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Abstract

We derive the exact spectra as well as partition functions for a class of BCN type of spin Calogero 
models, whose Hamiltonians are constructed by using supersymmetric analogues of polarized spin rever-
sal operators (SAPSRO). The strong coupling limit of these spin Calogero models yields BCN type of 
Polychronakos–Frahm (PF) spin chains with SAPSRO. By applying the freezing trick, we obtain an exact 
expression for the partition functions of such PF spin chains. We also derive a formula which expresses the 
partition function of any BCN type of PF spin chain with SAPSRO in terms of partition functions of several 
AK types of supersymmetric PF spin chains, where K � N − 1. Subsequently we show that an extended 
boson–fermion duality relation is obeyed by the partition functions of the BCN type of PF chains with 
SAPSRO. Some spectral properties of these spin chains, like level density distribution and nearest neighbor
spacing distribution, are also studied.
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1. Introduction

Remarkable progress has been made in recent years in the computation of exact spectra, parti-
tion functions and correlation functions of one-dimensional quantum integrable spin chains with 
long-range interactions as well as their supersymmetric generalizations [1–24]. Exact solutions 
of this type of quantum spin chains with periodic and open boundary conditions have been found 
to be closely connected with diverse areas of physics and mathematics like condensed matter 
systems exhibiting generalized exclusion statistics [5,23–25], quantum Hall effect [26], quantum 
electric transport phenomena [27,28], calculation of higher loop effects in the spectra of trace 
operators of planar N = 4 super Yang–Mills theory [29–31], Dunkl operators related to various 
root systems [32,33], random matrix theory [34], and Yangian quantum groups [4,5,9,17,35–37]. 
Furthermore, it has been recently observed that exactly solvable spin chains with long-range 
interactions can be generated through some lattice discretizations of conformal field theories 
related to the ‘infinite matrix product states’ [38–41].

The study of quantum integrable spin chains with long-range interactions was pioneered by 
Haldane and Shastry, who derived the exact spectrum of a spin- 1

2 chain with lattice sites equally 
spaced on a circle and spins interacting through pairwise exchange interactions inversely pro-
portional to the square of their chord distances [1,2]. It has been found that, the exact ground 
state wave function of this su(2) symmetric Haldane–Shastry (HS) spin chain coincides with 
the U → ∞ limit of Gutzwiller’s variational wave function describing the ground state of the 
one-dimensional Hubbard model [42–44]. A close relation between the su(m) generalizations of 
this HS spin chain and the (trigonometric) Sutherland model has been established by using the 
‘freezing trick’ [6,45], which we briefly describe in the following. In contrast to the case of HS 
spin chain where lattice sites are fixed at equidistant positions on a circle, the particles of the 
su(m) spin Sutherland model can move on a circle and they contain both coordinate as well as 
spin degrees of freedom. However, in the strong coupling limit, the coordinates of these particles 
decouple from their spins and ‘freeze’ at the minimum value of the scalar part of the potential. 
Furthermore, this minimum value of the scalar part of the potential yields the equally spaced 
lattice points of the HS spin chain. As a result, in the strong coupling limit, the dynamics of 
the decoupled spin degrees of freedom of the su(m) spin Sutherland model is governed by the 
Hamiltonian of the su(m) HS model. Application of this freezing trick to the su(m) spin (rational) 
Calogero model leads to another quantum integrable spin chain with long-range interaction [6], 
which is known in the literature as the su(m) Polychronakos or Polychronakos–Frahm (PF) spin 
chain. The sites of such rational PF spin chain are inhomogeneously spaced on a line and, in fact, 
they coincide with the zeros of the Hermite polynomial [7]. Indeed, the Hamiltonian of the su(m) 
PF spin chain is given by

H(m)
PF =

∑
1�i<j�N

1 − εP
(m)
ij

(ρi − ρj )2
, (1.1)

where ε = 1 (−1) corresponds to the ferromagnetic (anti-ferromagnetic) case, P (m)
ij denotes the 

exchange operator which interchanges the ‘spins’ (taking m possible values) of i-th and j -th 
lattice sites and ρi denotes the i-th zero of the Hermite polynomial of degree N . Due to the 
decoupling of the spin and coordinate degrees of freedom of the su(m) spin Calogero model for 
large values of its coupling constant, an exact expression for the partition function of su(m) PF 
spin chain can be derived by dividing the partition function of the su(m) spin Calogero model 
through that of the spinless Calogero model [8]. Similarly, the partition function of su(m) HS 
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spin chain can be computed by dividing the partition function of the su(m) spin Sutherland model 
through that of the spinless Sutherland model [12].

As is well known, supersymmetric spin chains with different type of interactions play an im-
portant role in describing some quantum impurity problems and disordered systems in condensed 
matter physics, where holes moving in the dynamical background of spins behave as bosons, and 
spin-1/2 electrons behave as fermions [46–50]. The above mentioned PF and HS spin chains 
admit natural su(m|n) supersymmetric generalizations, where each lattice site has m number 
of bosonic and n number of fermionic degrees of freedom. Exact expressions for the partition 
functions of such su(m|n) PF and HS spin chains can also be computed by using the method 
of freezing trick [10,11,13]. It is found that these partition functions satisfy remarkable duality 
relations under the exchange of bosonic and fermionic degrees of freedom.

It may be noted that, the strength of interaction between any two spins in the Hamiltonian 
(1.1) depends only on the difference of their site coordinates. This type of translationally invari-
ant Hamiltonians of quantum integrable spin chains (and their supersymmetric generalizations) 
are closely related to the AN−1 type of root system. Indeed, the spin–spin interactions appearing 
in such Hamiltonians are given by the permutation operators which yield a realization of the 
AN−1 type of Weyl group. However, it is also possible to construct exactly solvable variants of 
HS and PF spin chains associated with the BCN , BN , CN and DN root systems [18–22,51–53]. 
A key feature of such spin chains is the presence of boundary points with reflecting mirrors, 
due to which the spins not only interact with each other but also with their mirror images. As a 
result, the corresponding Hamiltonians break the translational invariance. It may also be noted 
that, Hamiltonians of the spin chains associated with the BCN root system and its BN , CN and 
DN degenerations contain reflection operators like Si (i = 1, . . . , N ), which satisfy the relation 
S2

i = 1 and few other relations associated with the corresponding Weyl algebra. Representing 
such Si as the spin reversal operator Pi which changes the sign of the spin component on the 
i-th lattice site, the partition functions of HS and PF spin chains associated with the BCN , BN , 
CN and DN root systems have been computed by using the freezing trick [21,22,51–53]. Fur-
thermore, by taking Si as the spin reversal operator on a superspace, the partition function of a 
supersymmetric analogue of the PF spin chain associated with BCN root system has also been 
computed in a similar way [54].

However it is worth noting that, the above mentioned representations of reflection operators 
as the spin reversal operators is by no means the only possible choice. Indeed, by choosing all 
reflection operators as the trivial identity operator, it has been found that [19] a spin- 1

2 HS chain 
associated with the BCN root system leads to an integrable su(2) invariant spin model which was 
first studied by Simons and Altshuler [18]. Furthermore, a class of exactly solvable spin Calogero 
models of BCN type and the corresponding PF chains have been introduced recently [55], where 
the reflection operators are represented by arbitrarily polarized spin reversal operators (PSRO) 
P

(m1,m2)
i , which act as the identity on the first m1 elements of the spin basis on the i-th lattice site 

and as minus the identity on the rest of the spin basis. Consequently, depending on the action of 
P

(m1,m2)
i , the basis vectors of the m-dimensional spin space on each lattice site can be grouped 

into two cases — m1 elements with positive parity and m2 elements with negative parity. Using 
a similarity transformation, it can be shown that the PSRO reduce to the usual spin reversal 
operators Pi (up to a sign factor) when m1 = m2 or m1 = m2 ± 1. For the remaining values of 
the discrete parameters m1 and m2, the systems constructed in the later reference differ from the 
standard Calogero and PF models of BCN -type. In particular, for the case m2 = 0 and m1 = m, 
Pi reduces to the identity operator and leads to a novel su(m) invariant spin chain, which is 
described by the Hamiltonian
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H(m,0) =
∑

1�i �=j�N

yi + yj

(yi − yj )2
(1 − εP

(m)
ij ) , (1.2)

where ε = ±1, yi denotes the i-th zero of the generalized Laguerre polynomial Lβ−1
N . Thus, the 

lattice sites of H(m,0) implicitly depend on the real positive parameter β . Computing the partition 
function of the spin chain (1.2) by using the freezing trick and analyzing such partition function, 
it has been found that the spectrum of this spin chain coincides (up to a scale factor) with that 
of the original PF model (1.1) [55]. However, a deeper reason for this surprising coincidence has 
not been fully understood till now.

Even though the spectrum and partition function of the supersymmetric generalization of the 
AN−1 type of PF spin chain (1.1) have been computed earlier [10,11], no such result is available 
till now for the supersymmetric generalization of the spin chain (1.2). In this context it is interest-
ing to ask whether it is possible to compute the partition function for the supersymmetric version 
of the spin chain (1.2) by using the freezing trick, and whether the corresponding spectrum can 
be related in a simple way with that of the supersymmetric PF spin chain. In the present article we 
try to answer these questions by constructing supersymmetric analogues of PSRO (SAPSRO), 
which would satisfy the BCN type of Weyl algebra. By using such SAPSRO, we obtain a rather 
large class of exactly solvable spin Calogero models and PF chains of BCN type. In a particular 
case where polarization is minimal, SAPSRO reduce to the supersymmetric analogues of usual 
spin reversal operators and lead to the spin Calogero models as well as PF chains of BCN type 
which have been studied earlier [54]. However, in all other cases, these SAPSRO can be used to 
generate novel exactly solvable spin Calogero models and PF chains of BCN type. In particular, 
for the case where polarization is maximal, we find that SAPSRO reduces to the trivial identity 
operator and lead to a supersymmetric extension of the spin chain (1.2), whose partition function 
and spectrum can be computed by using the freezing trick.

Another interesting topic which we shall address in this paper is a modification of the usual 
boson–fermion duality relation which is satisfied by the partition functions of AN−1 type of 
spin chains. This type of modified duality relation has been studied earlier for the special case 
of BCN type of PF chains associated with the supersymmetric analogue of the spin reversal 
operators [54]. It has been observed that this duality relation not only involves the exchange of 
bosonic and fermionic degrees freedom, but also certain changes of the two discrete parameters 
which appear in the corresponding Hamiltonian. However, the full significance for such change 
of the two discrete parameters has not been explored till now. We find that the underlying reason 
for such change of the discrete parameters can be understood in a natural way if one studies the 
duality relation for BCN type of PF chains in the broader context of SAPSRO. Indeed, in this 
paper we consider a new quantum number which measures the parity of the spin states under 
the action of SAPSRO. Curiously, it turns out that the partition functions of the spin chains now 
satisfy an ‘extended’ boson–fermion duality relation, which involves not only the exchange of 
bosonic and fermionic degrees of freedom, but also the exchange of positive and negative parity 
degrees of freedom associated with the SAPSRO.

