)
n , ∂tw

(l)
n )(t

(j)
n ) ⇀ (ϕ,ψ). We directly use the decomposition of Theo-

rem 0.3 to write for L > l

w(l)
n =

L∑
i=l+1

p(i)
n + w(L)

n .

In case of scale orthogonality of h
(j)
n and h

(i)
n , for l + 1 � i � L, we have directly D

(j)
n (p

(i)
n ,

∂tp
(i)
n )(t

(j)
n ) ⇀ (0,0). Otherwise, if h

(j)
n = h

(i)
n and (x(j), t (j)) ⊥h (x(i), t (i)), Lemma 2.10

gives the same result. Therefore, D
(j)
n (w

(L)
n , ∂tw

(L)
n )(t

(j)
n ) ⇀ (ϕ,ψ). Since

limn→∞ ‖w(L)
n ‖L∞([−T ,T ],L6) −→

L→∞ 0, we have ϕ = 0. We finish the proof as in Lemma 2.10.

We use the same argument for times t
(j)
n + sh

(j)
n and get ψ ≡ 0 by the proof of Lemma 2.9. Re-

mark that Lemma 2.9 requires that w
(l)
n is strictly h

(j)
n -oscillatory, but this can be easily avoided

by decomposing w
(l)
n = fn + gn with fn (h(j)

n )-oscillatory and gn (h(j)
n )-singular. �

Lemma 2.12. With the notation and assumptions of Theorem 0.3, we have, for any j ∈ N

lim
n→∞
∥∥p(j)

n

∥∥
L5([−T ,T ],L10)

� C lim
n→∞‖vn‖L5([−T ,T ],L10)

where C only depends on the manifold M .

Proof. We first assume 2T < Tfocus. Actually, in the case of R
3, the result is proved using the

fact that the p
(j)
n are some concentration of some weak limit of a dilation of vn. The proof for

a manifold follows the same path with a little more care due to the fact that dilation only have
a local meaning.

For any ε > 0, we prove

lim
n→∞
∥∥p(j)

n

∥∥
L5([−T ,T ],L10)

� C lim
n→∞‖vn‖L5([−T ,T ],L10) + Cε.

We use the decomposition of Theorem 0.3 and choose l � j large enough such that
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lim
n→∞
∥∥wl

n

∥∥
L5([−T ,T ],L10)

� ε.

Let ΨU be a cut-off function related to local charts (U,ΦU) such that ΨU(x) = 1 around x
j∞ and

ΨU(x) = 0 around any xi∞ �= x
j∞.

For each 1 � i � l, we decompose [−T ,T ] = I
1,Λ
n,i ∪ I

2,Λ
n,i ∪ I

3,Λ
n,i according to Lemma 2.3.

For any i such that xi∞ = x
j∞, for Λ large enough, we have

lim
n→∞
∥∥p(i)

n

∥∥
L5(I

1,Λ
n,i ∪I

3,Λ
n,i ,L10)

� ε/l. (42)

Moreover, Lemma 2.2 yields for Λ large enough

lim
n→∞
∥∥p(i)

n − v(i)
n

∥∥
L5(I

2,Λ
n,i ,L10)

� ε/l (43)

where v
(i)
n (t, x) = 1√

h
(i)
n

Φ∗
UΨU(x)v(i)(

t−t
(i)
n

h
(i)
n

,
x−x

(i)
n

h
(i)
n

) on a coordinate patch and v(i) solution of

{�
x

j∞
v(i) = 0 on R × T

x
j∞

M,(
v(i)(0), ∂t v

(i)(0)
)= (ϕ(i),ψ(i)

)
.

(44)

Thanks to (42) and (43), the conclusion of the lemma will be obtained if we prove∥∥v(j)
∥∥

L5(R,L10(T
x
j∞

M))
� lim

n→∞‖vn‖L5([−T ,T ],L10) + Cε.

We argue by duality. Take f ∈ C∞
0 (R × T

x
j∞

M) with ‖f ‖L5/4(R,L10/9) = 1.

From now on, we work in local coordinates around x
(j)∞ and we will not distinguish a function

defined on U ⊂ M with its representative in R
3 ≈ T

x
j∞

M . Denote by Wj the operator defined on

functions on Rt × R
3 by

Wjg(s, y) :=
√

h
j
ng
(
t
j
n + h

j
ns, t

j
n + h

j
ns
)
.

The definition of v
(j)
n in local coordinates yields∫

R×R3

(
Wj 1[−T ,T ]v(j)

n

)
f −→

n→∞

∫
R×R3

v(j)f.

On the other hand∫
R×R3

(
WjΨU 1[−T ,T ]pj

n

)
f

=
∫

3

Wj

[
ΨU 1[−T ,T ]

(
vn −

∑
(i) (j)

pi
n −

∑
(i) (j)

pi
n − wl

n

)]
f.
R×R x∞ �=x∞ x∞ =x∞ ,i �=j
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For any 1 � i � l, with x
(i)∞ �= x

(j)∞ , using again Lemmas 2.3 and 2.2 and the fact that we can
choose ΨU with ΨU(x

(i)∞ ) = 0, we easily get

lim
n→∞
∥∥ΨUp(i)

n

∥∥
L5([−T ,T ],L10)

= 0.

So for n large enough∣∣∣∣ ∫
R×R3

(
WjΨUp

(j)
n

)
f

∣∣∣∣� C
(‖vn‖L5([−T ,T ],L10) + 2ε

)

+
∣∣∣∣ ∫
R×R3

Wj

[
ΨU 1[−T ,T ]

∑
x

(i)∞ =x
(j)∞ ,i �=j

p(i)
n

]
f

∣∣∣∣.
But for i �= j , x

(i)∞ = x
(j)∞ , using (42) and then (43), we have for Λ and n large enough∣∣∣∣ ∫

R×R3

Wj
[
ΨU 1[−T ,T ]p(i)

n

]
f

∣∣∣∣� ∣∣∣∣ ∫
R×R3

Wj
[
ΨU 1

I
2,Λ
n,i

p(i)
n

]
f

∣∣∣∣+ ε/l

�
∣∣∣∣ ∫
R×R3

Wj
[
ΨU 1

I
2,Λ
n,i

v(i)
n

]
f

∣∣∣∣+ 2ε/l.

These terms are actually∣∣∣∣ ∫
R×R3

Wj
[
ΨU 1

I
2,Λ
n,i

v(i)
n

]
f

∣∣∣∣
=
√

h
j
n

hi
n

∣∣∣∣ ∫
R×R3

[
Ψ 2

U

(
h

j
nx + x

j
n

)
1
[ t in−t

j
n −Λhi

n

h
j
n

,
tin−t

j
n +Λhi

n

h
j
n

]
v(i)

(
th

j
n + t

j
n − t in

hi
n

,
xh

j
n + x

j
n − xi

n

hi
n

)]
f

∣∣∣∣.
Since this expression is uniformly continuous in vi ∈ L5(R,L10(R3)), we may assume vi in

C∞
0 (R × R

3). Then, if h
j
n

hi
n

−→
n→∞ 0, we have

∣∣∣∣ ∫
R×R3

Wj
[
ΨU 1

I
2,Λ
n,i

v(i)
n

]
f

∣∣∣∣= O
(√

h
j
n

hi
n

)
.

If h
j
n

hi
n

−→
n→∞ ∞, the change of variables s = th

j
n+t

j
n −t in

h
j
n

, y = xh
j
n+x

j
n−xi

n

hi
n

gives

∣∣∣∣ ∫
R×R3

Wj
[
ΨU 1

I
2,Λ
n,i

vi
n

]
f

∣∣∣∣= O
((

h
j
n

hi
n

)−7/2)
.

If h
j
n = hi , the space or time orthogonality yields that the integral is zero for n large enough.
n
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In conclusion, for any f ∈ C∞
0 (R × R

3) with ‖f ‖L5/4(R,L10/9) = 1, we have proved:

∣∣∣∣ ∫
R×R3

vjf

∣∣∣∣� C lim
n→∞‖vn‖L5([−T ,T ],L10) + Cε.

This gives the expected result by duality.
The case of S3 is proved by considering subintervals of length smaller than Tfocus where the

former result can be applied. �
2.2. Nonlinear profile decomposition

2.2.1. Behavior of nonlinear concentrating waves (after S. Ibrahim)
In this subsection, we recall the description of nonlinear concentrating waves. As explained in

the introduction, the behavior for times close to concentration is ruled by the scattering operator
on R

3 with a flat metric. So, we first state the existence of the wave operator on R
3, following

the notation of [2]. We state it for any constant metric on the tangent plane Tx∞M ≈ R
3.

