

Available online at www.sciencedirect.com

Topology and its Applications 153 (2006) 1609-1613

Topology and its Applications

www.elsevier.com/locate/topol

On two problems in extension theory

A.V. Karasev

Computer Science and Mathematics Department, Nipissing University, 100 College Drive, Box 5002, North Bay, Ont., P1B 8L7, Canada

Received 21 January 2004; accepted 19 February 2004

Abstract

In this note we introduce the concept of a quasi-finite complex. Next, we show that for a given countable simplicial complex L the following conditions are equivalent:

- L is quasi-finite.
- There exists a [*L*]-invertible mapping of a metrizable compactum *X* with e-dim *X* ≤ [*L*] onto the Hilbert cube.

Finally, we construct an example of a quasi-finite complex L such that its extension type [L] does not contain a finitely dominated complex.

© 2005 Elsevier B.V. All rights reserved.

MSC: primary 55M10; secondary 54F45

Keywords: Extension dimension; Universal spaces; Quasi-finite complexes

1. Introduction

One of the most interesting open problems in extension theory is to characterize all countable CW complexes *L* for which there exists a universal metric compactum of a given extension dimension [*L*]. In the case of *L* being the Eilenberg–MacLane complex $K(\mathbb{Z}, n)$ the above problem can be restated as follows: does there exist a universal metric

E-mail address: alexandk@nipissingu.ca (A.V. Karasev).

^{0166-8641/\$ -} see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2004.02.022

compactum of a given integral cohomological dimension? If in the previous question "universal metric compactum" is replaced with "universal separable metric space" the question can be answered positively. Namely, Dydak and Mogilski [11] proved that for a given *n* there exists a Polish space *X* of integral cohomological dimension *n* which contains a topological copy of any separable metric space *Y* with dim_Z $Y \leq n$. This result was generalized by Olszewski [12], who proved the existence of universal separable metric space of given extension dimension [*L*] for each countable complex *L*. As a corollary, this implies the existence of universal separable metricable space of a given cohomological dimension with respect to any countable Abelian coefficient group.

It was shown in [10] that a universal compactum of extension dimension [L] exists if L is a finitely dominated complex. It should be emphasized that all such universal compacta were obtained as preimages of the Hilbert cube with respect to certain [L]-invertible mappings.

In [2] Chigogidze stated the following two problems and showed that they are equivalent:

Problem 1. Characterize connected locally compact simplicial complexes *P* such that $P \in AE(X)$ iff $P \in AE(\beta X)$ for any space *X*.

Problem 2. Characterize connected locally compact simplicial complexes P such that there exists a P-invertible map $f: X \to I^{\omega}$ where X is a metrizable compactum with $P \in AE(X)$.

As noted above, the following problem is closely related to the Problems 1 and 2 [4,10]:

Problem 3. Let *L* be a countable CW complex such that the class of metrizable compacta $\{X: L \in AE(X)\}$ has a universal space. Is it true that the extension type [*L*] of this complex contains a finitely dominated complex?

In this note we introduce the notion of quasi-finite complexes and show that the class of quasi-finite complexes yields the characterization required in Problems 1 and 2. Next, we construct an example of a quasi-finite complex L such that its extension type [L] does not contain a finitely dominated complex. This provides a negative solution for Problem 3.

2. Preliminaries

For spaces *X* and *L*, the notation $L \in AE(X)$ means that every map $f : A \to L$, defined on a closed subspace *A* of *X*, admits an extension \overline{f} over *X*. Let *L* and *K* be countable and locally finite CW complexes. Following Dranishnikov [6], we say that $L \leq K$ if for each Polish space *X* the condition $L \in AE(X)$ implies the condition $K \in AE(X)$. This definition leads to a preorder relation \leq on the class of countable and locally finite CW complexes. This preorder relation generates the equivalence relation. The equivalence class of complex *L* is called the extension type of *L* and is denoted by [*L*]. By e-dim *X* we denote

1611

extension dimension of space X [6,7]. Inequality e-dim $X \leq [L]$ means that $L \in AE(X)$. More information about extension dimension and extension types can be found in [3].

Following Chigogidze [3] we say that a map $f: X \to Y$ is [*L*]-*invertible* if for each Polish space *Z* with e-dim $Z \leq [L]$ and for any map $g: Z \to Y$ there exists a map $h: Z \to X$ satisfying the conditions $f \circ h = g$. The following theorem [2, Theorem 2.1] shows that Problems 1 and 2, stated in the introduction, are equivalent.