The arrangement of this paper is as follows. In Section 2, we construct SAPSRO which, along 
with the supersymmetric spin exchange operators, lead to new representations of the BCN type 
of Weyl algebra and related PF spin chains with open boundary conditions. Next, in Section 3, 
we consider BCN type of spin Calogero models associated with SAPSRO, which in the strong 
coupling limit yield the above mentioned class of PF spin chains. We derive the exact spectra 
as well as partition functions of these BCN type of spin Calogero models with SAPSRO. By 
applying the freezing trick, subsequently we obtain an exact expression for the partition functions 
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of the related PF spin chains. In Section 4, we derive a formula which expresses the partition 
function of any BCN type of PF spin chain with SAPSRO in terms of partition functions of 
several AK type of supersymmetric PF spin chains, where K � N − 1. By taking a particular 
limit of the above mentioned formula, we find that the partition function of the supersymmetric 
extension of the spin chain (1.2) coincides with that of an AN−1 type of supersymmetric PF spin 
chain. In Section 5, we derive an extended boson–fermion duality relation for the BCN type of PF 
chains with SAPSRO. In Section 6, we compute the ground state and the highest state energies 
of these spin chains. Some spectral properties of these spin chains, like level density distribution 
and nearest neighbor spacing distribution, are studied in Section 7. Section 8 is the concluding 
section.

2. BCN type of Weyl algebra and related PF chains

As is well known, different representations of the BCN type of Weyl algebra play a key role in 
constructing exactly solvable variants of HS and PF spin chains with open boundary conditions. 
This BCN type of Weyl algebra is generated by the elements Wij and Wi satisfying the relations

W2
ij = 1, WijWjk =WikWij = WjkWik , WijWkl =WklWij , (2.1a)

W2
i = 1, WiWj =WjWi , WijWk =WkWij , WijWj =WiWij , (2.1b)

where i, j , k, l are all different indices. Let us assume that the Hermitian operators Pij and 
Pi yield a realization of the elements Wij and Wi respectively on an appropriate spin space. 
Motivated by the earlier works [20,22,54,55], we define a general form of Hamiltonian for the 
BCN type of PF spin chain as

H =
∑
i �=j

[
1 −Pij

(ξi − ξj )2
+ 1 − P̃ij

(ξi + ξj )2

]
+ β

N∑
i=1

1 −Pi

ξ2
i

, (2.2)

where β is a positive parameter, P̃ij =PiPjPij , ξi = √
2yi and yi represents the i-th zero point 

of the generalized Laguerre polynomial Lβ−1
N . In the following, at first we shall briefly discuss 

how this general form of Hamiltonian yields already known PF spin chains associated with the 
BCN root system for different choices of the operators Pij and Pi . Subsequently, we shall con-
struct SAPSRO which, along with the supersymmetric spin exchange operators, would lead to a 
new class of representations for the BCN type of Weyl algebra and the related PF chains.

In the case of a non-supersymmetric spin chain with N number of lattice sites, the total inter-
nal space �(m) is expressed as

�(m) ≡ Cm ⊗ Cm ⊗ · · · ⊗ Cm︸ ︷︷ ︸
N

, (2.3)

where Cm denotes an m-dimensional complex vector space. In terms of orthonormal basis vec-
tors, �(m) may be written as

�(m) =
〈
|s1, · · · , sN 〉

∣∣∣si ∈ {−M,−M + 1, · · · ,M}; M = m − 1

2

〉
. (2.4)

The spin exchange operator P (m)
ij and the spin reversal operator Pi act on these orthonormal basis 

vectors as
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P
(m)
ij |s1 , · · · , si , · · · , sj , · · · , sN 〉 = |s1 , · · · , sj , · · · , si , · · · , sN 〉 , (2.5a)

Pi |s1 , · · · , si , · · · , sN 〉 = |s1 , · · · ,−si , · · · , sN 〉 . (2.5b)

It is easy to check that εP (m)
ij and ε′Pi (where ε, ε′ = ±1 are two independent signs) yield a 

realization of the BCN type of Weyl algebra (2.1). Substituting εP (m)
ij and ε′Pi in the places of 

Pij and Pi respectively in the general form of Hamiltonian (2.2), one obtains an exactly solvable 
BCN type of non-supersymmetric PF spin chain whose partition function has been computed by 
using the freezing trick [22].

For the purpose of generalizing the above mentioned spin chain through PSRO, it is conve-
nient to define the space �(m) through a different set of orthonormal basis vectors as

�(m) =
〈
|s1, · · · , sN 〉

∣∣∣si ∈ {1,2, · · · ,m}
〉
. (2.6)

The action of spin exchange operator P (m)
ij on these orthonormal basis vectors is again given by 

an equation of the form (2.5a). However, the spin reversal operator is replaced by PSRO (denoted 
by P (m1,m2)

i for the i-th lattice site) which acts on these orthonormal basis vectors as [55]

P
(m1,m2)
i |s1, · · · , si , · · · , sN 〉 = (−1)f (si )|s1, · · · , si , · · · , sN 〉, (2.7)

where

f (si) =
{

0, if si ∈ {1,2, · · · ,m1},
1, if si ∈ {m1 + 1, · · · ,m1 + m2},

and m1 and m2 are two arbitrary non-negative integers satisfying the relation m1 + m2 = m. Us-
ing Eqs. (2.5a) and (2.7), it is easy to check that εP (m)

ij and P (m1,m2)
i yield a realization of BCN

type of Weyl algebra (2.1). Substituting εP (m)
ij and P (m1,m2)

i (in places of Pij and Pi , respec-
tively) in the general form of Hamiltonian (2.2) and taking different possible values of m1 and 
m2, one obtains a class of exactly solvable BCN type of PF spin chains with PSRO [55]. Using 
a similarity transform it has been shown in the latter reference that, in the special case given by 
m1 = m2 (m1 = m2 + ε′) for even (odd) values of m, the operator P (m1,m2)

i becomes equivalent 
to ε′Pi . Consequently, PF spin chain associated with PSRO reduces to PF spin chain associated 
with spin reversal operators in this special case. It may also be observed that, in another special 
case given by m1 = m, m2 = 0, P (m1,m2)

i in (2.7) reduces to the trivial identity operator and 
the corresponding Hamiltonian (2.2) yields the exactly solvable su(m) invariant spin chain (1.2)
which has been discussed earlier.

Next, for the purpose of discussing representations of the BCN type of Weyl algebra (2.1) on 
a superspace, we consider a set of operators like C†

jα (Cjα) which creates (annihilates) a particle 
of species α on the j -th lattice site. The parity of these operators are defined as

π(Cjα) = π(C
†
jα) = 0 for α ∈ [1,2, . . . ,m] ,

π(Cjα) = π(C
†
jα) = 1 for α ∈ [m + 1,m + 2, . . . ,m + n] ,

i.e, they are assumed to be bosonic when α ∈ [1, 2, . . . , m] and fermionic when α ∈ [m + 1, m +
2, . . . , m + n]. These operators satisfy commutation (anti-commutation) relations given by

[Cjα,Ckβ ]± = 0 , [C†
,C

† ]± = 0 , [Cjα,C
† ]± = δjkδαβ , (2.8)
jα kβ kβ
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where [C, D]± ≡ CD − (−1)π(C)π(D)DC. On a subspace of the corresponding Fock space, 
where each lattice site is occupied by only one particle (i.e., 

∑m+n
α=1 C

†
jαCjα = 1 for all j ), the 

supersymmetric exchange operator is defined as

P̂
(m|n)
ij ≡

m+n∑
α,β=1

C
†
iαC

†
jβCiβCjα . (2.9)

This supersymmetric exchange operator can equivalently be described as an operator on a spin 
space in the following way. Let us assume that each lattice site of a spin chain is occupied by 
either one of the m number of ‘bosonic’ spins or one of the n number of ‘fermionic’ spins. Hence, 
the total internal space associated with such spin chain can be expressed as

�(m|n) ≡ Cm+n ⊗ Cm+n ⊗ · · · ⊗ Cm+n︸ ︷︷ ︸
N

. (2.10)

Using the notation of Ref. [54], the orthonormal basis vectors of �(m|n) may be denoted as 
|s1, · · · , sN 〉, where si ≡ (s1

i , s2
i ) is a vector with two components taking values within the range

s1
i ≡ π(si) =

{
0, for bosons,

1, for fermions,
(2.11a)

s2
i ∈
{

{−m−1
2 ,−m−1

2 + 1, · · · , m−1
2 }, if π(si) = 0,

{−n−1
2 ,−n−1

2 + 1, · · · , n−1
2 }, if π(si) = 1.

(2.11b)

Thus the component s1
i ≡ π(si) denotes the type of spin (bosonic or fermionic) and the com-

ponent s2
i denotes the numerical value of the spin. A supersymmetric spin exchange operator 

P
(m|n)
ij has been defined earlier on the space �(m|n) as [13,35]

P
(m|n)
ij |s1, · · · , si , · · · , sj , · · · , sN 〉 = (−1)αij (s)|s1, · · · , sj , · · · , si , · · · , sN 〉, (2.12)

where αij (s) = π(si)π(sj ) +
(
π(si) + π(sj )

)
hij (s) and hij (s) = ∑j−1

k=i+1 π(sk) denotes the 
number of fermions in between the i-th and j -th spins. From Eq. (2.12) it follows that, the 
exchange of two bosonic (fermionic) spins produces a phase factor of 1(−1). However, the ex-
change one bosonic spin with one fermionic spin (or, vice versa) produces a phase factor of 
(−1)hij (s). Using the commutation (anti-commutation) relations in (2.8), it can be shown that 
P̂

(m|n)
ij in (2.9) is completely equivalent to P (m|n)

ij in (2.12) [13,35].
A supersymmetric analogue of the spin reversal operator Pi (2.5b) can also be defined on the 

space �(m|n) [54]. While acting on the basis vectors of �(m|n), this supersymmetric analogue of 
spin reversal operator (denoted by P εε′

i ) reverses the value of the i-th spin without affecting its 
type and multiplies the state by a sign factor. More precisely, the action of P εε′

i is given by

P εε′
i |s1, · · · , si , · · · , sN 〉 = ρ(si)|s1, · · · , s−

i , · · · , sN 〉, (2.13)

where s−
i = (s1

i , −s2
i ), ρ(si) = ε (ε′) for π(si) = 0 (1), and ε, ε′ = ±1 are two independent 

signs. With the help of (2.12) and (2.13), one can easily check that P (m|n)
ij and P εε′

i yield a 

realization of the BCN type of Weyl algebra (2.1). Substitution of P (m|n)
ij and P εε′

i in Eq. (2.2)
yields an exactly solvable Hamiltonian given by [54]
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H(m|n)

εε′ =
∑
i �=j

⎡⎣1 − P
(m|n)
ij

(ξi − ξj )2
+ 1 − P̃

(m|n)
ij

(ξi + ξj )2

⎤⎦+ β

N∑
i=1

1 − P εε′
i

ξ2
i

, (2.14)

where P̃ (m|n)
ij = P εε′

i P εε′
j P

(m|n)
ij . However, since H(m|n)

εε′ in the above equation does not reduce 

to H(m,0) in (1.2) for the special case n = 0 (and for any possible choice of ε and ε′), the former 
Hamiltonian cannot be considered as a supersymmetric extension of the later one.