Proposition 2.3 (Scattering operators on R
3). Let x∞ ∈ M and �∞ be the d’Alembertian oper-

ator (constant) on Tx∞M ≈ R
3 induced by the metric on M . To every solution of

{�∞v = 0 on R × Tx∞M,(
v(0), ∂t v(0)

)= (ϕ,ψ) ∈ Ex∞

there exists a unique strong solution u± of

{�∞u± = −|u±|4u± on R × Tx∞M,

lim
t→±∞

∥∥(v − u±, ∂t (v − u±)
)
(t)
∥∥

Ex∞
= 0.

The wave operators

Ω± : (v, ∂tv)t=0 → (u±, ∂tu±)t=0

are bijective from Ex∞ onto itself.
The scattering operator S is defined as S = (Ω+)−1 ◦ Ω−.

The analysis of nonlinear concentrating waves computed by S. Ibrahim in [21] shows that
there are three different periods to be considered: before, during and after the time of concen-
tration. Roughly speaking, for times close to the concentrating time, the solution is closed to
nonlinear concentrating waves on R

3 with flat metric and without damping, as described in Ba-
houri and Gérard [2]: in the fast time hnt , it follows the scattering on R3. Before and after the
time of concentration, the nonlinear concentrating wave is “close” to some linear damped con-
centrating waves as defined in Table 1 below. This is precised in the following theorem whose
proof can be found in S. Ibrahim [21]. Yet, in [21], the result is stated for an equation without
damping and we give a sketch of the proof in the damped case in Section 2.2.2.
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Table 1
Transformation of the profile through a focus.

lim th
h

(ϕ1,ψ1) (ϕ2,ψ2) (ϕ3,ψ3)

−∞ Ω−1− ◦ Ω+(ϕ,ψ) Ω+(ϕ,ψ) (ϕ,ψ)

0 Ω−1− (ϕ,ψ) (ϕ,ψ) Ω−1+ (ϕ,ψ)

∞ (ϕ,ψ) Ω−(ϕ,ψ) Ω−1+ ◦ Ω−(ϕ,ψ)

Theorem 2.1. Let v = [(ϕ,ψ),h, x, t] be a linear damped concentrating wave. We denote by u its
associated nonlinear damped concentrating wave (same data at t = 0). There exist three linear
damped concentrating waves denoted by [(ϕi,ψi), h, x, t], i = 1,2 or 3 such that: for all interval
[−T ,T ] containing t∞, satisfying the following non-focusing property (see Definition 0.1)

mes(Fx,x∞,s) = 0 ∀x ∈ M and s �= 0 such that t∞ + s ∈ [−T ,T ] (45)

we have

lim
n

∣∣∣∣∣∣un − [(ϕ1,ψ1), h, x, t
]∣∣∣∣∣∣

I
1,Λ
n

−→
Λ→+∞ 0, (46)

lim
n

∣∣∣∣∣∣un − [(ϕ3,ψ3), h, x, t
]∣∣∣∣∣∣

I
3,Λ
n

−→
Λ→+∞ 0 (47)

where I
1,Λ
n = [−T , tn − Λhn] and I

3,Λ
n = ]tn + Λhn,T ].

Moreover, for times close to concentration I
2,Λ
n = [tn − Λhn, tn + Λhn], we have

∀Λ > 0, lim
n

|||un − wn|||I 2,Λ
n

= 0 (48)

where wn(t, x) = ΨU(x) 1√
hn

w( t−tn
hn

, x−xn

hn
) on a coordinate patch and w solution of

{�∞w = −|w|4w on R × Tx∞M,(
w(0), ∂tw(0)

)= (ϕ2,ψ2),
(49)

where �∞ corresponds to the frozen metric on Tx∞M .
The different functions (ϕi,ψi) are defined according to Table 1, following the notation of

Proposition 2.3.

Remark 2.2. Note that the transition from the first column to the third one represents the modifi-
cation of profile due to the concentration and the concentrating functions are modified according
to the scattering operator S. To go from the first column to the second one, we apply the operator
Ω− while we apply Ω−1+ to get from the second to the third one.

Remark 2.3. The behavior for times close to concentration is not written in this way in the
article [21] of S. Ibrahim, but is a byproduct of its proof. We refer to the next section which
contains a sketch of the proof.
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Corollary 2.2. A nonlinear damped concentrating wave qh is strictly (h)-oscillatory with respect
to AM and bounded in all Strichartz norms, uniformly on any bounded interval.

Proof. The boundedness of all Strichartz norms is a consequence of the Duhamel formula and
Strichartz estimates once the result is known in the case of L5L10. On the intervals I

1,Λ
n and

I
3,Λ
n when qh is closed to a linear concentrating wave, the result follows from Proposition 1.4

and linear Strichartz estimates. On I
2,Λ
n , qh behaves like a concentration of a nonlinear solution

on Tx∞M . The strict (h)-oscillation is obvious and the Strichartz estimates follow from the global
estimates on R

3. �
In the case of S3, thanks to a better knowledge of the behavior of nonlinear concentrating

waves we can avoid assumption (45). This is Theorem 1.8 from [21]. It will allow us to perform
the profile decomposition for large times.

Theorem 2.2. Let v = [(ϕ,ψ),h, x, t] be a linear (not damped, that is a(x) ≡ 0) concentrating
wave on S3. We denote by u its nonlinear associated concentrating wave (same data at t = 0).
We assume that t∞ ∈ ]0,π[. Then, for all j ∈ Z, we have

lim
n

∣∣∣∣∣∣un − [S̃(j)S(ϕ,ψ),h, (−1)j x, t
]∣∣∣∣∣∣]tn+jπ+Λhn,tn+(j+1)π−Λhn] −→

Λ→+∞ 0

where S̃ = S ◦ A, S̃(j) = S̃ ◦ S̃ ◦ · · · ◦ S̃, j times and A(ϕ,ψ)(x) = −(ϕ,ψ)(−x).

Moreover, the cases t∞ ∈ ]−π,0[ and t∞ = 0 can be deduced similarly to Theorem 2.1 with
some changes on the concentration data in the same spirit as Table 1.

2.2.2. Modification of the proof of S. Ibrahim for Theorem 2.1 in the case of damped equation
In this subsection, we give some sketch of the proof for the behavior of nonlinear damped con-

centrating waves announced in Section 2.2.1. These results are proved in [21] in the undamped
case a(x) ≡ 0 and so we only briefly emphasize the main necessary modifications of the proof.
To simplify, we only treat the case tn

hn
−→

n→+∞ ∞.

Sketch of the proof of estimate (46) of Theorem 2.1: Behavior before concentration. The
proof is exactly the same as Corollary 3.2 of [21]. wn = un − vn is a solution of

�wn + wn + a(x)∂twn = −|wn + vn|4(wn + vn) on I 1,Λ
n × M,

(wn, ∂twn)|t=0 = (0,0).

Using Strichartz and energy estimates, we are able to use a bootstrap argument if
limn→∞ ‖vn‖L5(I

1,Λ
n ,L10)

is small enough. This can be achieved thanks to Lemma 2.3 and gives
the result. �
Sketch of the proof of estimate (48) of Theorem 2.1: Behavior for times close to concentra-
tion. By definition of vn and finite propagation speed, the main energy part of vn is concentrated
near x∞ for times close to t∞. By estimate (46), it is also the case for un. Therefore, for times
t ∈ [tn −Λhn, tn +Λhn], we can neglect the energy outside of a fixed open set and work in local
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coordinates. Moreover, in that case, we can use the norm ||| · |||I×R3 instead of ||| · |||I and use the
fact that it is invariant by translation and scaling up to a modification of the interval of time.

Denote by ũn (resp. ṽn) the rescaled function associated to un (resp. vn), so that un(t, x) =
1√
hn

ũn(
t−tn
hn

, x−xn

hn
). We need to prove limn→∞ |||ũn −w|||[−Λ,Λ]×R3 −→

Λ→∞0 where w is a solution
of {�∞w = −|w|4w on R × R

3,

(w, ∂tw)|t=0 = (ϕ2,ψ2) = Ω−(ϕ,ψ).

