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Abstract

In this note we introduce the concept of a quasi-finite complex. Next, we show that for a given
countable simplicial complex L the following conditions are equivalent:

• L is quasi-finite.
• There exists a [L]-invertible mapping of a metrizable compactum X with e-dimX � [L] onto

the Hilbert cube.
Finally, we construct an example of a quasi-finite complex L such that its extension type [L]
does not contain a finitely dominated complex.
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1. Introduction

One of the most interesting open problems in extension theory is to characterize all
countable CW complexes L for which there exists a universal metric compactum of a
given extension dimension [L]. In the case of L being the Eilenberg–MacLane complex
K(Z, n) the above problem can be restated as follows: does there exist a universal metric
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compactum of a given integral cohomological dimension? If in the previous question “uni-
versal metric compactum” is replaced with “universal separable metric space” the question
can be answered positively. Namely, Dydak and Mogilski [11] proved that for a given n

there exists a Polish space X of integral cohomological dimension n which contains a topo-
logical copy of any separable metric space Y with dimZ Y � n. This result was generalized
by Olszewski [12], who proved the existence of universal separable metric space of given
extension dimension [L] for each countable complex L. As a corollary, this implies the ex-
istence of universal separable metrizable space of a given cohomological dimension with
respect to any countable Abelian coefficient group.

It was shown in [10] that a universal compactum of extension dimension [L] exists if
L is a finitely dominated complex. It should be emphasized that all such universal com-
pacta were obtained as preimages of the Hilbert cube with respect to certain [L]-invertible
mappings.

In [2] Chigogidze stated the following two problems and showed that they are equiva-
lent:

Problem 1. Characterize connected locally compact simplicial complexes P such that P ∈
AE(X) iff P ∈ AE(βX) for any space X.

Problem 2. Characterize connected locally compact simplicial complexes P such that
there exists a P -invertible map f :X → Iω where X is a metrizable compactum with
P ∈ AE(X).

As noted above, the following problem is closely related to the Problems 1 and 2 [4,10]:

Problem 3. Let L be a countable CW complex such that the class of metrizable compacta
{X: L ∈ AE(X)} has a universal space. Is it true that the extension type [L] of this complex
contains a finitely dominated complex?

In this note we introduce the notion of quasi-finite complexes and show that the class of
quasi-finite complexes yields the characterization required in Problems 1 and 2. Next, we
construct an example of a quasi-finite complex L such that its extension type [L] does not
contain a finitely dominated complex. This provides a negative solution for Problem 3.

2. Preliminaries

For spaces X and L, the notation L ∈ AE(X) means that every map f :A → L, defined
on a closed subspace A of X, admits an extension f̄ over X. Let L and K be countable
and locally finite CW complexes. Following Dranishnikov [6], we say that L � K if for
each Polish space X the condition L ∈ AE(X) implies the condition K ∈ AE(X). This
definition leads to a preorder relation � on the class of countable and locally finite CW
complexes. This preorder relation generates the equivalence relation. The equivalence class
of complex L is called the extension type of L and is denoted by [L]. By e-dimX we denote
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extension dimension of space X [6,7]. Inequality e-dimX � [L] means that L ∈ AE(X).
More information about extension dimension and extension types can be found in [3].

Following Chigogidze [3] we say that a map f :X → Y is [L]-invertible if for each
Polish space Z with e-dimZ � [L] and for any map g :Z → Y there exists a map h :Z →
X satisfying the conditions f ◦ h = g. The following theorem [2, Theorem 2.1] shows that
Problems 1 and 2, stated in the introduction, are equivalent.

Theorem 2.1. (A. Chigogidze) Let P be a Polish ANR-space. Then the following state-
ments are equivalent:

(a) P ∈ AE(βX) whenever X is a space with P ∈ AE(X).
(b) P ∈ AE(βX) whenever X is a normal space with P ∈ AE(X).
(c) P ∈ AE(β(

⊕{Xt : t ∈ T })) whenever T is an arbitrary indexing set and Xt , t ∈ T , is
a separable metrizable space with P ∈ AE(Xt ).

(d) P ∈ AE(β(
⊕{Xt : t ∈ T })) whenever T , is an arbitrary indexing set and Xt , t ∈ T , is

a Polish space with P ∈ AE(Xt ).
(e) There exists a P-invertible map f :X → Iω where X is a metrizable compactum with

P ∈ AE(X).

3. Quasi-finite complexes

A pair of spaces V ⊂ U is called [L]-connected for Polish spaces [1] if for every Polish
space X with e-dimX � [L] and for every closed subspace A ⊂ X any mapping of A to V

can be extended to a mapping of X into U .

Definition 3.1. We say that a CW complex L is quasi-finite if for every finite subcomplex
P of L there exists a finite subcomplex P ′ of L containing P such that the pair P ⊂ P ′ is
[L]-connected for Polish spaces.

Theorem 3.2. Let L be a countable and locally finite CW complex. Then the following
conditions are equivalent:

(i) L is quasi-finite.
(ii) Any of the conditions (a)–(e) of Theorem 2.1 is satisfied.

Proof. It is enough to show that condition (i) is equivalent to the condition (d) of Theo-
rem 2.1.