At present our aim is to construct SAPSRO which would satisfy the BCN type of Weyl algebra 
(2.1). To this end, we denote the total internal space of the related spin system as �(m1,m2|n1,n2), 
where m1, m2, n1, n2 are some arbitrary non-negative integers satisfying the relations m1 +m2 =
m and n1 + n2 = n. This �(m1,m2|n1,n2) can be expressed in a direct product form exactly like 
(2.10), but each si within the corresponding basis vectors now possess an extra quantum number 
associated with the action of SAPSRO. More precisely, �(m1,m2|n1,n2) is spanned by orthonormal 
state vectors like |s1, · · · , sN 〉, where si ≡ (s1

i , s2
i , s3

i ) is a vector with three components taking 
values within the range

s1
i ≡ π(si) =

{
0, for bosons,

1, for fermions,
(2.15a)

s2
i ≡ f (si) =

{
0, for positive parity under SAPSRO

1, for negative parity under SAPSRO,
(2.15b)

s3
i ∈

⎧⎪⎪⎨⎪⎪⎩
{1,2, · · · ,m1}, if π(si) = 0 and f (si) = 0,

{1,2, · · · ,m2}, if π(si) = 0 and f (si) = 1,

{1,2, · · · , n1}, if π(si) = 1 and f (si) = 0,

{1,2, · · · , n2}, if π(si) = 1 and f (si) = 1.

(2.15c)

Indeed, we define the action of SAPSRO (denoted by P (m1,m2|n1,n2)
i ) on these state vectors as

P
(m1,m2|n1,n2)
i |s1, · · · , si , · · · , sN 〉 = (−1)f (si )|s1, · · · , si , · · · , sN 〉, (2.16)

which shows that s2
i ≡ f (si) is determined through the parity of the spin si under the action of 

SAPSRO. As before, the action of supersymmetric spin exchange operator P (m|n)
ij on the space 

�(m1,m2|n1,n2) is given by an equation of the form (2.12), where the phase factor αij (s) depends 
on the first components of the spins like s1

k ≡ π(sk). Using Eqs. (2.12) and (2.16), we find that 

P
(m|n)
ij and P (m1,m2|n1,n2)

i yield a realization of the BCN type of Weyl algebra (2.1). Substituting 
these operators in the general form of Hamiltonian (2.2), we obtain the Hamiltonian for a large 
class of BCN type of PF spin chains as

H(m1,m2|n1,n2) =
∑
i �=j

⎡⎣1 − P
(m|n)
ij

(ξi − ξj )2
+ 1 − P̃

(m1,m2|n1,n2)
ij

(ξi + ξj )2

⎤⎦+ β

N∑
i=1

1 − P
(m1,m2|n1,n2)
i

ξ2
i

,

(2.17)

where P̃ (m1,m2|n1,n2)
ij ≡ P

(m1,m2|n1,n2)
i P

(m1,m2|n1,n2)
j P

(m|n)
ij .

It is worth noting that the Hamiltonian (2.17) can reproduce all of the previously studied 
BCN type of PF spin chains at certain limits. For example, in the presence of only bosonic 
or fermionic spins, i.e., when either n1 = n2 = 0 or m1 = m2 = 0, H(m1,m2|n1,n2) reduces to 
the non-supersymmetric PF spin chain associated with PSRO [55]. Next, let us assume that the 
discrete parameters m1, m2, n1, n2 in the Hamiltonian (2.17) satisfy the relations
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m1 = 1

2
(m + ε m̃) , m2 = 1

2
(m − ε m̃) , n1 = 1

2

(
n + ε′ ñ

)
, n2 = 1

2

(
n − ε′ ñ

)
,

(2.18)

where ε, ε′ = ±1, m̃ ≡ m mod 2 and ñ ≡ n mod 2. One can easily check that, for these particular 
values of the discrete parameters, the trace of P (m1,m2|n1,n2)

i in (2.16) would coincide with that 
of P εε′

i in (2.13). Furthermore, it would be possible to construct an unitary transformation which 

maps P (m1,m2|n1,n2)
i to P εε′

i and keeps P (m|n)
ij invariant. Consequently, for the special case given 

in (2.18), H(m1,m2|n1,n2) in (2.17) becomes equivalent to the exactly solvable Hamiltonian H(m|n)

εε′
in (2.14).

Except for the two particular cases which are discussed above, the Hamiltonian in (2.17)
represents novel class of BCN type of PF spin chains associated with SAPSRO. For example, if 
we choose the discrete parameters as m1 = m, m2 = 0, n1 = n, n2 = 0, then Eqs. (2.15c) and 
(2.16) imply that P (m,0|n,0)

i = 1 and P̃ (m,0|n,0)
ij = P

(m|n)
ij . Consequently, for this particular case, 

H(m1,m2|n1,n2) in (2.17) yields a supersymmetric spin chain of the form

H(m,0|n,0) =
∑
i �=j

yi + yj

(yi − yj )2

(
1 − P

(m|n)
ij

)
, (2.19)

which has not been studied previously in the literature. It is interesting to observe that, for the 
special case n = 0, the above Hamiltonian reduces to H(m,0) in (1.2) with ε = 1. On the other 
hand, by putting n = 0 after interchanging m and n in (2.19), one easily gets H(m,0) with ε = −1. 
Therefore, the Hamiltonian H(m,0|n,0) in (2.19) can be considered as a supersymmetric extension 
of H(m,0) in (1.2).

We would like to make a comment at this point. The integrability of the Hamiltonian 
H(m1,m2|n1,n2) in (2.17) can be established by using a procedure similar to that of Ref. [20] in the 
non-supersymmetric case. However, there exists an important difference between the symmetry 
algebra of spin chains associated with the BCN root system and that of spin chains associated 
with the AN−1 root system. As is well known, the Hamiltonian (1.1) of the AN−1 type of PF 
spin chain exhibit global su(m) symmetry along with more general Y(gl(m)) Yangian quantum 
group symmetry [9]. Moreover, the supersymmetric extension of this AN−1 type of PF spin ex-
hibit global su(m|n) supersymmetry as well as Y(gl(m|n)) super Yangian symmetry [11]. On the 
other hand, PF spin chains associated with the BCN root system do not, in general, exhibit global 
su(m) symmetry or su(m|n) supersymmetry. For example, the presently considered Hamiltonian 
H(m1,m2|n1,n2) in (2.17), which depends on operators like P (m|n)

ij and P (m1,m2|n1,n2)
i , does not 

commute with all generators of the su(m|n) super Lie algebra for arbitrary values of the discrete 
parameters m1, m2, n1 and n2. This happens because, while P (m|n)

ij commutes with all generators 

of the su(m|n) super Lie algebra, P (m1,m2|n1,n2)
i defined in (2.16) does not commute with those 

generators for arbitrary values of the discrete parameters. However, we have already mentioned 
that in the particular case given by m1 = m, m2 = 0, n1 = n, n2 = 0, P (m1,m2|n1,n2)

i reduces 
to the trivial identity operator. Consequently, the corresponding Hamiltonian H(m,0|n,0) in (2.19)
commutes with all generators of the su(m|n) super Lie algebra.

3. Spectra and partition functions of BCN type models with SAPSRO

In the following, our aim is to compute the partition functions of the BCN type of PF spin 
chains (2.17) for all possible choice of the corresponding discrete parameters. To this end, we 
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shall consider a class of BCN type of spin Calogero models with SAPSRO and, by using the 
freezing trick, show that the strong coupling limit of such spin Calogero models leads to the 
Hamiltonian H(m1,m2|n1,n2) in (2.17). Next, we shall find out the exact spectra for the above men-
tioned BCN type of spin Calogero models with SAPSRO and also compute the corresponding 
partition functions in the strong coupling limit. Finally, by ‘modding out’ the contribution of the 
coordinate degrees of freedom from the above mentioned partition functions, we shall obtain an 
exact expression for the partition functions of the BCN type of PF spin chains (2.17).

By using SAPSRO in (2.16), let us define the Hamiltonian for a class of BCN type of spin 
Calogero models as

H(m1,m2|n1,n2) = −
N∑

i=1

∂2

∂x2
i

+ a2

4
r2 + a

∑
i �=j

⎡⎣a − P
(m|n)
ij

(x−
ij )2

+ a − P̃
(m1,m2|n1,n2)
ij

(x+
ij )2

⎤⎦
+ βa

N∑
i=1

βa − P
(m1,m2|n1,n2)
i

x2
i

, (3.1)

where a > 1
2 , β > 0 are real coupling constants and the notations x−

ij ≡ xi − xj , x+
ij ≡ xi + xj , 

r2 ≡∑N
i=1 x2

i are used. It should be noted that this Hamiltonian contains both coordinate and 
spin degrees of freedom. Similar to the case of BCN type of spin Calogero models considered 
earlier [20,22,54,55], the potentials of H(m1,m2|n1,n2) in (3.1) become singular in the limits xi ±
xj → 0 and xi → 0. Therefore, the configuration space of this Hamiltonian can be taken as one 
of the maximal open subsets of RN on which linear functionals xi ± xj and xi have constant 
signs. Let us choose this configuration space as the principal Weyl chamber of the BCN root 
system given by

C = {x ≡ (x1, x2, · · · , xN) : 0 < x1 < x2 < . . . < xN } . (3.2)

Next, we express H(m1,m2|n1,n2) (3.1) in powers of the coupling constant a as

H(m1,m2|n1,n2) = −
N∑

i=1

∂2

∂x2
i

+ a2 U(x) + O(a) , (3.3)

with

U(x) =
∑
i �=j

[
1

(x−
ij )2

+ 1

(x+
ij )2

]
+ β2

N∑
i=1

1

x2
i

+ r2

4
. (3.4)

Since the a2 order term in (3.3) dominates in the strong coupling limit a → ∞, the particles of 
H(m1,m2|n1,n2) concentrate at the coordinates ξi of the minimum ξ of the potential U(x) in C. As 
a result, the coordinate and spin degrees of freedom of these particles decouple from each other 
and the Hamiltonian H(m1,m2|n1,n2) in (3.1) can be written in a → ∞ limit as

H(m1,m2|n1,n2) ≈ Hsc + aH(m1,m2|n1,n2)|x→ξ , (3.5)

where Hsc is the scalar (spinless) Calogero model of BCN type given by

Hsc = −
N∑ ∂2

∂x2
i

+ a2

4
r2 + a(a − 1)

∑[
1

(x−
ij )2

+ 1

(x+
ij )2

]
+

N∑ aβ(aβ − 1)

x2
i

, (3.6)

i=1 i �=j i=1
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and

H(m1,m2|n1,n2) =
∑
i �=j

⎡⎣1 − P
(m|n)
ij

(xi − xj )2
+ 1 − P̃

(m1,m2|n1,n2)
ij

(xi + xj )2

⎤⎦+ β

N∑
i=1

1 − P
(m1,m2|n1,n2)
i

x2
i

.