By definition of Ω−, w satisfies ‖(w − v, ∂t (w − v))(t)‖Ḣ 1×L2 −→
t→−∞ 0 where v is a solution of

{�∞v = 0 on R × R
3,

(v, ∂tv)|t=0 = (ϕ,ψ).
(50)

Moreover, it is known that Ω−(ϕ,ψ) = lims→−∞ U(−s)U0(s)(ϕ,ψ) where U and U0 are
the nonlinear and linear flow maps. More precisely, by Lemma 3.4 of [21], we have |||wΛ −
w|||[−Λ,Λ]×R3 −→

Λ→∞ 0 where wΛ is the smooth solution of

{�∞wΛ + |wΛ|4wΛ = 0 on [−Λ,Λ] × R
3,

(wΛ, ∂twΛ)|t=−Λ = χΛ(v, ∂tv)|t=−Λ,

where χΛ is an appropriate family of smoothing operator. So, we are left to prove limn→∞ |||ũn −
wΛ|||[−Λ,Λ]×R3 −→

Λ→∞ 0.

We introduce the auxiliary family of functions ũΛ
n solution of

{�nũ
Λ
n + h2

nũ
Λ
n + ∣∣ũΛ

n

∣∣4ũΛ
n = −hna(hnx + xn)∂t ũ

Λ
n on [−Λ,Λ] × R

3,(
ũΛ

n , ∂t ũ
Λ
n

)
|t=−Λ

= (ṽn, ∂t ṽn)|t=−Λ,

where we have denoted by �n the dilation of the operator �. So it can be written as �n =
∂2
t −∑i,j gij (hnx + xn)∂ij + hnV (hnx + xn) · ∇ where V is a smooth vector field (note that it

is only defined in an open set of size O(h−1
n ) but it is also the case for ũn, ũΛ

n and ṽn, we omit
the details). The proof is complete if we prove

lim
n→∞
∣∣∣∣∣∣ũΛ

n − wΛ
∣∣∣∣∣∣[−Λ,Λ]×R3 −→

Λ→∞ 0 (51)

and

lim
n→∞
∣∣∣∣∣∣ũΛ

n − ũn

∣∣∣∣∣∣[−Λ,Λ]×R3 −→
Λ→∞ 0. (52)

We begin with (51). rn,Λ = ũΛ − wΛ is a solution of
n
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�nrn,Λ + h2

nrn,Λ + hna(hnx + xn)∂t rn,Λ

= |wΛ|4wΛ − |rn,Λ + wΛ|4(rn,Λ + wΛ)

− h2
nwΛ − hna(hnx + xn)∂twΛ + (�∞ − �n)wΛ,

(rn,Λ, ∂t rn,Λ)|t=−Λ = (ṽn − χΛv, ∂t (ṽn − χΛv)
)
|t=−Λ

.

A quick scaling analysis easily yields that the operator �n + h2
n + hna(hnx + xn)∂t satisfies the

same Strichartz and energy estimates as � + 1 + a(x)∂t for some times of order Λ. Moreover,
following the same argument as Lemma 2.1 of [21], we get that for fixed Λ

lim
n→∞
∥∥−h2

nwΛ − hna(hnx + xn)∂twΛ + (�∞ − �n)wΛ

∥∥
L1([−Λ,Λ],L2)

= 0.

Thanks to Lemma 2.2, we know that limn→∞ ‖(ṽn − χΛv, ∂t (ṽn − χΛv))(−Λ)‖
Ḣ 1×L2 can be

made arbitrary small for large Λ. Strichartz and energy estimates give for any η > −Λ

|||rn,Λ|||[−Λ,η]×R3 �
∥∥(ṽn − χΛv, ∂t (ṽn − χΛv)

)
(−Λ)
∥∥

Ḣ 1×L2

+ ∥∥−h2
nwΛ − hna(hnx + xn)∂twΛ + (�∞ − �n)wΛ

∥∥
L1([−Λ,η],L2)

+ ‖rn,Λ‖5
L5([−Λ,η],L10)

+ ‖rn,Λ‖L5([−Λ,η],L10)‖wΛ‖4
L5([−Λ,η],L10)

.

If ‖wΛ‖L5([−Λ,η],L10) is small enough, a bootstrap gives (51) on [−Λ,η]. We can iterate the pro-
cess by dividing [−Λ,Λ] in a finite number of intervals where the bootstrap can be performed.

For (52), we observe that ũΛ
n and ũn are solutions of the same equation but with different

initial data which satisfy thanks to estimate (46)

lim
n→∞
∥∥(ũΛ

n − ũn, ∂t

(
ũΛ

n − ũn

))
(−Λ)
∥∥

E = lim
n→∞
∥∥(ṽn − ũn, ∂t (ṽn − ũn)

)
(−Λ)
∥∥

E −→
Λ→∞ 0.

Then, Strichartz and energy estimates allow us to use a bootstrap argument on subintervals I

such that ‖ũΛ
n ‖L5(I,L10) is small. (51) allows to complete the proof. �

2.2.3. Proof of the decomposition
This subsection is devoted to the proof of Theorem 0.4.
Let us define the function β in the following way:

∀ω ∈ C, β(ω)
def:= |ω|4ω.

Proposition 2.4. Let 0 < 2T < Tfocus (see Definition 0.1). Let p
(j)
n , 1 � j � l, be linear damped

concentrating waves, associated with data [(ϕ(j),ψ(j)), h(j), x(j), t (j)] (we can have h(j) = 1
for one of it), which are orthogonal according to Definition 1.2 and such that t

(j)∞ ∈ [−T ,T ].
Denote by q

(j)
n the associated nonlinear damped concentrating waves (same data at t = 0).

Then, we have

lim
n→∞

∥∥∥∥∥β
(

l∑
j=1

q
(j)
n

)
−

l∑
j=1

β
(
q

(j)
n

)∥∥∥∥∥
L1([−T ,T ],L2)

= 0. (53)
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Proof. We follow closely Lemma 4.2 of [17]∥∥∥∥∥β
(

l∑
j=1

q
(j)
n

)
−

l∑
j=1

β
(
q

(j)
n

)∥∥∥∥∥
L1([−T ,T ],L2)

�
∑

1�j1,...,j5�l

∥∥∥∥∥
5∏

k=1

q
(jk)
n

∥∥∥∥∥
L1([−T ,T ],L2)

where at least two q
(jk)
n are different. In the case of orthogonality of scales, we use the Hölder

inequality∥∥∥∥∥
5∏

k=1

q
(jk)
n

∥∥∥∥∥
L1([−T ,T ],L2)

� C
∥∥q1

nq2
n

∥∥
L∞([−T ,T ],L3)

5∏
k=3

∥∥q(jk)
n

∥∥
L3([−T ,T ],L18)

.

Then, Corollary 2.2 and Lemma 1.8 yield the result (note that L3L18 is a pair of Strichartz norm).
So now, we can assume h1

n = h2
n = hn. By Hölder and Corollary 2.2, we get

∥∥∥∥∥
5∏

k=1

q
(jk)
n

∥∥∥∥∥
L1([−T ,T ],L2)

� C
∥∥q1

nq2
n

∥∥
L5/2([−T ,T ],L5)

5∏
k=3

∥∥q(jk)
n

∥∥
L5([−T ,T ],L10)

� C
∥∥q1

nq2
n

∥∥
L5/2([−T ,T ],L5)

.

We apply Theorem 2.1 to q1
n . We obtain three couples (ϕi,ψi), i = 1,2,3 and split the interval

[−T ,T ] =⋃3
j=1 I

j,Λ
n . We first deal with the interval I

1,Λ
n . Denote v1 = [(ϕ1,ψ1), h, x, t] so that

∥∥q1
nq2

n

∥∥
L5/2(I

1,Λ
n ,L5)

�
∥∥q1

n

∥∥
L5(I

1,Λ
n ,L10)

� C
∥∥q1

n − v1,n

∥∥
L5(I

1,Λ
n ,L10)

+ ‖v1,n‖L5(I
1,Λ
n ,L10)

.

So, combining Theorem 2.1 and Lemma 2.3 yields

lim
n

∥∥q1
nq2

n

∥∥
L5/2(I

1,Λ
n ,L5)

−→
Λ→∞ 0.