Theorem 2.1. (A. Chigogidze) Let P be a Polish ANR-space. Then the following statements are equivalent:

- (a) $P \in AE(\beta X)$ whenever X is a space with $P \in AE(X)$.
- (b) $P \in AE(\beta X)$ whenever X is a normal space with $P \in AE(X)$.
- (c) $P \in AE(\beta(\bigoplus\{X_t: t \in T\}))$ whenever T is an arbitrary indexing set and $X_t, t \in T$, is a separable metrizable space with $P \in AE(X_t)$.
- (d) $P \in AE(\beta(\bigoplus\{X_t: t \in T\}))$ whenever T, is an arbitrary indexing set and X_t , $t \in T$, is a Polish space with $P \in AE(X_t)$.
- (e) There exists a P-invertible map $f: X \to I^{\omega}$ where X is a metrizable compactum with $P \in AE(X)$.

3. Quasi-finite complexes

A pair of spaces $V \subset U$ is called [L]-*connected for Polish spaces* [1] if for every Polish space X with e-dim $X \leq [L]$ and for every closed subspace $A \subset X$ any mapping of A to V can be extended to a mapping of X into U.

Definition 3.1. We say that a CW complex *L* is *quasi-finite* if for every finite subcomplex *P* of *L* there exists a finite subcomplex P' of *L* containing *P* such that the pair $P \subset P'$ is [*L*]-connected for Polish spaces.

Theorem 3.2. Let *L* be a countable and locally finite CW complex. Then the following conditions are equivalent:

- (i) *L* is quasi-finite.
- (ii) Any of the conditions (a)–(e) of Theorem 2.1 is satisfied.

Proof. It is enough to show that condition (i) is equivalent to the condition (d) of Theorem 2.1.

Suppose that *L* is quasi-finite. Let $\{X_t: t \in T\}$ be an arbitrary family of Polish spaces with $L \in AE(X_t)$ for all $t \in T$. Consider a closed subspace $A \subset \beta(\bigoplus\{X_t: t \in T\})$ and a mapping $f: A \to L$. Let *P* be a finite subcomplex of *L* containing f(A). Since *L* is quasifinite there exists a finite subcomplex *P'* of *L* containing *P* such that the pair $P \subset P'$ is [*L*]-connected for Polish spaces. Let $\tilde{f}: \tilde{A} \to P$ be an extension of *f* over some closed neighborhood \tilde{A} of *A* in $\beta(\bigoplus\{X_t: t \in T\})$. For any $t \in T$, let $f_t: X_t \to P'$ be an extension of $\tilde{f}|_{\tilde{A} \cap X_t}$. Consider a mapping $f' = \bigoplus\{f_t: t \in T\}: \bigoplus\{X_t: t \in T\} \to P'$. Since *P'* is compact, the mapping f' can be extended to a mapping $\overline{f} : \beta(\bigoplus\{X_t: t \in T\}) \to P' \subset L$. Clearly \overline{f} provides a necessary extension of f. Thus e-dim $\beta(\bigoplus\{X_t: t \in T\}) \leq [L]$.

Now suppose that condition (d) of the Theorem 2.1 is satisfied. Consider a finite subcomplex $P \subset L$. Let $\{X_t, A_t, f_t: t \in T\}$ be the set of all triples such that X_t is a Polish space with e-dim $X_t \leq [L]$, A_t is a closed subspace of X_t and $f_t: A_t \to P$ is a mapping. Put $f = \bigoplus \{f_t: t \in T\} : \bigoplus \{A_t: t \in T\} \to P$. Since P is compact there exists a mapping $\tilde{f}: \bigoplus \{A_t: t \in T\}^{\beta(\bigoplus \{X_t: t \in T\})} = \beta(\bigoplus \{A_t: t \in T\}) \to P$ extending f. By assumption e-dim $\beta(\bigoplus \{X_t: t \in T\}) \leq [L]$ and we can extend the mapping \tilde{f} to a mapping $\bar{f}: \beta(\bigoplus \{X_t: t \in T\}) \to L$. Let P' be a finite subcomplex of L containing $\bar{f}(\beta(\bigoplus \{X_t: t \in T\}))$. It is easy to see that the pair $P \subset P'$ is [L]-connected for Polish spaces. \Box

For each $n \ge 4$ there exists a space X with integral cohomological dimension c-dim $X \le n$ and c-dim $\beta X \ge n + 1$ [5]. Therefore the above theorem implies that the Eilenberg–MacLane complex $K(\mathbb{Z}, n)$ is not quasi-finite for all $n \ge 4$.

4. Example

In this section we show that there exists a quasi-finite complex M such that its extension type [M] does not contain a finitely dominated complex. By Theorem 3.1 for such complex M there exists [M]-invertible mapping of a metrizable compactum X with e-dim $X \leq [M]$ onto the Hilbert cube. This implies that X is universal for the class of metrizable compacta $\{X: M \in AE(X)\}$. Thus the solution of Problem 3 is negative.