(3.7)

The uniqueness of the unique minimum ξ of the potential U (3.4) within the configuration space 
C (3.2) has been established in Ref. [56] by expressing this potential in terms of the logarithm 
of the ground state wave function of the scalar Calogero model (3.6). The ground state wave 
function of this scalar Calogero model, with ground state energy

E0 = Na
(
βa + a(N − 1) + 1

2

)
, (3.8)

is given by

μ(x) = e− a
4 r2 ∏

i

|xi |βa
∏
i<j

|x2
i − x2

j |a . (3.9)

Using the fact that the sites ξi coincide with the coordinates of the (unique) critical point of 
logμ(x) in C, one obtains a set of relations among these sites as [56,22]

N∑
j=1
(j �=i)

2yi

yi − yj

= yi − β , (3.10)

where ξi = √
2yi and yi ’s denote the zeros of the generalized Laguerre polynomial Lβ−1

N . Con-
sequently, the operator H(m1,m2|n1,n2)|x→ξ in (3.5) coincides with the Hamiltonian H(m1,m2|n1,n2)

(2.17) of PF spin chains with SAPSRO. Furthermore, due to Eq. (3.5), eigenvalues of 
H(m1,m2|n1,n2) are approximately given by

E
(m1,m2|n1,n2)
ij 
 Esc

i + a E (m1,m2|n1,n2)
j , (3.11)

where Esc
i and E (m1,m2|n1,n2)

j are two arbitrary eigenvalues of Hsc and H(m1,m2|n1,n2) respec-
tively. With the help of Eq. (3.11), we obtain an exact formula for the partition function
Z(m1,m2|n1,n2)

N (T ) of the spin chain (2.17) at a given temperature T as

Z(m1,m2|n1,n2)
N (T ) = lim

a→∞
Z

(m1,m2|n1,n2)
N (aT )

ZN(aT )
, (3.12)

where Z(m1,m2|n1,n2)
N (T ) represents the partition function of the BCN type of spin Calogero 

Hamiltonian (3.1) and ZN(T ) represents that of the scalar model (3.6).
An exact expression for the partition function of the scalar model (3.6) has been obtained 

earlier as [22]

ZN(aT ) = q
E0
a

N∏
j=1

(1 − q2j )

, (3.13)

where q = e−1/(kBT ). Therefore, for the purpose of evaluating the partition function
Z(m1,m2|n1,n2)(T ) of the spin chain (2.17) by using Eq. (3.12), it is required to compute the 
N
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spectrum and partition function of spin Calogero Hamiltonian H(m1,m2|n1,n2) in (3.1). To this 
end, we start with the BCN type of auxiliary operator given by [22]

H = −
N∑

i=1

∂2

∂x2
i

+ a
∑
i �=j

[
a − Kij

(x−
ij )2

+ a − K̃ij

(x+
ij )2

]
+ βa

N∑
i=1

βa − Ki

x2
i

+ a2

4
r2 , (3.14)

where Kij and Ki are coordinate permutation and sign reversing operators, defined by

(Kijf )(x1, . . . , xi, . . . , xj , . . . , xN) = f (x1, . . . , xj , . . . , xi, . . . , xN) , (3.15a)

(Kif )(x1, . . . , xi, . . . , xN) = f (x1, . . . ,−xi, . . . , xN) , (3.15b)

and K̃ij = KiKjKij . As shown in the latter reference, the auxiliary operator (3.14) can be written 
as

H = μ(x)

[
−
∑

i

(
Ji

)2 + a
∑

i

xi

∂

∂xi

+ E0

]
μ−1(x) , (3.16)

where Ji ’s are BCN type of Dunkl operators given by

Ji = ∂

∂xi

+ a
∑
j �=i

[
1

x−
ij

(1 − Kij ) + 1

x+
ij

(1 − K̃ij )

]
+ βa

1

xi

(1 − Ki) , (3.17)

with i ∈ {1, 2, . . . , N}. Let us now consider a Hilbert space spanned by a set of basis vectors like

φr(x) = μ(x)
∏
i

x
ri
i , (3.18)

with ri ’s being arbitrary non-negative integers, and (partially) order these basis vectors according 
to their total degree |r| ≡ r1 + r2 + · · · + rN . Since the Dunkl operators (3.17) clearly map 
any monomial 

∏
i x

ri
i into a polynomial of total degree r1 + r2 + · · · + rN − 1, it follows from 

Eq. (3.16) that H acts as an upper triangular matrix in the aforementioned non-orthonormal basis:

Hφr(x) = Erφr(x) +
∑

|r′|<|r|
cr′r φr′(x) , (3.19)

where

Er = a|r| + E0 , (3.20)

and the coefficients cr′r are some real constants. Hence the spectrum of H is given by the diagonal 
entries of this upper triangular matrix, i.e., Er’s in Eq. (3.20), where ri ’s can be taken as arbitrary 
non-negative integers.

In the following, we shall compute the spectrum of the spin Calogero Hamiltonian
H(m1,m2|n1,n2) from that of H by taking advantage of the fact that these two operators are re-
lated through formal substitutions like

H(m1,m2|n1,n2) =H|
Kij →Pij , Ki→P

(m1,m2|n1,n2)

i

. (3.21)

Due to the impenetrable nature of the singularities of the spin Calogero Hamiltonian
H(m1,m2|n1,n2), its Hilbert space can be taken as the space L2(C) ⊗ �(m1,m2|n1,n2) of wave func-
tions square integrable on the set C in Eq. (3.2). However, any point in RN not lying within 
the singular subset xi ± xj = 0, xi = 0, 1 � i < j � N , can be mapped in a unique way to a 
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point in C by an element of the BCN Weyl group [57]. Using this fact, it can be shown that 
L2(C) ⊗ �(m1,m2|n1,n2) is isomorphic to the Hilbert space V defined as

V ≡ �(m1,m2|n1,n2)(L2(RN) ⊗ �(m1,m2|n1,n2)) , (3.22)

with �(m1,m2|n1,n2) being a projector which satisfies the relations

�
(m|n)
ij �(m1,m2|n1,n2) = �(m1,m2|n1,n2) �

(m|n)
ij = �(m1,m2|n1,n2), (3.23a)

�
(m1,m2|n1,n2)
i �(m1,m2|n1,n2) = �(m1,m2|n1,n2) �

(m1,m2|n1,n2)
i = �(m1,m2|n1,n2), (3.23b)

where �(m|n)
ij ≡ KijP

(m|n)
ij and �(m1,m2|n1,n2)

i ≡ KiP
(m1,m2|n1,n2)
i . Following the usual procedure 

of constructing projectors associated with the BCN type of Weyl algebra [58,59], we obtain an 
expression for �(m1,m2|n1,n2) satisfying (3.23) as

�(m1,m2|n1,n2) = 1

2N · N !

⎧⎨⎩
N∏

j=1

(
1 + �

(m1,m2|n1,n2)
j

)⎫⎬⎭
N !∑
l=1

Pl , (3.24)

where Pl denotes the realization of an element of the permutation group (for N number of parti-
cles) through the operators �(m|n)

ij . For example, in the simplest N = 2 case, Eq. (3.24) yields

�(m1,m2|n1,n2) = 1

8

(
1 + �

(m1,m2|n1,n2)
1

)(
1 + �

(m1,m2|n1,n2)
2

)
(1 + �

(m|n)
12 ).

It may be noted that �(m1,m2|n1,n2) in (3.24) commutes with the auxiliary operator in (3.14):[
�(m1,m2|n1,n2),H

]
= 0 . (3.25)

Since H(m1,m2|n1,n2) is equivalent to its natural extension to the space V (3.22), with a slight 
abuse of notation we also denote the latter operator as H(m1,m2|n1,n2). Thus, by using the relations 
(3.23), we can transform Eq. (3.21) into an operator relation given by

H(m1,m2|n1,n2)�(m1,m2|n1,n2) =H�(m1,m2|n1,n2) . (3.26)

We shall now explain how the operator relation (3.26) plays an important role in finding the 
spectrum of H(m1,m2|n1,n2) from that of H. To this end, it may be noted that the Hilbert space V
in (3.22) is the closure of the linear subspace spanned by the wave functions of the form

ψ s
r ≡ ψ

s1,...,si ,...,sj ,...,sN
r1,...,ri ,...,rj ,...,rN = �(m1,m2|n1,n2) (φr(x)|s〉) , (3.27)

where φr is given in (3.18) and |s〉 ≡ |s1, · · · , sN 〉 is an arbitrary basis element of the spin space 
�(m1,m2|n1,n2). However, ψ s

r ’s defined in Eq. (3.27) do not form a set of linearly independent 
state vectors. Indeed, by using (3.23a), (3.15a) and an equation of the form (2.12) for the basis 
elements of �(m1,m2|n1,n2), we find that ψ s

r’s satisfy the condition

ψ
s1,...,si ,...,sj ,...,sN
r1,...,ri ,...,rj ,...,rN = (−1)αij (s) ψ

s1,...,sj ,...,si ,...,sN
r1,...,rj ,...,ri ,...,rN . (3.28)

Moreover, by using (3.23b), (3.15b) and (2.16), we obtain

ψs1,...,sN
r1,...,rN

= (−1)ri+f (si ) ψs1,...,sN
r1,...,rN

. (3.29)

Due to Eqs. (3.28) and (3.29) it follows that, ψ s
r ’s defined through Eq. (3.27) would be nontrivial 

and linearly independent if the following three conditions are imposed on the corresponding ri’s 
and si ’s.
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1) An ordered form of r, which separately arranges its even and odd components into two 
non-increasing sequences, i.e.,

r ≡ (re, ro) = (

k1︷ ︸︸ ︷
2l1, . . . ,2l1, . . . ,

ks︷ ︸︸ ︷
2ls , . . . ,2ls ,

g1︷ ︸︸ ︷
2p1 + 1, . . . ,2p1 + 1, . . . ,

gt︷ ︸︸ ︷
2pt + 1, . . . ,2pt + 1) , (3.30)

where 0 � s, t � N , l1 > l2 > . . . > ls � 0 and p1 > p2 > . . . > pt � 0, is chosen as the lower 
index of ψ s

r . It may be noted that, any given r can be brought in the ordered form (3.30) through 
an appropriate permutation of its components. Therefore, as a consequence of Eq. (3.28), we can 
choose the ordered form (3.30) in the lower index of independent state vectors.

2) Using Eq. (3.29), we find that the second component of si corresponding to each ri is given 
by

s2
i ≡ f (si) =

{
0, for ri ∈ re ,

1, for ri ∈ ro .
(3.31)

3) Let us consider the special case where ri = rj for i < j . Then, due to the condition 2), 
the second components of the corresponding spins si and sj must have the same value. In this 
special case, we can further use Eq. (3.28) along with the definition of αij (s) which appears just 
after Eq. (2.12), and arrange the first components of si and sj (and also their third components 
in some cases) associated with independent state vectors such that

i) π(si) � π(sj ),
ii) s3

i � s3
j + π(sj ), if π(si) = π(sj ).

All linearly independent ψ s
r’s (3.27), satisfying the above mentioned three conditions, may 

now be taken as a set of (non-orthonormal) basis vectors for the Hilbert space V in (3.22). Let us 
define a partial ordering among these basis vectors as: ψ s

r > ψ s′
r′ , if |r| > |r′|. Applying the key 

relation (3.26) along with (3.27), we obtain

H(m1,m2|n1,n2)ψ s
r = �(m1,m2|n1,n2) ((Hφr(x)) |s〉) .

Using this equation as well as (3.25) and (3.19), we find that H(m1,m2|n1,n2) in (3.1) acts on the 
above mentioned partially ordered basis vectors of V as

H(m1,m2|n1,n2) ψ s
r = Es

r ψ s
r +

∑
|r′|<|r|

Cr′r ψ s′
r′ , (3.32)

where Cr′r’s are real constants, s′ is a suitable permutation of s and

Es
r = a|r| + E0 . (3.33)

Due to such upper triangular matrix form of H(m1,m2|n1,n2), all eigenvalues of this Hamiltonian 
are given by Eq. (3.33), where the quantum number r satisfies the condition 1) and the quantum 
number s satisfies the conditions 2) and 3). Since the RHS of Eq. (3.33) does not depend on 
the spin quantum number s, the eigenvalue associated with the quantum number r in Eq. (3.30)
has an intrinsic degeneracy d

(m1,m2|n1,n2)

k,g which counts the number of all possible choice of 
corresponding spin degrees of freedom. Using the conditions 2) and 3), we compute this intrinsic 
spin degeneracy associated with the quantum number r as
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d
(m1,m2|n1,n2)

k,g =
s∏

i=1

dm1,n1(ki)

t∏
j=1

dm2,n2(gj ), (3.34)

where the function d x,y(ν) is given by

d x,y(ν) =
min(ν,y)∑

i=0

(
y

i

)(
x + ν − i − 1

ν − i

)
. (3.35)

Due to Eq. (3.33), the actual degeneracy of an energy aE1 + E0 is evidently obtained by sum-
ming over the intrinsic degeneracy (3.34) for all multi-indices r in (3.30) with fixed order E1. 
Consequently, the actual degeneracy factors for the energy levels of spin Calogero Hamiltonian 
H(m1,m2|n1,n2) in (3.1) would depend on the discrete parameters m1, m2, n1 and n2.