The same result holds for I
3,Λ
n and we are led with the interval I

2,Λ
n . In the case of time orthog-

onality, say |t2
n−t1

n |
hn

−→
n→∞ +∞, the two intervals [t1

n − Λhn, t
1
n + Λhn] and [t2

n − Λhn, t
2
n + Λhn]

have empty intersection for fixed Λ and n large enough, which yields the result by the same
estimates applied to q2

n , once Λ is chosen large enough.
We can now assume, up to a translation in time, that t1

n = t2
n . On I

2,Λ
n , Theorem 2.1 allows us

to replace q1
n by w1

n(t, x) = Ψ 1
U(x)w1(

t−t1
n

hn
,

x−x1
n

hn
) on a coordinate patch where w1 is a solution

of a nonlinear wave equation on the tangent plane Tx1∞M and similarly for q2
n . In the first case

of space orthogonality, that is x1∞ �= x2∞, the result is obvious on the interval I
2,Λ
n by taking Ψ 1

U

and Ψ 2
U with empty intersection. In the case x1∞ = x2∞, we are left with the estimate of

∫
2

(∫
3

∣∣w1
n(t, x)w2

n(t, x)
∣∣5)1/2

ds �
∫

[−Λ,Λ]

(∫
3

∣∣∣∣w1(t, x)w2
(

t, x + x1
n − x2

n

hn

)∣∣∣∣5)1/2

ds.
In R R
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This yields the result in the last case of space orthogonality by approximating w1 and w2 by
compactly supported functions. �

In the case of the sphere, we are able to state the same result without any restriction on the
time.

Corollary 2.3. Let M = S3 and T > 0 (eventually large). We make the same assumptions as in
Proposition 2.4, except for the time T , with the additional hypothesis:

[h(i), (−1)mx(i), t (i) +mπ] is orthogonal to [h(j), x(j), t (j)] for any m ∈ Z and i �= j . More-
over, we assume a(x) ≡ 0 (undamped equation).

Then, the same conclusion as in Proposition 2.4 is true.

Proof. We build a covering of the interval [−T ,T ] with a finite number of intervals of length
strictly less than Tfocus = π so that on each of this interval I = [α,β] and for any 1 � i � l,

there exists at most one m(i) ∈ Z such that t
(i)∞ + m(i)π ∈ I . Moreover, one can also impose

α �= t
(i)∞ + m(i)π .

Therefore, α ∈ ]t (i)n + (mi − 1)π + Λh
(i)
n , t

(i)
n + m(i)π − Λh

(i)
n ] for large fixed Λ and n large

enough. Theorem 2.2 yields ‖(q(i)
n − v

(i)
n , ∂t (q

(i)
n − v

(i)
n ))t=α‖E −→

n→∞ 0 for a linear concentrating

wave v
(i)
n = [S̃m(i)

S(ϕ(i),ψ(i)), h(i), x(i), t (i)]. In each interval, we are in the same situation as in
Proposition 2.4 which yields the desired result. �

Now, we are ready for the proof of the nonlinear profile decomposition. We give it in a quite
sketchy way since it is very similar to the one of [2] or [17]. First, we obtain it in the particular
case where the linear solution is small in Strichartz norm.

Lemma 2.13. There exists δ1 > 0 such that if

lim
n→∞‖vn‖L5([−T ,T ],L10) � δ1

then the conclusion of Theorem 0.4 is true.

Proof. The proof is essentially the same as Lemma 4.3 of [2]. We have to estimate the rest r
(l)
n

solution of⎧⎪⎪⎨⎪⎪⎩
�r(l)

n + r(l)
n + a(x)∂t r

(l)
n = β(u) +

l∑
j=1

β
(
q

(j)
n

)− β

(
u +

l∑
j=1

q
(j)
n + w(l)

n + r(l)
n

)
,

(
r(l)
n , ∂t r

(l)
n

)
t=0 = (0,0).

We conclude as in [2] using Proposition 2.4 and Lemma 2.12 which is not immediate on a
manifold. In the case of S3 and a ≡ 0 for large T , we use Corollary 2.3 instead of Proposi-
tion 2.4. �
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Once the result is obtained when Strichartz norms are small, we divide [−T ,T ] in a finite
number of intervals where the Strichartz norms are small enough. This is done in the following
lemma.

Lemma 2.14. Let 2T < Tfocus. Let δ > 0 and q̃n be a sequence in L5([−T ,T ],L10(M)), such
that

lim
n→∞‖q̃n‖L5([−T ,T ],L10) � δ.

Fix also l ∈ N and l sequences of nonlinear concentrating waves q
(j)
n , j = 1, . . . , l.

Then, for any δ′ > δ, there exists L ∈ N such that for any n ∈ N, we have the decomposition
of [−T ,T ] in closed intervals I

(i)
n

[−T ,T ] =
L⋃

i=1

I
(j)
n ,

such that the sequence

Γn =
l∑

j=1

q
(j)
n + q̃n

satisfies on each interval I
(i)
n

lim
n→∞‖Γn‖L5(I

(j)
n ,L10)

� δ′.

Proof. We first treat the case l = 1. We divide [−T ,T ] = I
1,Λ
n ∪ I

2,Λ
n ∪ I

3,Λ
n according to The-

orem 2.1 (one of these intervals being possibly empty). Then, a combination of estimate (46) of
Theorem 2.1 (comparison with linear concentrating wave) and Lemma 2.3 (non-reconcentration)
gives for Λ large enough

lim
n→∞
∥∥q(1)

n

∥∥
L5(I

1,Λ
n ,L10)

� δ′ − δ.

The same result holds for I
3,Λ
n and we are left with the interval I

2,Λ
n . Once Λ is fixed, we can

divide [−Λ,Λ] in a finite number of intervals I (i),Λ such that ‖w‖L5(I (i),Λ,L10) � δ − δ′ where

w is the function defined by Eq. (49) of Theorem 2.1. Then, we replace each I (i),Λ by I
(i),Λ
n

obtained by translation dilation. We conclude by the approximation (48) of q
(1)
n by translation

dilation of w on the interval I
2,Λ
n . �

Note that the previous lemma also applies for large times on S3 with a ≡ 0 by doing a first
decomposition of [−T ,T ] in a finite number of intervals of length strictly less than π .
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End of the proof of Theorem 0.4 in the general case. We choose l ∈ N such that ‖w(l)
n ‖ � δ1

and use Lemma 2.14 in order to be able to apply Lemma 2.13 on each interval I
(j)
n . See [2] or in

the different context of the Schrödinger equation [26]. �
2.3. Applications

2.3.1. Strichartz estimates and Lipschitz bounds for the nonlinear evolution group

Proposition 2.5. Let T > 0 be fixed. There exists a non-decreasing function, A : [0,∞[ →
[0,∞[, such that any solution of{�u + u + a(x)∂tu = −|u|4u on [−T ,T ] × M,(

u(0), ∂tu(0)
)= (u0, u1) ∈ E

(54)

fulfills

‖u‖L8([−T ,T ],L8(M)) + ‖u‖L5([−T ,T ],L10(M)) + ‖u‖L4([−T ,T ],L12(M)) � A
(∥∥(u0, u1)

∥∥
E
)
.

Proof. The proof is exactly the same as Corollary 2 of [2]. Using Strichartz estimates, it is
enough to get the result for L5L10. We argue by contradiction and suppose that there exists a
sequence un of strong solutions of Eq. (54) satisfying

sup
n

∥∥(u0,n, u1,n)
∥∥

E < +∞, ‖un‖L5([−T ,T ],L10(M)) −→
n→∞ +∞.

We apply the profile decomposition of Theorem 0.4 to our sequence. We get a contradiction
by the fact that the L5([−T ,T ],L10(M)) norm of a nonlinear concentrating wave is uniformly
bounded thanks to Corollary 2.2. This argument works for times 2T < Tfocus and can be reiterated
since the nonlinear energy at time T can be bounded with respect to the one at time 0 thanks to
almost conservation (we can also use energy estimates once we know u is uniformly bounded in
L5L10). �
Lemma 2.15. Let R0 > 0 and T > 0. Then, there exists C > 0 such any solution u satisfying⎧⎪⎨⎪⎩

�u + u + a(x)∂tu + |u|4u = 0 on [−T ,T ] × M,(
u(0), ∂tu(0)

)= (u0, u1) ∈ E ,∥∥(u0, u1)
∥∥

E � R0.

(55)

fulfills ∥∥(u(t), ∂tu(t)
)∥∥

L2×H−1 � C
∥∥(u(0), ∂tu(0)

)∥∥
L2×H−1 ∀t ∈ [−T ,T ].