Let *M* be a countable and locally finite CW complex homotopically equivalent to the bouquet $\bigvee \{M_p: p\text{-prime}\} \bigvee S^3$ where $M_p = M(\mathbb{Z}_P, 2)$ is a Moore space of the type $(\mathbb{Z}_p, 2)$. Clearly *M* is quasi-finite and $[S^2] \leq [M] < [S^3]$ (further consideration will imply that $[S^2] < [M]$). We shall show that the extension type [M] of *M* does not contain a finitely dominated complex.

Suppose the opposite. Let *L* be a countable finitely dominated CW complex such that [M] = [L]. Then $[S^2] \leq [L] < [S^3]$. In particular, *L* is simply connected and therefore $H_2(L) \cong \pi_2(L)$. Since *L* is finitely dominated, groups $H_2(L) \cong \pi_2(L)$ are finitely generated. Since $[L] < [S^3]$ it follows that $\pi_2(L)$ is non-trivial. Consider two cases.

Case 1. $H_2(L) \cong \pi_2(L) \cong \mathbb{Z} \oplus H$ where *H* is finitely generated.

Note that groups $H^1(M; \mathbb{Q})$ and $H^2(M; \mathbb{Q})$ are trivial. On the other hand, suspension isomorphism and Hurewicz theorem imply that $H_3(\Sigma L) \cong \mathbb{Z} \oplus H$ and hence the group $H^3(\Sigma L; \mathbb{Q})$ is non-trivial. Therefore we can apply construction of Dranishnikov and Repovš ([8, Theorem 2.4] and [9, Theorem 1.3]) and use the idea from the proof of Theorem 1.4 from [9, p. 351] to obtain a metrizable compactum X with e-dim $X \leq [M]$ and a mapping $f: X \to \Sigma L$ which is not null-homotopic. Let $A = f^{-1}(L)$ where L is considered as the equator of ΣL . Then $f|_A$ does not have an extension $\overline{f}: X \to L$. Indeed, such an extension \overline{f} would be null-homotopic. On the other hand it would be homotopic to f. This shows that $L \notin AE(X)$ which leads to a contradiction.

Case 2. $H_2(L) \cong \bigoplus \{\mathbb{Z}_{n_i}: i = 1, \ldots, m\}.$

Choose a prime $p > \max\{n_i: i = 1, ..., m\}$. Then $H^1(L; \mathbb{Z}_p)$ and $H^2(L; \mathbb{Z}_p)$ are trivial. Note that $H^3(\Sigma M_p; \mathbb{Z}_p)$ is non-trivial. As before we can find a metrizable compactum X with e-dim $X \leq [L]$ and a mapping $f: X \to \Sigma M_p$ which is not null-homotopic. By the same arguments as above we conclude that $M_p \notin AE(X)$. Since $[M] \leq [M_p]$ we obtain a contradiction with [M] = [L].

Acknowledgement

The author is grateful to the referee for valuable comments.

References

- N. Brodsky, A. Chigogidze, A. Karasev, Approximations and selections of multivalued mappings of finitedimensional spaces, JP J. Geom. Topology 2 (1) (2002) 29–73.
- [2] A. Chigogidze, Compactifications and universal spaces in extension theory, Proc. Amer. Math. Soc. 128 (7) (2000) 2187–2190.
- [3] A. Chigogidze, Infinite dimensional topology and Shape theory, in: R. Daverman, R.B. Sher (Eds.), Handbook of Geometric Topology, North-Holland, Amsterdam, 2001, pp. 307–371.
- [4] A. Chigogidze, Notes on two conjectures in extension theory, JP J. Geom. Topology 2 (3) (2002) 259-264.
- [5] A.N. Dranishnikov, The cohomological dimension is not preserved under the Stone–Čech compactification, C. R. Acad. Bulgare Sci. 41 (12) (1988) 9–10 (in Russian).
- [6] A.N. Dranishnikov, The Eilenberg–Borsuk theorem for mappings in an arbitrary complex, Mat. Sb. 185 (1994) 81–90.
- [7] A.N. Dranishnikov, J. Dydak, Extension dimension and extension types, Proc. Steklov Inst. Math. 212 (1) (1996) 55–88.
- [8] A.N. Dranishnikov, D. Repovš, Cohomological dimension with respect to perfect groups, Topology Appl. 74 (1996) 123–140.
- [9] A.N. Dranishnikov, D. Repovš, On Alexandroff theorem for general Abelian groups, Topology Appl. 111 (3) (2001) 343–353.
- [10] J. Dydak, Cohomological dimension of metrizable spaces. II, Trans. Amer. Math. Soc. 348 (1996) 1647– 1661.
- [11] J. Dydak, J. Mogilski, Universal cell-like maps, Proc. Amer. Math. Soc. 122 (3) (1994) 943-948.
- [12] W. Olszewski, Universal separable metrizable spaces of given cohomological dimension, Topology Appl. 61 (3) (1995) 293–299.