Let us now calculate the partition function for the Hamiltonian H(m1,m2|n1,n2). Since |r| cor-
responding to the multi-index r in (3.30) is given by 2 

∑s
i=1 liki + 2 

∑t
j=1 pjgj +∑t

j=1 gj , we 
can express the energy eigenvalues (3.33) of H(m1,m2|n1,n2) as

Es
r = 2a

s∑
i=1

liki + 2a

t∑
j=1

pjgj + a

t∑
j=1

gj + E0 . (3.36)

By using Eq. (3.30), we obtain the numbers of the even and the odd components of r (denoted 
by N1 and N2 respectively) as

N1 =
s∑

i=1

ki, N2 =
t∑

j=1

gj ,

which satisfy the condition N1 + N2 = N . Hence, we can write k ≡ {k1, k2, . . . , ks} ∈ PN1 and 
g ≡ {g1, g2, . . . , gt } ∈ PN2 , where PN1 and PN2 denote the sets of all ordered partitions of N1
and N2 respectively. Next, we compute the sum over the Boltzmann weights corresponding to 
all r’s of the form (3.30) with energy eigenvalues (3.36) and intrinsic degeneracy factors (3.34). 
Thus, we obtain the canonical partition function for the BCN type of spin Calogero model (3.1)
with SAPSRO as

Z
(m1,m2|n1,n2)
N (aT ) = q

E0
a

∑
N1,N2

(N1+N2=N)

∑
k∈PN1 , g∈PN2

d
(m1,m2|n1,n2)

k,g

×
∑

l1>···>ls�0

∑
p1>···>pt�0

q
2
∑s

i=1 li ki+2
∑t

j=1 pj gj +N2 . (3.37)

It may be noted that, the summations over li’s and pj ’s appearing in the above equation can be 
performed through appropriate change of variables [22]. As a result, we get a simpler expression 
for Z(m1,m2|n1,n2)

N (aT ) in (3.37) as

Z
(m1,m2|n1,n2)
N (aT ) = q

E0
a

∑
N1,N2

(N1+N2=N)

∑
k∈PN1 , g∈PN2

d
(m1,m2|n1,n2)

k,g q−(N+κs)

×
s∏ q2κi

1 − q2κi

t∏ q2ζj

1 − q2ζj
, (3.38)
i=1 j=1
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with κi ≡∑i
l=1 kl and ζj ≡∑j

l=1 gl representing the partial sums associated with the sets k and 

g respectively. Inserting the expressions for Z(m1,m2|n1,n2)
N (aT ) in (3.38) and ZN(aT ) in (3.13)

to the relation (3.12), we derive the partition functions for the BCN type of PF spin chains with 
SAPSRO (2.17) as

Z(m1,m2|n1,n2)
N (q) =

N∏
l=1

(1 − q2l)
∑
N1,N2

(N1+N2=N)

∑
k∈PN1 , g∈PN2

d
(m1,m2|n1,n2)

k,g q−(N+κs)

×
s∏

i=1

q2κi

1 − q2κi

t∏
j=1

q2ζj

1 − q2ζj
, (3.39)

where from now on we shall use the variable q = e−1/kT instead of T . Let us now try to write 
the above partition function as a polynomial function of q , which is expected for the case of 
any spin system with finite number of lattice sites. To this end, we define complementary sets of 
the two sets {κ1, κ2, . . . , κs} and {ζ1, ζ2, . . . , ζt } as {κ ′

1, κ
′
2, . . . , κ

′
N1−s} ≡ {1, 2, . . . , N1 − 1, N1} \

{κ1, κ2, . . . , κs} and {ζ ′
1, ζ

′
2, . . . , ζ

′
N2−t } ≡ {1, 2, . . . , N2 − 1, N2} \ {ζ1, ζ2, . . . , ζt }, respectively. 

Using the elements of the sets {κ1, κ2, . . . , κs} and {ζ1, ζ2, . . . , ζt }, along with the elements of 
their complementary sets, the partition function in (3.39) can be explicitly written as a polynomial 
in q as

Z(m1,m2|n1,n2)
N (T ) =

∑
N1,N2

(N1+N2=N)

∑
k∈PN1 , g∈PN2

d
(m1,m2|n1,n2)

k,g

[
N
N1

]
q2

q
N2+2

s−1∑
i=1

κi+2
∑t−1

j=1 ζj

×
N1−s∏
i=1

(1 − q2κ ′
i )

N2−t∏
j=1

(1 − q
2ζ ′

j ) . (3.40)

In the above expression, 
[

N
N1

]
q2

denotes a q-binomial coefficient given by[
N

N1

]
q2

=
∏N

l=1(1 − q2l )∏N1
i=1(1 − q2i )

∏N−N1
j=1 (1 − q2j )

,

which can be expressed as an even polynomial of degree 2N1(N − N1) in q [60].

4. Connection with AK type of supersymmetric PF chains

In the following, our aim is to establish a connection between the partition function (3.40)
and the partition functions of some supersymmetric PF spin chains of type A. To this end, we 
note that the Hamiltonian of the AN−1 type of su(m|n) supersymmetric PF spin chain is given 
by [10,11]

H(m|n)
PF =

∑
1�i<j�N

1 − P
(m|n)
ij

(ρi − ρj )2
. (4.1)

It is evident that, for the special case n = 0, the above Hamiltonian reduces to H(m)
PF in (1.1)

with ε = 1. Moreover, by putting n = 0 after interchanging m and n in (4.1), one gets H(m) with 
PF
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ε = −1. There exists a few different but equivalent expressions for the partition function of the 
su(m|n) supersymmetric spin chain (4.1) in the literature [10,11,17,36]. One such expression for 
the partition function of the spin chain (4.1) is given by [36]

Z(m|n)

(A) N
(q) =

∑
f∈PN

d(m|n)(f) q
∑r−1

j=1 Fj

N−r∏
j=1

(1 − q
F ′

j ) , (4.2)

where f ≡ {f1, f2 · · ·fr}, the partial sums are given by Fj =∑j

i=1 fi , and the complementary 
partial sums are defined as {F ′

1, F ′
1, · · · , F ′

N−r} ≡ {1, 2, · · · , N} − {F1, F2, · · · , Fr}. Moreover, 
d(m|n)(f) in the above expression is defined through d x,y(ν) in (3.35) as

d(m|n)(f) =
r∏

i=1

dm,n(fi) . (4.3)

Using Eq. (4.3), one can express the spin degeneracy factor d m1,m2
k,g in (3.34) as

d
(m1,m2|n1,n2)

k,g = d(m1|n1)(k) d(m2|n2)(g) .

Substituting this factorized form of d (m1,m2|n1,n2)

k,g to Eq. (3.40), we obtain

Z(m1,m2|n1,n2)
N (q)

=
∑
N1,N2

(N1+N2=N)

qN2

[
N

N1

]
q2

⎛⎝ ∑
k∈PN1

d(m1|n1)(k) q
2
∑s−1

j=1 κj

N1−s∏
j=1

(1 − q
2κ ′

j )

⎞⎠

×
⎛⎝ ∑

g∈PN2

d(m2|n2)(g) q
2
∑t−1

j=1 ζj

N2−t∏
j=1

(1 − q
2ζ ′

j )

⎞⎠ . (4.4)

Using the expression of Z(m|n)

(A) N
(q) in (4.2) for all nontrivial cases where N � 1 and m + n � 1, 

and also assuming that Z(m|n)

(A) 0 (q) = 1 and Z(0|0)

(A) N (q) = δN,0, we finally rewrite Z(m1,m2|n1,n2)
N (q)

in (4.4) as

Z(m1,m2|n1,n2)
N (q) =

N∑
N1=0

qN−N1

[
N

N1

]
q2
Z(m1|n1)

(A) N1
(q2)Z(m2|n2)

(A) N−N1
(q2) . (4.5)

Thus we find that the partition function of the BCN type of PF spin chain with SAPSRO (2.17)
can be expressed in an elegant way through the partition functions of several AK type of super-
symmetric PF spin chains, where K � N − 1.

We have previously mentioned that, for a particular choice of the discrete parameters given by 
m1 = m, m2 = 0, n1 = n, n2 = 0, H(m1,m2|n1,n2) in (2.17) reduces to H(m,0|n,0) in (2.19). Apply-
ing Eq. (4.5) for this particular choice of the discrete parameters and also using Z(0|0)

(A)N−N1
(q2) =

δN1,N , we obtain

Z(m,0|n,0)
N (q) =

N∑
N1=0

qN−N1

[
N

N1

]
q2
Z(m|n)

(A) N1
(q2)Z(0|0)

(A) N−N1
(q2)

=Z(m|n)
(q2) . (4.6)
(A) N
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Hence, replacing q by q2 in the RHS of (4.2), it is possible to get an explicit expression for 
the partition function of H(m,0|n,0) in (2.19). Since Z(m|n)

(A) N (q) in (4.2) can be expressed as a 

polynomial function of q , Eq. (4.6) also implies that the spectrum of H(m,0|n,0) would coincide 
with that of the following Hamiltonian H̃(m|n)

PF , which is obtained by multiplying H(m|n)
PF in (4.1)

by a factor of two:

H̃(m|n)
PF =

∑
1�i �=j�N

1 − P
(m|n)
ij

(ρi − ρj )2
. (4.7)

As shown in Ref. [11], the spectrum of such su(m|n) supersymmetric PF spin chain can be 
expressed through Haldane’s motifs which characterize the irreducible representations of the 
Y(gl(m|n)) Yangian quantum group. The motif δ for the spin chain (4.7) is given by a (N − 1)

sequence of 0’s and 1’s, i.e. δ = (δ1, δ2, · · · , δN−1), with δi ∈ {0, 1}. In the non-supersymmetric 
case where the value of n is taken as zero, the motifs of the spin chain (4.7) obey a ‘selection rule’ 
which forbids the appearance of m number of consecutive 1’s. On the other hand, δi’s can freely 
take the values 0 or 1 for supersymmetric spin chains with m � 1 and n � 1. Consequently, it is 
possible to construct 2N−1 number of distinct motifs in the case of supersymmetric spin chains. 
All energy levels of the spin chain (4.7), in the supersymmetric as well as non-supersymmetric 
cases, can be expressed through the corresponding motifs as [11]

Eδ = 2
N−1∑
i=1

jδj . (4.8)

Hence, due to Eq. (4.6), it follows that the spectrum of H(m,0|n,0) in (2.19) is also be given by Eδ

in the above equation. In particular, for the supersymmetric case, the motif δ = (0, 0, · · · , 0) gives 
the ground state energy of this Hamiltonian as E (m,0|n,0)

min = 0 and the motif δ = (1, 1, · · · , 1) gives 

the corresponding highest state energy as E (m,0|n,0)
max = N2 − N . The degeneracy of each energy 

level in (4.8) can also be computed for all possible values of m and n, by taking appropriate limits 
of the supersymmetric Schur polynomials [11]. Thus it is possible to find out the full spectrum of 
the supersymmetric spin chain (2.19), by using our key result that this spectrum coincides with 
that of the AN−1 type of su(m|n) supersymmetric PF spin chain (4.7).