Proof. Proposition 2.5 yields a uniform bound for u in L4([−T ,T ],L12(M)) and so for V =
|u|4 in L1([0, T ],L3(M)). We prove uniform estimates for some solutions of the linear equation{�u + u + a(x)∂tu = V u on [−T ,T ] × M,(

u(0), ∂ u(0)
)= (u ,u ) ∈ L2 × H−1 (56)
t 0 1
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where V satisfies ‖V ‖L1([−T ,T ],L3(M)) � A(R0)
4. The product of functions in L∞([−T ,T ],L2)

and L1([−T ,T ],L3) is in L1([−T ,T ],L6/5) and so in L1([−T ,T ],H−1) by Sobolev embed-
ding. Standard estimates yield∥∥(u, ∂tu)

∥∥
L∞([0,t],L2×H−1)

� C
∥∥(u(0), ∂tu(0)

)∥∥
L2×H−1

+ C
(
t + ‖V ‖L1([0,t],L3)

)∥∥(u, ∂tu)
∥∥

L∞([0,t],L2×H−1)
.

We can divide the interval [−T ,T ] into a finite number of intervals [ai, ai+1]i=1,...,N such that
C(t + ‖V ‖L1([ai ,ai+1],L3(M))) < 1/2. N depends only on R0 and T (not on V ).

Then, on each of these intervals, we have∥∥(u, ∂tu)
∥∥

L∞([ai ,ai+1],L2×H−1)
� 2C
∥∥(u(ai), ∂tu(ai)

)∥∥
L2×H−1 .

We obtain the expected result by iteration. The final constant C only depends on R0 and T since
it is also the case for N . �
Corollary 2.4. Let R0 > 0 and T > 0. For any ε > 0, there exists δ > 0 such that any solution u

satisfying (55) and ‖(u0, u1)‖L2×H−1 � δ satisfies∥∥(u(T ), ∂tu(T )
)∥∥

L2×H−1 � ε.

We will also need the following lemma which states the local uniform continuity of the flow
map. Note that it can be proved to be locally Lipschitz with a slightly more complicated argument
(see Corollary 2 of [17]). We will not need this for our purpose.

Lemma 2.16. Let un, ũn be two sequences of solutions of{�un + un + |un|4un = gn on [−T ,T ] × M,

(un, ∂tun)t=0 = (un,0, un,1) bounded in E ,

with ‖(un,0 − ũn,0, un,1 − ũn,1)‖E + ‖gn − g̃n‖L1([−T ,T ],L2) −→
n→∞ 0. Then, we have

|||un − ũn|||[−T ,T ] −→
n→∞ 0.

Proof. rn = un − ũn is a solution of{�rn + rn + |un|4un − |ũn|4ũn = gn − g̃n on [−T ,T ] × M,

(rn, ∂t rn)t=0 = (un,0 − ũn,0, un,1 − ũn,1).

Using energy and Strichartz estimates, we get

|||rn|||[−T ,T ] � C
∥∥(un,0 − ũn,0, un,1 − ũn,1)

∥∥
E + C‖gn − g̃n‖L1([−T ,T ],L2)

+ C‖rn‖L5([−T ,T ],L10)

(‖un‖4
5 10 + ‖ũn‖4

5 10

)
.

L ([−T ,T ],L ) L ([−T ,T ],L )
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Using Proposition 2.5, we can divide the interval [−T ,T ] in a finite number of intervals Ii,n =
[ai,n, ai+1,n], 1 � i � N , such that C(‖un‖4

L5(Ii,n,L10)
+ ‖ũn‖4

L5(Ii,n,L10)
) < 1/2 so that the third

term can be absorbed. We iterate this estimate N times, which gives the result. �
2.3.2. Profile decomposition of the limit energy

For u solution of the nonlinear wave equation, we denote its nonlinear energy density by

e(u)(t, x) = 1

2

[∣∣∂tu(t, x)
∣∣2 + ∣∣∇u(t, x)

∣∣2 + ∣∣u(t, x)
∣∣2]+ 1

6

∣∣u(t, x)
∣∣6.

For a sequence un of solution with initial data bounded in E , the corresponding nonlinear en-
ergy density is bounded in L∞([−T ,T ],L1) and so in the space of bounded measures on
[−T ,T ] × M . This allows to consider, up to a subsequence, its weak∗ limit.

The following theorem is the equivalent of Theorem 7 in [8]. It proves that the energy limit
follows the same profile decomposition as un. It will be the crucial argument that will allow to
use microlocal defect measure on each profile and then to apply the linearization argument.

Theorem 2.3. Assume 2T < Tfocus.
Let un be a sequence of solutions of

�un + un + |un|4un = 0

with (un, ∂tun)(0) weakly convergent to 0 in E .
The nonlinear energy density limit of un (up to subsequence) reads

e(t, x) =
+∞∑
j=1

e(j)(t, x) + ef (t, x)

where e(j) is the limit energy limit density of q
(j)
n (following the notation of Theorem 0.4) and

ef = lim
l→∞ lim

n→∞ e
(
w(l)

n

)
where the two limits are considered up to a subsequence and in the weak∗ sense.

In particular, ef can be written as

ef (t, x) =
∫

ξ∈S2
x

μ(t, x, dξ)

with

μ(t, x, ξ) = μ−
(
Gt(x, ξ)

)+ μ+
(
G−t (x, ξ)

)
where Gt is the flow map of the vector field H|ξ |x on S∗M , that is the hamiltonian of the Rieman-
nian metric.
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Moreover, e is also the limit of the linear energy density

elin(un)(t, x) = 1

2

[∣∣∂tun(t, x)
∣∣2 + ∣∣∇un(t, x)

∣∣2].
Proof. Proposition 2.5 yields ‖un‖L8([−T ,T ]×M) � C. Then, compact embedding and Lem-
ma 2.15 yield ‖un‖L2([−T ,T ]×M) −→

n→∞ 0 and so ‖un‖L6([−T ,T ]×M) −→
n→∞ 0 by interpolation. There-

fore, e is the limit of b(un,un), with

b(f,g) = ∂tf (t, x)∂tg(t, x) + ∇f (t, x) · ∇g(t, x).

Now, we have to compute the limit of b(un,un) using decomposition (10) of Theorem 0.4. We
set for any l ∈ N

s(l)
n =

l∑
j=1

q
(j)
n

and so

b(un,un) = b
(
s(l)
n , s(l)

n

)+ b
(
w(l)

n ,w(l)
n

)+ 2b
(
s(l)
n ,w(l)

n

)+ 2b
(
un, r

(l)
n

)− b
(
r(l)
n , r(l)

n

)
.

Because of (11), limn→∞ ‖2b(un, r
(l)
n ) − b(r

(l)
n , r

(l)
n )‖L1([−T ,T ]×M) converges to zero as l tends

to infinity. So, if we define e
(l)
r = w∗ limn→∞(2b(un, r

(l)
n ) − b(r

(l)
n , r

(l)
n )), we have∥∥e(l)

r

∥∥
TV −→

l→∞ 0.

Let ϕ ∈ C∞
0 (]−T ,T [ × M). For fixed l, it remains to estimate

∫ ∫
]−T ,T [×M

ϕb
(
s(l)
n ,w(l)

n

)= l∑
j=1

∫ ∫
]−T ,T [×M

ϕb
(
q

(j)
n ,w(l)

n

)
.

Since b(q
(j)
n ,w

(l)
n ) is bounded in L∞(]−T ,T [,L1), we can assume, up to an error arbitrary

small, that ϕ is supported in {t < t
(j)∞ } or {t > t

(j)∞ } (replace ϕ by (1 − Ψ )(t)ϕ with Ψ (t
(j)∞ ) = 1

and ‖Ψ ‖L1(]−T ,T [) small). On each interval, Theorem 2.1 allows to replace q
(j)
n by a linear con-

centrating wave. Then, we combine Lemma 2.11 and Lemma 1.11 to get the weak convergence
to zero of b(s

(l)
n ,w

(l)
n ) for fixed l.