Suppose that L is quasi-finite. Let {Xt : t ∈ T } be an arbitrary family of Polish spaces
with L ∈ AE(Xt ) for all t ∈ T . Consider a closed subspace A ⊂ β(

⊕{Xt : t ∈ T }) and a
mapping f :A → L. Let P be a finite subcomplex of L containing f (A). Since L is quasi-
finite there exists a finite subcomplex P ′ of L containing P such that the pair P ⊂ P ′ is
[L]-connected for Polish spaces. Let f̃ : Ã → P be an extension of f over some closed
neighborhood Ã of A in β(

⊕{Xt : t ∈ T }). For any t ∈ T , let ft :Xt → P ′ be an extension
of f̃ | ˜ . Consider a mapping f ′ = ⊕{ft : t ∈ T } :

⊕{Xt : t ∈ T } → P ′. Since P ′ is

A∩Xt
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compact, the mapping f ′ can be extended to a mapping f̄ :β(
⊕{Xt : t ∈ T }) → P ′ ⊂ L.

Clearly f̄ provides a necessary extension of f . Thus e-dimβ(
⊕{Xt : t ∈ T }) � [L].

Now suppose that condition (d) of the Theorem 2.1 is satisfied. Consider a finite
subcomplex P ⊂ L. Let {Xt,At , ft : t ∈ T } be the set of all triples such that Xt is a
Polish space with e-dimXt � [L], At is a closed subspace of Xt and ft :At → P is a
mapping. Put f = ⊕{ft : t ∈ T } :

⊕{At : t ∈ T } → P . Since P is compact there ex-
ists a mapping f̃ :

⊕{At : t ∈ T }β(
⊕{Xt : t∈T }) = β(

⊕{At : t ∈ T }) → P extending f .
By assumption e-dimβ(

⊕{Xt : t ∈ T }) � [L] and we can extend the mapping f̃ to a
mapping f̄ :β(

⊕{Xt : t ∈ T }) → L. Let P ′ be a finite subcomplex of L containing
f̄ (β(

⊕{Xt : t ∈ T })). It is easy to see that the pair P ⊂ P ′ is [L]-connected for Polish
spaces. �

For each n � 4 there exists a space X with integral cohomological dimension c-dimX �
n and c-dimβX � n + 1 [5]. Therefore the above theorem implies that the Eilenberg–
MacLane complex K(Z, n) is not quasi-finite for all n � 4.

4. Example

In this section we show that there exists a quasi-finite complex M such that its extension
type [M] does not contain a finitely dominated complex. By Theorem 3.1 for such complex
M there exists [M]-invertible mapping of a metrizable compactum X with e-dimX � [M]
onto the Hilbert cube. This implies that X is universal for the class of metrizable compacta
{X: M ∈ AE(X)}. Thus the solution of Problem 3 is negative.

Let M be a countable and locally finite CW complex homotopically equivalent to the
bouquet

∨{Mp: p-prime}∨
S3 where Mp = M(ZP ,2) is a Moore space of the type

(Zp,2). Clearly M is quasi-finite and [S2] � [M] < [S3] (further consideration will im-
ply that [S2] < [M]). We shall show that the extension type [M] of M does not contain a
finitely dominated complex.

Suppose the opposite. Let L be a countable finitely dominated CW complex such that
[M] = [L]. Then [S2] � [L] < [S3]. In particular, L is simply connected and therefore
H2(L) ∼= π2(L). Since L is finitely dominated, groups H2(L) ∼= π2(L) are finitely gener-
ated. Since [L] < [S3] it follows that π2(L) is non-trivial. Consider two cases.

Case 1. H2(L) ∼= π2(L) ∼= Z ⊕ H where H is finitely generated.
Note that groups H 1(M;Q) and H 2(M;Q) are trivial. On the other hand, suspen-

sion isomorphism and Hurewicz theorem imply that H3(ΣL) ∼= Z ⊕ H and hence the
group H 3(ΣL;Q) is non-trivial. Therefore we can apply construction of Dranishnikov
and Repovš ([8, Theorem 2.4] and [9, Theorem 1.3]) and use the idea from the proof of
Theorem 1.4 from [9, p. 351] to obtain a metrizable compactum X with e-dimX � [M]
and a mapping f :X → ΣL which is not null-homotopic. Let A = f −1(L) where L is con-
sidered as the equator of ΣL. Then f |A does not have an extension f̄ :X → L. Indeed,
such an extension f̄ would be null-homotopic. On the other hand it would be homotopic
to f . This shows that L /∈ AE(X) which leads to a contradiction.

Case 2. H2(L) ∼= ⊕{Zni
: i = 1, . . . ,m}.
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Choose a prime p > max{ni : i = 1, . . . ,m}. Then H 1(L;Zp) and H 2(L;Zp) are triv-
ial. Note that H 3(ΣMp;Zp) is non-trivial. As before we can find a metrizable compactum
X with e-dimX � [L] and a mapping f :X → ΣMp which is not null-homotopic. By the
same arguments as above we conclude that Mp /∈ AE(X). Since [M] � [Mp] we obtain a
contradiction with [M] = [L].
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