We have already mentioned that, the lattice sites of H(m,0|n,0) in (2.19) and H̃(m|n)
PF in (4.7) are 

determined through the zero points of the generalized Laguerre polynomial Lβ−1
N and the zero 

points of the Hermite polynomial HN respectively. Thus the lattice sites of these two Hamil-
tonians are quite different in nature. However, since H(m,0|n,0) and H̃(m|n)

PF share exactly same 
spectrum, these two Hamiltonians must be related through a unitary transformation like

H(m,0|n,0) = S(m|n)
β H̃(m|n)

PF

(
S(m|n)

β

)†
. (4.9)

Even though we do not know the explicit form of S(m|n)
β , it is possible to find out the asymptotic 

form of this operator at β → ∞ limit by using the following conjecture. For any N � 2, let us 
order the zero points of the Hermite polynomial HN and the generalized Laguerre polynomial 
L

β−1
N on the real line as ρ1 > ρ2 > · · · > ρN and y1 > y2 > · · · > yN respectively. Then, based 

on numerical results, it has been conjectured that these zero points would satisfy the asymptotic 
relations given by [55]
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lim
β→∞

yi + yj

(yi − yj )2
= 1

(ρi − ρj )2
, (4.10)

where 1 � i < j � N . Using this conjecture, it is easy to see that the β → ∞ limit of H(m,0|n,0)

in (2.19) yields H̃(m|n)
PF in (4.7). Hence Eq. (4.9) would be satisfied in this limit if we take the 

asymptotic form of S(m|n)
β as limβ→∞ S(m|n)

β = 1.

5. Extended boson–fermion duality for BCN type of PF chains with SAPSRO

Boson–fermion duality relations involving the partition functions of various AN−1 type of 
supersymmetric spin chains with long-range interaction have been established in the literature 
[10,11,13,36]. Subsequently, a similar type of duality relation has been studied for the case of 
BCN type of PF spin chains associated with the supersymmetric analogue of spin reversal oper-
ators [54]. More precisely, it has been found in the latter reference that

Z(m|n)

ε,ε′ (q) = qN2Z(n|m)

−ε′,−ε
(q−1) , (5.1)

where Z(m|n)

ε,ε′ (q) represents the partition function for the Hamiltonian H(m|n)

ε,ε′ in (2.14). It is 
evident that the duality relation (5.1) not only involves the exchange of bosonic and fermionic 
degrees freedom, but also the exchange of the two discrete parameters ε and ε′ along with their 
sign change. For the purpose of gaining some deeper understanding for such change of the two 
discrete parameters, in the following we aim to study the duality relation for the case of BCN

type of PF chains (2.17) associated with SAPSRO.
To begin with, we define the star operator S : �(m1,m2|n1,n2) → �(m1,m2|n1,n2) as

S|s1, s2, · · · , sN 〉 = (−1)

N∑
j=1

jπ(sj )

|s1, s2, · · · , sN 〉 . (5.2)

It is easy to verify that S operator is self-adjoint and S ◦S is the identity in �(m1,m2|n1,n2). Next, 
we consider the Hilbert space �(n2,n1|m2,m1), and denote the corresponding supersymmetric spin 
exchange operator and the SAPSRO as P (n|m)

ij and P (n2,n1|m2,m1)
i respectively. The Hamiltonian 

H(n2,n1|m2,m1) associated with this Hilbert space is evidently obtained from H(m1,m2|n1,n2) in 
(2.17) through the replacements: m1 → n2, m2 → n1, n1 → m2 and n2 → m1. In analogy with 
the basis vectors of �(m1,m2|n1,n2) and the ranges of the corresponding spin components in (2.15), 
we assume that �(n2,n1|m2,m1) is spanned by orthonormal state vectors like |s̄1, · · · , ̄sN 〉, where 
the components of s̄i ≡ (s̄1

i , ̄s2
i , ̄s3

i ) are taking values within the ranges

s̄1
i ≡ π(s̄i) =

{
0, for bosons,

1, for fermions,
(5.3a)

s̄2
i ≡ f (s̄i) =

{
0, for positive parity under SAPSRO,

1, for negative parity under SAPSRO,
(5.3b)

s̄3
i ∈

⎧⎪⎪⎨⎪⎪⎩
{1,2, · · · , n2}, if π(si) = 0 and f (si) = 0,

{1,2, · · · , n1}, if π(si) = 0 and f (si) = 1,

{1,2, · · · ,m2}, if π(si) = 1 and f (si) = 0,

{1,2, · · · ,m1}, if π(si) = 1 and f (si) = 1.

(5.3c)

It is evident that the spaces �(m1,m2|n1,n2) and �(n2,n1|m2,m1) have the same dimension given 
by (m + n)N . Let us now define an invertible operator χ(m1,m2|n1,n2): �(m1,m2|n1,n2) →
�(n2,n1|m2,m1) by
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χ(m1,m2|n1,n2)|s1, s2, · · · , sN 〉 = |s̄1, s̄2, · · · , s̄N 〉 , (5.4)

where

s̄1
i = 1 − s1

i , s̄2
i = 1 − s2

i , s̄3
i = s3

i .

From the above relation it is clear that, if si represents a bosonic (fermionic) spin with par-
ity ±1 under SAPSRO, then s̄i would represent a fermionic (bosonic) spin with parity ∓1

under SAPSRO. Using Eq. (5.4), it is easy to check that χ(m1,m2|n1,n2)
† = χ(n2,n1|m2,m1) and 

χ(n2,n1|m2,m1) ◦ χ(m1,m2|n1,n2) is the identity in �(m1,m2|n1,n2). Subsequently, we define the oper-
ator U (m1,m2|n1,n2): �(m1,m2|n1,n2) → �(n2,n1|m2,m1) as the composition

U (m1,m2|n1,n2) = χ(m1,m2|n1,n2) ◦ S. (5.5)

By using the above mentioned properties of S and χ(m1,m2|n1,n2), it is easy to show that 
U (m1,m2|n1,n2) in (5.5) is an unitary operator satisfying the relation

U (m1,m2|n1,n2)
† = U (m1,m2|n1,n2)

−1 = S ◦ χ(n2,n1|m2,m1). (5.6)

Using Eqs. (5.2) and (5.4), and closely following the procedure of Ref. [36] for establishing 
boson–fermion duality relation in the case of AN−1 type of supersymmetric HS spin chain, it is 
straightforward to show that U (m1,m2|n1,n2)P

(m|n)
ij = −P

(n|m)
ij U (m1,m2|n1,n2), or equivalently

U (m1,m2|n1,n2)
−1

P
(n|m)
ij U (m1,m2|n1,n2) = −P

(m|n)
ij . (5.7)

Next, by using Eqs. (2.16), (5.2), (5.4) and (5.5), we find that

U (m1,m2|n1,n2)P
(m1,m2|n1,n2)
i |s1, · · · , sN 〉 = (−1)f (si )(−1)

N∑
j=1

jπ(sj )

|s̄1, · · · , ¯sN 〉 , (5.8)

and

P
(n2,n1|m2,m1)
i U (m1,m2|n1,n2)|s1, · · · , sN 〉 = (−1)f (s̄i )(−1)

N∑
j=1

jπ(sj )

|s̄1, · · · , ¯sN 〉 . (5.9)

Since, due to Eqs. (5.4), it follows that (−1)f (si ) = −(−1)f (s̄i ), comparing Eq. (5.8) with 
Eq. (5.9) we find that

U (m1,m2|n1,n2)P
(m1,m2|n1,n2)
i = −P

(n2,n1|m2,m1)
i U (m1,m2|n1,n2) ,

or, equivalently

U (m1,m2|n1,n2)
−1

P
(n2,n1|m2,m1)
i U (m1,m2|n1,n2) = −P

(m1,m2|n1,n2)
i . (5.10)

With the help of Eqs. (2.17), (5.7) and (5.10), we obtain

H(m1,m2|n1,n2) + U (m1,m2|n1,n2)
−1H(n2,n1|m2,m1)U (m1,m2|n1,n2)

= 2
∑
i �=j

[
(ξi − ξj )

−2 + (ξi + ξj )
−2
]
+ 2β

∑
i

ξ−2
i = N2, (5.11)

where the last sum has been derived in Ref. [22]. Since the Hamiltonians H(n2,n1|m2,m1) and 
U (m1,m2|n1,n2)

−1H(n2,n1|m2,m1)U (m1,m2|n1,n2) are isospectral, Eq. (5.11) implies that the spectra 
of H(m1,m2|n1,n2) and H(n2,n1|m2,m1) are ‘dual’ to each other. More precisely, the eigenvalues of 
H(m1,m2|n1,n2) and H(n2,n1|m2,m1) are related as
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E (m1,m2|n1,n2)
i = N2 − E (n2,n1|m2,m1)

i . (5.12)

Using the above equation, we obtain a novel type of duality relation between the partition func-
tions of H(m1,m2|n1,n2) and H(n2,n1|m2,m1) as

Z(m1,m2|n1,n2)(q) = qN2Z(n2,n1|m2,m1)(q−1). (5.13)

It is interesting to observe that this duality relation not only involves the exchange of bosonic 
and fermionic degrees of freedom, but also involves the exchange of positive and negative parity 
degrees of freedom associated with SAPSRO. Therefore, the duality relation (5.13) can be inter-
preted as a nontrivial extension of the usual boson–fermion duality relation which holds for the 
case of AN−1 type of supersymmetric spin chains. It is also interesting to note that, applying the 
relation (5.12) in the special case where n1 = m2 and n2 = m1, the spectrum of the Hamiltonian 
H(m1,m2|m2,m1) can be shown to be invariant under E �→ N2 − E , i.e., to be symmetric about the 
mean energy N2/2.

We have mentioned in Sec. 2 that, for the special values of discrete parameters appearing in 
(2.18), it is possible to construct an unitary transformation which maps P (m1,m2|n1,n2)

i to P ε,ε′
i

and keeps P (m|n)
ij invariant. It is interesting to observe that Eq. (2.18) remains invariant under the 

simultaneous transformations given by: m1 → n2, m2 → n1, n1 → m2, n2 → m1 and ε → −ε′, 
ε′ → −ε. Hence, it is also possible to construct an unitary transformation which would map 
P

(n2,n1|m2,m1)
i to P −ε′,−ε

i and keep P (n|m)
ij invariant. Due to the existence of such unitary trans-

formations in the special case (2.18), H(m1,m2|n1,n2) in (2.17) and related H(n2,n1|m2,m1) become 
equivalent to the Hamiltonians H(m|n)

ε,ε′ in (2.14) and related H(n|m)

−ε′,−ε
respectively. Consequently, 

for the special values of discrete parameters given in (2.18), our duality relation (5.13) would 
naturally reproduce the previously obtained duality transformation (5.1).