Lemma 2.10 and the orthogonality of the cores of concentration give D
(j)
h (p

(j ′)
h ,

∂tp
(j ′)
h )(t

(j)
h ) ⇀ (0,0) for j �= j ′ and p

(j ′)
h a concentrating wave at rate [h(j ′), t (j

′), x(j ′)]. Then,
the same argument as before yields

b
(
s(l)
n , s(l)

n

)
⇀

n→∞
l∑

e(j).
j=1
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So we have proved that for any l ∈ N

b(un,un) ⇀
n→∞ e =

l∑
j=1

e(j) + e(l)
w + e(l)

r

where e
(l)
w is the weak∗ limit of b(w

(l)
n ,w

(l)
n ) and e

(l)
r satisfies ‖e(l)

r ‖TV −→
l→∞ 0. e

(l)
w is the weak∗

limit of a sequence of solutions of the linear wave equation weakly convergent to 0 in energy
space. Therefore, it has the announced form using the link with microlocal defect measure (see
Lemma 1.9).

We get the final result by letting l tend to infinity. �
Remark 2.4. The fact that |un|6 is weakly convergent to 0 is false if we consider the limit in
D′(M) time by time. For example, for a nonlinear concentrating wave with tn = 0, the weak
limit in D′(]−T ,T [ × M) of |un|6 is of course still zero but the weak limit of |un|6(t) in D′(M)

is zero if t �= 0 and a multiple of a Dirac function if t = 0. So the limit in D′(M) of en|t=0 is
not the same as the one of b(un,un)|t=0. This comes from the fact that the limit of b(un,un)(t)

is not equicontinuous as a function of t while it is the case for the nonlinear energy. Yet, in
the proof, we are only interested in its limit in the space–time distributional sense which will
be continuous. Actually, the discontinuity at t = 0 of the limit of b(un,un)(t) can be described
explicitly from the scattering operator. At the contrary, the fact that the nonlinear energy density
e(t) is continuous in time can, in this case, be seen as a consequence of the conservation of the
nonlinear energy of the scattering operator.

3. Control and stabilization

3.1. Weak observability estimates, stabilization

3.1.1. Why Klein–Gordon and not the wave?
In this subsection, we prove that the expected observability estimate

E(u)(0) � C

∫ ∫
[0,T ]×M

|a∂tu|2 dt dx

does not hold for the nonlinear damped wave equation �u + ∂tu + u5 = 0 (in the simpler case
a ≡ 1), even for small data. It explains why we have chosen the Klein–Gordon equation instead.
The main point is that for small data, the nonlinear solution is close to the linear one which has
the constants (in space–time) as undamped solutions (which is obviously false for �u + u = 0).

We take a ≡ 1 and initial data constant equal to (ε,0). The nonlinear wave equation takes the
form of the following ODE {

ü + u̇ + u5 = 0 on [0, T ],(
u(0), u̇(0)

)= (ε,0).

Decreasing of energy yields for any t � 0
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E(t) = 1

2
u̇2 + 1

6
u6(t) � E(0) = 1

6
ε6

and so ∣∣u(t)
∣∣� ε ∀t � 0.

Then, c = u̇ is a solution of {
ċ + c + u5 = 0 on [0, T ],
c(0) = 0.

Therefore,

c(t) = −
t∫

0

e−(t−s)u5(s) ds and

∣∣u̇(t)
∣∣= ∣∣c(t)∣∣� ε5.

For any T > 0, we have

T∫
0

∣∣u̇(s)
∣∣2 � T ε10.

Therefore, the observability estimate

T ε10 �
T∫

0

∣∣u̇(s)
∣∣2 � CE(0) = C

1

6
ε6

cannot hold if ε is taken small enough.

3.1.2. Weak observability estimate
As explained in the introduction, the proof of stabilization consists in the analysis of possible

sequences contradicting an observability estimate. The first step is to prove that such sequence is
linearizable in the sense that its behavior is close to solutions of the linear equation.

Proposition 3.1. Let ω satisfy Assumption 0.2 and a ∈ C∞(M) satisfy a(x) > η > 0 for all
x ∈ ω. Let T > T0 and un be a sequence of solutions of{�un + un + |un|4un + a(x)2∂tun = 0 on [0, T ] × M,

(un, ∂tun)t=0 = (u0,n, u1,n) ∈ E
(57)

satisfying
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(u0,n, u1,n) ⇀
n→∞ 0 weakly in E ,∫ ∫

[0,T ]×M

∣∣a(x)∂tun

∣∣2 dt dx −→
n→∞ 0. (58)

Then, un is linearizable on [0, t] for any t < T − T0, that is

|||un − vn|||[0,t] −→
n→∞ 0

where vn is the solution of {�vn = 0 on [0, T ] × M,

(vn, ∂tvn)t=0 = (u0,n, u1,n).

Proof. Denote t∗ = sup{s ∈ [0, T ] | limn→∞ |||un − vn|||[0,s] = 0} and we have to prove t∗ � T −
T0. If it is not the case, we can find an interval [t∗ − ε, t∗ − ε + L] ⊂ [0, T ] with T0 < L < Tfocus

and 0 < 2ε < L − T0 (if t∗ = 0, take the interval [0,L] ⊂ [0, T ]). Then, Lemma 3.1 below gives
that un is linearizable on [t∗ − ε, t∗ + ε]. We postpone the proof of Lemma 3.1 and finish the
proof of the proposition. The definition of t∗ gives limn→∞ |||un − vn|||[0,t∗−ε] = 0 and we have
proved that limn→∞ |||un − ṽn|||[t∗−ε,t∗+ε] = 0 where ṽn is a solution of

�ṽn = 0; (ṽn, ∂t ṽn)t=t∗−ε = (un, ∂tun)t=t∗−ε.

Since the norm ||| · ||| controls the energy norm, this easily yields limn→∞ |||un − vn|||[0,t∗+ε] = 0
which is a contradiction to the definition of t∗. �
Lemma 3.1. With the assumptions of Proposition 3.1. Consider the profile decomposition ac-
cording to Theorem 0.4 of un on a subinterval [t0, t0 + L] ⊂ [0, T ] with T0 < L < Tfocus.

Then, for any 0 < ε < L − T0, this decomposition does not contain any nonlinear concentrat-
ing wave with t

(j)∞ ∈ [t0, t0 + ε] and un is linearizable on [t0, t0 + ε].
Proof. To simplify the notation, we work on the interval [0,L]. Moreover, since a(x)∂tun

tends to 0 in L1L2, Lemma 2.16 allows to assume with the same assumptions that un is a
solution of the nonlinear equation without damping. Proposition 2.5 and Lemma 2.15 (with
the Rellich Theorem) give that un is bounded in L8([0, T ] × M) and convergent to 0 in
L2([0, T ] ×M). Therefore, un tends to 0 in L7([0, T ] × M) and so |un|4un is convergent to 0 in
L7/5([0, T ] × M) ↪→ L4/3([0, T ] × M) ↪→ H−1

loc (]0, l[ × M). Then, if we consider the (space–
time) microlocal defect measure of un, the elliptic regularity and the equation verified by un

gives that μ is supported in {τ 2 = |ξ |2x} as in the linearizable case. So, combining this with (58),
we get

un −→
n→∞ 0 in H 1

loc

(]0,L[ × ω
)
.

Using the notation of Theorem 2.3, this gives e = 0 on ]0,L[ × ω. Since all the measures in the
decomposition of e are positive, we get the same result for any nonlinear concentrating wave in
the decomposition of un, that is

q
(j)
n −→ 0 in H 1 (]0,L[ × ω

)

n→∞ loc
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and if μ(j) is the microlocal defect measure of q
(j)
n , we have

μ(j) ≡ 0 in S∗(]0,L[ × ω
)
. (59)

Assume that t
(j)∞ ∈ [0, ε] for one j ∈ N, so that the interval [t (j)∞ ,L] has length greater that T0.

Denote by p
(j)
n the linear concentrating wave approaching q

(j)
n in the interval I

3,Λ
n according to

the notation of Theorem 2.1, so that for any t
(j)∞ < t < L (here we use the fact that L < Tfocus),

we have

∣∣∣∣∣∣q(j)
n − p

(j)
n

∣∣∣∣∣∣[t,L] −→
n→∞ 0.

In particular, μ(j) is also attached to p
(j)
n on the time interval ]t (j)∞ ,L]. Since p

(j)
n is a solution of

the linear wave equation, its measure propagates along the hamiltonian flow. Assumption 0.2 and
|L− t

(j)∞ | > T0 ensure that the geometric control condition is still verified on the interval [t (j)∞ ,L]
which gives μ(j) ≡ 0 when combined with (59). This means that p

(j)
n ≡ 0 and so q

(j)
n ≡ 0 as

expected.
Then, for the profile decomposition of un on the interval [0,L] (here the weak limit u is

necessarily zero)

un =
l∑

j=1

q
(j)
n + w(l)

n + r(l)
n ,

we have proved that t
(j)
n ∈ ]ε,L]. Then Theorem 2.1 and L < Tfocus provide a linear concen-

trating wave p
(j)
n such that limn→∞ |||q(j)

n − p
(j)
n |||[0,ε] = 0 while Lemma 2.3 gives

limn→∞ ‖p(j)
n ‖L5([0,ε],L10) = 0. Moreover, the conclusion of Theorem 2.1 gives limn→∞ ‖w(l)

n +
r
(l)
n ‖L5([0,ε],L10) −→

l→∞ 0. This finally yields limn→∞ ‖un‖L5([0,ε],L10) = 0 and therefore

∥∥|un|4un

∥∥
L1([0,ε],L2)

−→
n→∞ 0.

This gives exactly that un is linearizable on [0, ε]. �
We are now ready for the proof of some weak observability estimates. We recall the notation

E(u) for the nonlinear energy defined in (2).

Theorem 3.1. Let ω satisfy Assumption 0.2 with T0 and a ∈ C∞(M) satisfy a(x) > η > 0 for all
x ∈ ω. Let T > 2T0 and R0 > 0. Then, there exists C > 0 such that for any u solution of

⎧⎪⎨⎪⎩
�u + u + |u|4u + a2(x)∂tu = 0 on [0, T ] × M,

(u, ∂tu)t=0 = (u0, u1) ∈ E ,∥∥(u ,u )
∥∥ � R

(60)
0 1 E 0
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satisfies

E(u)(0) � C

( ∫ ∫
[0,T ]×M

∣∣a(x)∂tu
∣∣2 dt dx + ∥∥(u0, u1)

∥∥
L2×H−1E(u)(0)

)
.

Proof. We argue by contradiction: we suppose that there exists a sequence un of solutions of (60)
such that( ∫ ∫

[0,T ]×M

∣∣a(x)∂tun

∣∣2 dt dx + ∥∥(u0,n, u1,n)
∥∥

L2×H−1E(un)(0)

)
� 1

n
E(un)(0).

Denote αn = (E(un)(0))1/2. By Sobolev embedding for the L6 norm, we have αn � C(R0). So,
up to extraction, we can assume that αn −→ α � 0.

We will distinguish two cases: α > 0 and α = 0.

• First case: αn −→ α > 0.

The second part of the estimate gives ‖(u0,n, u1,n)‖L2×H−1 −→
n→∞ 0 and so (u0,n, u1,n) ⇀

n→∞ 0

in H 1 × L2. Therefore, we are in position to apply Proposition 3.1 and get that un is linearizable
on an interval [0,L] with L > T0. We get a contradiction to α > 0 by applying the following
classical linear proposition, which can be easily proved using microlocal defect measure as in
Lemma 3.1.

Proposition 3.2. Let ω satisfy Assumption 0.2 with T0. Let T > T0 and vn be a sequence of
solutions of {�vn = 0 on [0, T ] × M,(

vn(0), ∂t vn(0)
)

⇀
n→∞ 0 in E

satisfying ∫ ∫
[0,T ]×M

∣∣a(x)∂tvn

∣∣2 dt dx −→
n→∞ 0.

Then, (vn(0), ∂t vn(0)) −→
n→∞ 0 for the strong topology of H 1 × L2. The same result holds with�un replaced by �un + un.

• Second case: αn −→ 0.

Let us make the change of unknown wn = un/αn. wn is a solution of the system

�wn + a2(x)∂twn + wn + α4
n|wn|4wn = 0 (61)

and
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∫ ∫
[0,T ]×M

∣∣a(x)∂twn

∣∣2 dt dx � 1

n
.

We have for a large constant C > 0 depending on R0 and for all t ∈ [0, T ],

1

C

∥∥(un, ∂tun)
∥∥2

E � E(un) � C
∥∥(un, ∂tun)

∥∥2
E .

Therefore, we have

∥∥(wn(t), ∂twn(t)
)∥∥

E = ‖(un(t), ∂tun(t))‖E√
E(un(0))

� C

√
E(un(t))√
E(un(0))

� C,

∥∥(wn(0), ∂twn(0)
)∥∥

E = ‖(un(0), ∂tun(0))‖E√
E(un(0))

� 1√
C

> 0. (62)

Thus, we have ‖(wn(0), ∂twn(0))‖E ≈ 1 and (wn, ∂twn) is bounded in L∞([0, T ], E ).
Applying Strichartz estimates to Eq. (61), we get for C = C(R0) > 0

‖wn‖L5([0,T ],L10) � C
(
1 + α4

n‖wn‖5
L5([0,T ],L10)

)
.

Then, using a bootstrap argument, we deduce that ‖wn‖L5([0,T ],L10) is bounded and therefore

�wn + wn −→
n→∞ 0 in L1([0, T ],L2).

Proposition 3.2 yields that wn converges strongly to some w solution of

�w + w = 0; ∂tw ≡ 0 on [0, T ] × ω. (63)

We deduce as in J. Rauch and M. Taylor [33] or C. Bardos, G. Lebeau, J. Rauch [3] that the
set GT of solutions in E fulfilling (63) is finite dimensional. This is also the case for some GT ′
with T ′ < T . So, for W = (w0,w1) ∈ GT and ε small enough, (eεAW − W)/ε is also in GT ′ ,
where etA is the Klein–Gordon semi-group. By equivalence of the norms in GT ′ , we get AW ∈ E
(note that we could have proved directly that GT only contains smooth functions by propagation
of regularity and geometric control condition). Then, A and indeed A2 = � − I maps GT into
itself and so admits an eigenvector W . By unique continuation for second-order elliptic operator,
we get ∂tw ≡ 0 for w the associated solution. Multiplying the equation by w̄ and integrating,
we obtain w ≡ 0 (note that, at this stage, the choice of the Klein–Gordon equation instead of
the wave equation is crucial to avoid the constant solutions). We conclude that (wn(0), ∂twn(0))

tends to 0 strongly in E which gives a contradiction to (62). �
3.2. Controllability

3.2.1. Linear control
In this subsection, we recall some well-known results about linear control theory and HUM

method. Let (Φ0,Φ1) ∈ L2 × H−1. We solve the system
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{�Φ + Φ = 0 on [0, T ] × M,

(Φ,∂tΦ)|t=0 = (Φ0,Φ1)
(64)

and {�v + v = a2Φ on [0, T ] × M,

(v, ∂tv)|t=T = (0,0).
(65)

The HUM operator S from L2 × H−1 to L2 × H 1 is defined by

S(Φ0,Φ1) = (−∂tv(0), v(0)
)
.

Lemma 3.2. If ω satisfies the geometric control Assumption 0.1, then S is an isomorphism.

Proof. Multiplying Eq. (65) by Φ̄ , integrating over [0, T ] × M and integrating by part, we get
the formula

T∫
0

∫
M

|aΦ|2 = −
∫
M

∂tv(0)φ̄(0) +
∫
M

v(0)∂t φ̄(0) = 〈S(Φ0,Φ1), (Φ0,Φ1)
〉

where 〈.,.〉 denotes the duality between L2 × H 1 and L2 × H−1. We get the conclusion thanks
to the following observability estimate which can be proved by the same techniques used in the
nonlinear problem

∥∥(Φ0,Φ1)
∥∥2

L2×H−1 �
T∫

0

∫
M

|aΦ|2. �

3.2.2. Controllability for small data

Theorem 3.2. Let ω satisfy Assumption 0.1 and T > T0. Then, there exists δ > 0 such that for
any (u0, u1) and (ũ0, ũ1) in H 1 × L2, with

∥∥(u0, u1)
∥∥

E � δ; ∥∥(ũ0, ũ1)
∥∥

E � δ

there exists g ∈ L∞([0,2T ],L2) supported in [0,2T ] × ω such that the unique strong solution
of

{�u + u + |u|4u = g on [0,2T ] × M,(
u(0), ∂tu(0)

)= (u0, u1)

satisfies (u(2T ), ∂tu(2T )) = (ũ0, ũ1).
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Proof. The proof is very similar to [11] except that the critical exponent do not allow to use
compactness argument and we use the classical Picard fixed point instead of Schauder, as done
in [9] or [29], [30] for NLS. By a compactness argument, we can select a ∈ C∞