Next, let us now investigate whether extended boson–fermion duality relation like (5.13) holds 
for some other quantum spin chains associated with SAPSRO. To this end, we consider a class 
of one dimensional spin chains with Hamiltonian of the form

Ĥ(m1,m2|n1,n2) =
∑
i �=j

[
wij (1 − P

(m|n)
ij ) + w̃ij (1 − P̃

(m1,m2|n1,n2)
ij )

]
+
∑

i

wi

(
1 − P

(m1,m2|n1,n2)
i

)
, (5.14)

where wij , w̃ij , wi are arbitrary real parameters. Clearly, the above Hamiltonian would represent 
a non-integrable system for almost all values of these parameters. Using again Eqs. (5.7) and 
(5.10), we find that

Ĥ(m1,m2|n1,n2) + U (m1,m2|n1,n2)
−1Ĥ(n2,n1|m2,m1)U (m1,m2|n1,n2) = W, (5.15)

where W = 2(
∑

i �=j (wij + w̃ij ) +∑i wi). Using this relation and proceeding as before, we 
obtain a duality relation given by

Ẑ(m1,m2|n1,n2)(q) = qW Ẑ(n2,n1|m2,m1)(q−1) , (5.16)

where Ẑ(m1,m2|n1,n2)(q) denotes the partition function of Ĥ(m1,m2|n1,n2). Hence, the extended 
boson–fermion duality relation can be applied to a wide range of spin chains of the form (5.14). In 
the following, however, we shall restrict its application only for the case of BCN type of PF chains 
(2.17) associated with SAPSRO. Indeed, in the next section, at first we shall compute the ground 
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state energies for the spin chains (2.17) with the help of the freezing trick and subsequently derive 
the corresponding highest state energies by using this duality relation.

6. Ground state and highest state energies for PF chains with SAPSRO

It is well known that the spectra of the AN−1 type of PF spin chain (1.1) and its supersymmet-
ric generalization (4.1) are equispaced within the corresponding lowest and highest energy levels. 
This result follows from the fact that corresponding partition functions can be expressed as some 
polynomials in q , where all consecutive powers of q (within the allowed range) appear with pos-
itive integer coefficients. It has been shown in Ref. [55] that spectrum for the BCN type of PF 
chains (2.17) are also equispaced in the special case where either bosonic or fermionic spins are 
present. Using the expression of the partition function (4.5) and following the arguments of the 
later reference, it can be shown that the spectra for the BCN type of PF chains (2.17) are also 
equispaced when both of the bosonic and fermionic spins are present, i.e., when m, n � 1. At 
present, our aim is to compute the lower and the upper limits of such equispaced spaced spectra, 
i.e., the ground state and the highest state energies of the Hamiltonian H(m1,m2|n1,n2) in (2.17)
for the cases where m, n � 1.

In Sec. 4 it has been shown that, for the particular choice of the discrete parameters given by 
m1 = m, m2 = 0, n1 = n, n2 = 0, the spectrum of the Hamiltonian H(m1,m2|n1,n2) coincides with 
that of H̃(m|n)

PF in (4.7). By using such coincidence, we have found the ground state and the highest 
state energies of the Hamiltonian H(m,0|n,0) as E (m,0|n,0)

min = 0 and E (m,0|n,0)
max = N2 − N , respec-

tively. The above mentioned method of calculating the ground state and the highest state energies 
is clearly not applicable for more general cases where m2 or n2 takes nontrivial value. However, 
by using the freezing trick, it is possible to compute the ground state energy of H(m1,m2|n1,n2) in 
(2.17) for all cases where m, n � 1. To this end, we consider Eq. (3.11) which implies that

E (m1,m2|n1,n2)
min = lim

a→∞
1

a
(E

(m1,m2|n1,n2)
min − E0), (6.1)

where E0 is the known ground state energy (3.8) of the BCN type of scalar Calogero model and 
E

(m1,m2|n1,n2)
min represents the ground state energy of the BCN type of spin Calogero model (3.1). 

Using Eq. (3.33), we can express the latter ground state energy as E(m1,m2|n1,n2)
min = a|r|min + E0, 

where |r|min denotes the minimum value of |r| for all possible choice of the multi-index r compat-
ible with the conditions 1)–3) of Sec. 3. Substituting this expression of E(m1,m2|n1,n2)

min in Eq. (6.1), 
we find that the ground state energy of the spin chain (2.17) is given by

E (m1,m2|n1,n2)
min = |r|min . (6.2)

For the purpose of finding out the explicit value of E (m1,m2|n1,n2)
min , in the following we divide the 

spin chains (2.17) with m, n � 1 into two distinct classes.
Case I: Here, we consider all spin chains (2.17) with m1 � 1 and n � 1. In this case, there 

exists at least one type of bosonic spin with positive parity (under SAPSRO). From the conditions 
2) and 3) of Sec. 3 it follows that, all si ’s can be filled up by this type of spin if we choose the 
corresponding r as (0, 0, · · · , 0). So, using (6.2) we obtain

E (m1,m2|n1,n2)
min = 0. (6.3)

Case II: Let us consider all spin chains (2.17) with m1 = 0, m2 � 1 and n � 1. In this case, 
there exist m2 types of bosonic spins with negative parity. Furthermore, if n1 > 0, there exist n1
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types of fermionic spins with positive parity. Due to the condition 2) of Sec. 3, si ’s can be filled 
up by only these n1 types of spin states corresponding to ri = 0. Since these are fermionic spin 
states, due to the condition 3) of Sec. 3, at most n1 number of consecutive ri ’s are allowed to take 
the zero value. Now if N � n1, then it is evident that Emin = 0. For N > n1, we can take ri = 1
for the remaining N − n1 number of positions, and fill up the corresponding si’s by any of the 
m2 types of bosonic spins with negative parity. Consequently, we find that the configuration

r = (

n1︷ ︸︸ ︷
0, . . . ,0,

N−n1︷ ︸︸ ︷
1, . . . ,1)

yields |r|min in Eq. (6.2). Thus for all possible spin chains with m1 = 0 and n � 1, we obtain

E (m1,m2|n1,n2)
min = max {N − n1,0}. (6.4)

It is interesting to observe that the highest eigenvalue of H(m1,m2|n1,n2) can be determined in 
terms of the lowest eigenvalue of H(n2,n1|m2,m1) by using the duality relation (5.12). Hence, for 
the purpose of computing the highest energy eigenvalues of the spin chains (2.17) for m, n � 1, it 
is convenient to divide these spin chains into following two distinct classes. At first, we consider 
all spin chains (2.17) with n1 � 1, n2 = 0 and m � 1. With the help of Eqs. (5.12) and (6.4), we 
find that the highest energy eigenvalues for this class of spin chains are given by

E (m1,m2|n1,n2)
max = N2 − max {N − m2,0}. (6.5)

Finally, we consider all spin chains (2.17) with n2 � 1 and m � 1. Using Eqs. (5.12) and (6.3), 
we obtain the highest energy eigenvalues for this class of spin chains as

E (m1,m2|n1,n2)
max = N2. (6.6)

7. Some spectral properties of PF spin chains with SAPSRO

It may be noted that, with the help of symbolic software package like Mathematica, the par-
tition function Z(m1,m2|n1,n2)

N (q) in (4.5) can be explicitly written as a polynomial of q for a 
wide range of values of the parameters m1, m2, n1, n2, and N . If the term qEi appears in such 
a polynomial with (positive) integer valued coefficient c(Ei), then Ei would represent an en-
ergy level with degeneracy factor or ‘level density’ c(Ei) in the corresponding spectrum. Since 
the sum of these degeneracy factors for the full spectrum is given by the dimension of the cor-
responding Hilbert space, the normalized level density d(Ei) is obtained through the relation 
d(Ei ) = c(Ei )/(m + n)N . In this way, it is possible to compute the level density distribution for 
the BCN type of PF chains with SAPSRO. By using such procedure, it has been found earlier that 
the level densities of both AN−1 type of PF spin chain (1.1) and its supersymmetric extension 
(4.1) follow the Gaussian distribution with high degree of accuracy for sufficiently large number 
of lattice sites [15,61]. Furthermore, the level densities of the BCN type of PF chain with usual 
spin reversal operator and its extension on a superspace (2.14) have been found to satisfy the 
Gaussian distribution for sufficiently large values of N [22,54]. The Gaussian behavior of the 
level density distributions at N → ∞ limit has also been established analytically for the case of 
several AN−1 type of spin chains and related vertex models [16,62].

In this section, at first we shall study the level density distributions of the BCN type of PF 
spin chains with SAPSRO (2.17) for the case of finite but sufficiently large number of lattice 
sites. However it has been mentioned earlier that, for the special case (2.18), H(m1,m2|n1,n2) in 
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(2.17) becomes equivalent to the previously studied Hamiltonian H(m|n)

εε′ in (2.14). We have also 
shown that, in another special case given by m1 = m, m2 = 0, n1 = n, n2 = 0, the spectrum of 
the Hamiltonian H(m1,m2|n1,n2) coincides with that of the AN−1 type of supersymmetric PF spin 
chain (4.7). For the purpose of excluding these two special cases for which spectral properties 
are already known, in the following we shall restrict our attention to the spin chains (2.17) where 
m1, m2, n1 and n2 are taken as positive integers satisfying the conditions |m1 − m2| > 1 and 
|n1 − n2| > 1. To begin with, let us compute the mean (μ) and the variance (σ ) for the spectrum 
of the Hamiltonian H(m1,m2|n1,n2), which are given by the relations

μ = tr
[
H(m1,m2|n1,n2)

]
(m + n)N

, σ 2 = tr
[
(H(m1,m2|n1,n2))2

]
(m + n)N

− μ2 . (7.1)

Defining four parameters such as τ1 ≡ m1 + m2 + n1 + n2, τ2 ≡ m1 − m2 + n1 − n2, τ3 ≡
m1 + m2 − n1 − n2, and τ4 ≡ m1 − m2 − n1 + n2, and applying Eqs. (2.12) as well as (2.16), we 
obtain a set of trace relations given by

tr [1] = τN
1 , tr

[
P

(m1,m2|n1,n2)
i

]
= τ2 τN−1

1 , tr
[
Pij

]= tr
[
P̃

(m1,m2|n1,n2)
ij

]
= τ3 τN−2

1 ,

tr
[
PijP

(m1,m2|n1,n2)
i

]
= tr

[
P̃

(m1,m2|n1,n2)
ij P

(m1,m2|n1,n2)
i

]
= τ4 τN−2

1 ,

tr
[
PijP

(m1,m2|n1,n2)
k

]
= tr

[
P̃

(m1,m2|n1,n2)
ij P

(m1,m2|n1,n2)
k

]
= τ2 τ3 τN−3

1 ,

tr
[
PijPjl

]= tr
[
Pij P̃

(m1,m2|n1,n2)
j l

]
= tr

[
P̃

(m1,m2|n1,n2)
ij P̃

(m1,m2|n1,n2)
j l

]
= τN−2

1 ,

tr
[
PijPkl

]= tr
[
Pij P̃

(m1,m2|n1,n2)
kl

]
= tr

[
P̃

(m1,m2|n1,n2)
ij P̃

(m1,m2|n1,n2)
kl

]
= τ 2

3 τN−4
1 ,

tr
[
Pij P̃

(m1,m2|n1,n2)
ij

]
= tr

[
P

(m1,m2|n1,n2)
i P

(m1,m2|n1,n2)
j

]
= τ 2

2 τN−2
1 ,

where it is assumed that i, j , k, l are all different indices. Substituting the explicit form of 
H(m1,m2|n1,n2) in (2.17) to Eq. (7.1) and using the aforementioned trace formulae, we get