0 (ω) with a(x) >

η > 0 for x in ω̃ where ω̃ satisfies Assumption 0.1. Since the equation is reversible, we can
assume (ũ0, ũ1) ≡ (0,0) and take the time T instead of 2T . We seek g of the form a2(x)Φ

where Φ is a solution of the free wave equation as in linear control theory with initial datum
(Φ0,Φ1) ∈ L2 × H−1. The purpose will be to choose the right (Φ0,Φ1) ∈ L2 × H−1 to get the
expected data. We consider the solutions of the two systems{�Φ + Φ = 0 on [0, T ] × M,

(Φ,∂tΦ)|t=0 = (Φ0,Φ1)

and {�u + u + |u|4u = a2Φ on [0, T ] × M,

(u, ∂tu)|t=T = (0,0).
(66)

Let us define the operator

L : L2 × H−1 → H 1 × L2,

(Φ0,Φ1) → L(Φ0,Φ1) = (u, ∂tu)|t=0. (67)

We split u = v + Ψ with Ψ solution of{�Ψ + Ψ = a2Φ on [0, T ] × M,

(Ψ, ∂tΨ )|t=T = (0,0).
(68)

This corresponds to the linear control, and (−∂tΨ,Ψ )|t=0 = S(Φ0,Φ1). As for function v, it is a
solution of {�v + v = −|u|4u on [0, T ] × M,

(v, ∂tv)|t=T = (0,0).
(69)

Φ belongs to C([0, T ],L2). So, u, v and Ψ belong to C([0, T ],H 1) ∩ C1([0, T ],L2) ∩
L5([0, T ],L10). We can write

L(Φ0,Φ1) = K(Φ0,Φ1) + S(Φ0,Φ1)

where K(Φ0,Φ1) = (−∂tv, v)|t=0. L(Φ0,Φ1) = (−u1, u0) is equivalent to (Φ0,Φ1) =
−S−1K(Φ0,Φ1) + S−1(−u1, u0). Defining the operator B : L2 × H−1 → L2 × H−1 by

B(Φ0,Φ1) = −S−1K(Φ0,Φ1) + S−1(−u1, u0),

the problem L(Φ0,Φ1) = (−u1, u0) is equivalent to finding a fixed point of B . We will prove that
if ‖(u0, u1)‖E is small enough, B is a contraction and reproduces a small ball BR of L2 × H−1.
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Since S is an isomorphism, we have∥∥B(Φ0,Φ1)
∥∥

L2×H−1 � C
(∥∥K(Φ0,Φ1)

∥∥
L2×H 1 + ∥∥(u0, u1)

∥∥
E
)
.

So we are led to estimate ‖K(Φ0,Φ1)‖L2×H 1 = ‖(v, ∂tv)|t=0‖E . Energy estimates applied to
Eq. (69) and the Hölder inequality give∥∥(v, ∂tv)|t=0

∥∥
E � C

∥∥|u|4u∥∥
L1([0,T ],L2)

� C‖u‖5
L5([0,T ],L10)

.

But Strichartz estimates applied to Eq. (66) give

‖u‖L5([0,T ],L10) � C
(∥∥a2Φ

∥∥
L1([0,T ],L2)

+ ‖u‖5
L5([0,T ],L10)

)
� C
(∥∥(Φ0,Φ1)

∥∥
L2×H−1 + ‖u‖5

L5([0,T ],L10)

)
.

Using a bootstrap argument, we get that for ‖(Φ0,Φ1)‖L2×H−1 � R small enough, we have

‖u‖L5([0,T ],L10) � C
∥∥(Φ0,Φ1)

∥∥
L2×H−1 . (70)

We finally obtain

∥∥B(Φ0,Φ1)
∥∥

L2×H−1 � C
(∥∥(Φ0,Φ1)

∥∥5
L2×H−1 + ∥∥(u0, u1)

∥∥
E
)
.

Choosing R small enough and ‖(u0, u1)‖H 1×L2 � R/2C, we obtain ‖B(Φ0,Φ1)‖L2×H−1 � R

and B reproduces the ball BR . Let us now prove that B is contracting. We examine the systems{�(u − ũ) + (u − ũ) + |u|4u − |ũ|4ũ = a2(Φ − Φ̃) on [0, T ] × M,(
u − ũ, ∂t (u − ũ)

)
|t=T

= (0,0),
(71)

{�(v − ṽ) + (v − ṽ) + |u|4u − |ũ|4ũ = 0 on [0, T ] × M,(
v − ṽ, ∂t (v − ṽ)

)
|t=T

= (0,0).
(72)

We obtain similarly∥∥B(Φ0,Φ1) − B(Φ̃0, Φ̃1)
∥∥

L2×H−1

� C
∥∥(v − ṽ, ∂t (v − ṽ)

)
|t=0

∥∥
E

� C
∥∥|u|4u − |ũ|4ũ∥∥

L1([0,T ],L2)

� C‖u − ũ‖L5([0,T ],L10)

(‖u‖4
L5([0,T ],L10)

+ ‖ũ‖4
L5([0,T ],L10)

)
� CR4‖u − ũ‖L5([0,T ],L10) (73)

where we have used estimate (70) for the last inequality. Applying Strichartz estimates to
Eq. (71), we get
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‖u − ũ‖L5([0,T ],L10) � C
(∥∥|u|4u − |ũ|4ũ∥∥

L1([0,T ],L2)
+ ∥∥a2(Φ − Φ̃)

∥∥
L1([0,T ],L2)

)
� CR4‖u − ũ‖L5([0,T ],L10) + C

∥∥(Φ0,Φ1) − (Φ̃0, Φ̃1)
∥∥

L2×H−1 .

If R is taken small enough, it yields

‖u − ũ‖L5([0,T ],L10) � C
∥∥(Φ0,Φ1) − (Φ̃0, Φ̃1)

∥∥
L2×H−1 . (74)

Combining (73) and (74), we finally obtain for R small enough∥∥B(Φ0,Φ1) − B(Φ̃0, Φ̃1)
∥∥

L2×H−1 � CR4
∥∥(Φ0,Φ1) − (Φ̃0, Φ̃1)

∥∥
L2×H−1

and B is a contraction for R small enough, which completes the proof of Theorem 3.2. �
3.2.3. Controllability of high frequency data

This subsection is devoted to the proof of the two main theorems of the article: Theorems 0.2
and 0.1.

Proof of Theorem 0.2. First, by decreasing of the energy and Sobolev embedding, there exists
some constant C(R0) such that the assumption ‖(u0, u1)‖E � R0 implies

E(u)(t) � C(R0) and
∥∥(u, ∂tu)(t)

∥∥
E � C(R0); ∀t � 0. (75)

Fix T such that Theorem 3.1 applies. Then, there exists ε > 0 such that for any (u0, u1) satisfying∥∥(u0, u1)
∥∥

E � C(R0);
∥∥(u0, u1)

∥∥
L2×H−1 � ε, (76)

we have the strong observability estimate

E(u)(0) � C

∫ ∫
[0,T ]×M

∣∣a(x)∂tu
∣∣2 dt dx,

for any solution of the damped equation (3). This means that there exists 0 < C such that any
solution of the damped equation satisfying (76) fulfills

E(u)(T ) � (1 − C)E(u)(0). (77)

Pick N ∈ N large enough such that (1 − C)NC(R0) � ε2/2.
Corollary 2.4 and (75) allow us to choose δ small enough such that the assumptions∥∥(u0, u1)

∥∥
E � R0;

∥∥(u0, u1)
∥∥

L2×H−1 � δ

imply ∥∥(u(nT ), ∂tu(nT )
)∥∥

2 −1 � ε, 0 � n � N. (78)

L ×H
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So, with that choice, we have E(u)(NT ) � (1 − C)NE(u)(0). Then, by the energy decreasing,
for any t � NT , we have∥∥(u, ∂tu)(t)

∥∥2
L2×H−1 � 2E(u)(t) � 2E(u)(NT ) � ε2.

Therefore, the decay estimate (77) is true on each interval [nT , (n + 1)T ], n ∈ N and we have

E(u)(nT ) � (1 − C)nE(u)(0)

which yields the result. �
Proof of Theorem 0.1. Since the equation is reversible, we can assume (ũ0, ũ1) = (0,0). By a
compactness argument, we can select a ∈ C∞

0 (ω) with a(x) > η > 0 for x in ω̃ where ω̃ satisfies
Assumption 0.2. We will first use the damping term a(x)2∂tu as a term of control. We apply
Theorem 0.2 and Theorem 3.2 once the energy is small enough. �
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