μ =
(

1 − τ3

τ 2
1

)∑
i �=j

(hij + h̃ij ) +
(

1 − τ2

τ1

) N∑
i=1

hi , (7.2)

and

σ 2 = 2

(
1 − τ 2

3

τ 4
1

)∑
i �=j

(h2
ij + h̃2

ij ) + 4

(
τ 2

1 τ 2
2 − τ 2

3

τ 4
1

)∑
i �=j

hij h̃ij +
(

1 − τ 2
2

τ 2
1

)
N∑

i=1

h2
i

+ 4(τ1τ4 − τ2τ3)

τ 3
1

∑
i �=j

(hij + h̃ij )hi + 16mn

τ 4
1

∑
i,j,k

′
(hij + h̃ij )(hjk + h̃jk), (7.3)

where hij ≡ 1/(ξi −ξj )
2, ̃hij ≡ 1/(ξi +ξj )

2, hi ≡ β/ξ2
i , and the symbol 

∑
i,j,k

′ denotes summation 

over i �= j �= k �= i. Using equations (7.2) and (7.3) along with the identities given by [63,64,22]

∑
i �=j

(hij + h̃ij ) = N

2
(N − 1),

N∑
i=1

hi = N

2
,

∑
(h2

ij + h̃2
ij ) = N(N − 1)

72(1 + β)

[
2β(2N + 5) + 4N + 1

]
,

i �=j
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N∑
i=1

h2
i = N(N + β)

4(1 + β)
,
∑
i �=j

hij h̃ij = N(N − 1)

16(1 + β)
,
∑
i �=j

(hij + h̃ij )hi = N

4
(N − 1),

∑
i,j,k

′
(hij + h̃ij )(hjk + h̃jk) = 2

9
N(N − 1)(N − 2) , (7.4)

we finally express μ and σ 2 as some functions of the discrete parameters m1, m2, n1, n2, and N :

μ =
(

1 − τ3

τ 2
1

)
N

2
(N − 1) +

(
1 − τ2

τ1

)
N

2
, (7.5)

σ 2 = 1

36

(
1 − τ 2

3

τ 4
1

)
N(4N2 + 6N − 1) + 32mn

9τ 4
1

N(N − 1)(N − 2)

+ (τ1τ4 − τ2τ3)

τ 3
1

N(N − 1) + 1

4τ 2
1

(
τ 2

3

τ 2
1

− τ 2
2

)
N. (7.6)

Since the Gaussian distribution (normalized to unity) corresponding these μ and σ is given by

G(E) = 1√
2πσ

e
− (E−μ)2

2σ2 , (7.7)

now it is possible to easily check whether the normalized level density of the spin chain (2.17)
satisfies the condition di 
 G(Ei ) for sufficiently large numbers of lattice sites. Indeed, by tak-
ing different sets of positive integer values of m1, m2, n1 and n2 satisfying the conditions 
|m1 − m2| > 1 and |n1 − n2| > 1, we find that the normalized level density of the spin chain 
(2.17) is in excellent agreement with the Gaussian distribution (7.7) for moderately large values 
of N (N � 15). As an example, in Fig. 1 we compare the normalized level density with the Gaus-
sian distribution for the case m1 = 3, m2 = 1, n1 = 4, n2 = 1 and N = 20. We also calculate the 
mean square error (MSE) for the above mentioned case and find it to be as low as 1.34 × 10−8. 
Furthermore, this MSE reduces to 1.86 × 10−10 when we take N = 40 and keep all other param-
eters unchanged. Thus the agreement between normalized level density of the spin chain (2.17)
and the Gaussian distribution (7.7) improves with the increasing value of N .

Next, we shall study the distribution of spacing between consecutive energy levels for the 
spin chain (2.17). For the purpose of eliminating the effect of local level density variation in the 
distribution of spacing between energy levels, an unfolding mapping is usually employed to the 
‘raw’ spectrum [65]. Since the level density of the spin chain (2.17) obeys Gaussian distribution 
for large number of lattice sites, one can express the corresponding cumulative level density η(E)

through the error function as

η(E) =
E∫

−∞
G(x)dx = 1

2

[
1 + erf

(E − μ√
2σ

)]
. (7.8)

For the case of spin chain (2.17), this cumulative level density function is applied to map the 
energy levels Ei , i = 1, . . . , l, into unfolded energy levels of the form ηi ≡ η(Ei ). The cumulative
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Fig. 1. Continuous red curve represents the Gaussian distribution and blue dots represent the level density distribution of 
the spin chain (2.17) with m1 = 3, m2 = 1, n1 = 4, n2 = 1 and N = 20. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

level spacing distribution for such unfolded energy levels is obtained through the relation

P(s) =
s∫

0

p(x)dx , (7.9)

where p(si) denotes the probability density of normalized spacing si given by si = (ηi+1 −ηi)/�

and � = (ηl − η1)/(l − 1) is the mean spacing between unfolded energy levels. According to 
a well-known conjecture by Berry and Tabor, the density of normalized spacing for a ‘generic’ 
quantum integrable system should obey the Poisson’s law given by p(s) = e−s [66]. However, it 
has been observed earlier that p(s) does not exhibit this Poissonian behavior for a large class of 
quantum integrable spin chains with long-range interactions [12,21,22,15,61,55].

To explain the above mentioned anomalous behavior in the spectra of quantum integrable spin 
chains with long range interactions, it has been analytically shown in Ref. [22] that if the discrete 
spectrum of a quantum system satisfies the following four conditions:

i) the energy levels are equispaced, i.e., Ei+1 − Ei = δ, for i = 1, 2, . . . , l − 1,
ii) the level density is approximately Gaussian,

iii) Emax − μ, μ − Emin � σ ,
iv) |Emax + Emin − 2μ| � Emax − Emin,

then the corresponding cumulative level spacing distribution is approximately given by

P̃ (s) 
 1 − 2√
πsmax

√
ln
( smax

s

)
, (7.10)

where

smax = Emax − Emin√ . (7.11)

2π σ
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Fig. 2. Blue dots represent cumulative level spacing distribution P(s) for the spin chain with m1 = 3, m2 = 1, n1 = 4, 
n2 = 1 and N = 20, while continuous red line is the corresponding analytic approximation P̃ (s). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.)

Since, the spectra of many quantum integrable spin chains with long-range interactions satisfy the 
above mentioned four conditions with reasonable accuracy, the cumulative level density of such 
spin chains obey the ‘square root of a logarithm’ law (7.10). In the case of presently considered 
spin chain (2.17), it has been already found that the conditions i) and ii) are satisfied. For the 
purpose of analyzing the remaining conditions, we use Eqs. (6.3), (6.4), (6.5) and (6.6) to obtain 
Emin = O(N) and Emax = N2 + O(N). Moreover, with the help of Eqs. (7.2) and (7.3), we find 
that

μ = 1

2

(
1 − τ3

τ 2
1

)
N2 + O(N), σ 2 = 1

9

[
1 − τ 2

3 − 32mn

τ 4
1

]
N3 + O(N2).

Since τ1 = m + n and τ3 = m − n, the leading order contributions to mean and variance in the 
above equation interestingly depend only on the values of m and n. Using the leading order 
contributions to Emin, Emax, μ and σ 2, it is easy to check that the conditions iii) is also obeyed for 
the spectrum of the spin chain (2.17) with N � 1, whereas condition iv) holds only in the case 
when m = n. However, it can be shown that even if condition iv) is dropped, Eq. (7.10) is still 
obeyed within a slightly smaller range of s [54]. Hence, it is expected that P(s) in (7.9) would 
follow the analytical expression P̃ (s) in (7.10) for the case of spin chain (2.17). With the help of 
Mathematica, we compute P(s) by taking different sets of positive integer values of m1, m2, n1
and n2 satisfying the conditions |m1 −m2| > 1 and |n1 −n2| > 1, and for moderately large values 
of N . It turns out that P(s) obeys the analytical expression (7.10) with remarkable accuracy in 
all of these cases. As an example, in Fig. 2 we compare P(s) with P̃ (s) for the particular case 
m1 = 3, m2 = 1, n1 = 4, n2 = 1 and N = 20.

8. Conclusions

Here we construct SAPSRO which satisfy the BCN type of Weyl algebra and lead to a novel 
class of spin Calogero models as well as related PF chains with reflecting ends. We compute the 
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exact spectra of these BCN type of spin Calogero models, by using the fact that their Hamil-
tonians can be represented in triangular forms while acting on some partially ordered sets of 
basis vectors of the corresponding Hilbert spaces. Since the strong coupling limit of these spin 
Calogero models yields BCN type of PF chains with SAPSRO, we apply the freezing trick to 
obtain the partition functions of this type of PF spin chains in a closed form. We also derive a 
formula (4.5) which expresses such a partition function in terms of known partition functions of 
several AK type of supersymmetric PF spin chains, where K � N −1. By using this formula, we 
analyze statistical properties like level density distribution and nearest neighbor spacings distri-
bution in the spectra of spin chains with sufficiently large number of lattice sites. It turns out that, 
in analogy with the case of many other integrable systems with long-range interactions, the level 
density of PF spin chains with SAPSRO follows the Gaussian distribution and the cumulative 
nearest neighbor spacings distribution obeys the ‘square root of a logarithm’ law.

In this paper, we show that the partition functions of PF spin chains with SAPSRO obey 
an interesting type of duality relation. To this end, we consider a new quantum number which 
measures the parity of the spin states under the action of SAPSRO. It is found that the parti-
tion functions of these spin chains satisfy an ‘extended’ boson–fermion duality relation (5.13), 
which involves not only the exchange of bosonic and fermionic degrees of freedom, but also the 
exchange of positive and negative parity degrees of freedom associated with SAPSRO. As an 
application of this duality relation, we compute the highest energy levels of these spin chains 
from their ground state energies. Moreover, we find that partition functions of a large class of 
integrable and nonintegrable spin chains with Hamiltonians of the form (5.14) satisfy this type 
of duality relation.

We have mentioned earlier that, BCN type of PF spin chains with SAPSRO do not exhibit 
global su(m|n) supersymmetry for arbitrary values of the related discrete parameters. However, 
for a particular choice of these discrete parameters, SAPSRO reduce to the trivial identity op-
erator and lead to the su(m|n) supersymmetric Hamiltonian H(m,0|n,0) in (2.19). Curiously, we 
find that the partition function and spectrum of this H(m,0|n,0) coincide with those of AN−1 type 
of su(m|n) supersymmetric PF chain with Hamiltonian H̃(m|n)

PF in (4.7). Consequently, these two 
Hamiltonians are related through a unitary transformation of the form (4.9) and the spectrum 
of H(m,0|n,0) can be expressed through Haldane’s motifs as given in (4.8). As a future study, it 
would be interesting to find out whether some modification of these motifs can be used to de-
scribe the spectra of BCN type of PF spin chains with SAPSRO for other possible choices of 
the related discrete parameters. It may also be noted that, AN−1 type of PF chain with Hamil-
tonian H̃(m|n)

PF in (4.7) exhibits the Y(gl(m|n)) super Yangian symmetry [9,11]. Hence, due to 
the existence of unitary transformation (4.9), it is evident that the Hamiltonian H(m,0|n,0) also 
exhibits the Y(gl(m|n)) super Yangian symmetry. However, finding out the explicit form for 
the conserved quantities of H(m,0|n,0), which would satisfy the Y(gl(m|n)) algebra, remains an 
interesting problem on which work is currently in progress.
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