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Abstract

In this article, we consider the fixed point of a primitive substitution canonically defined by a β-numeration system. The problem
of determination of the factor complexity of such an infinite word has been solved only partially. Here we provide a necessary and
sufficient condition on the Rényi expansion of one for having an affine factor complexity map C(n), that is, such that C(n) = an+b
for any positive integer n.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Factor complexity is one of the basic properties which is studied on infinite words (un)n∈N over a finite alphabet
A. It is the function C : N → N, which counts the number of factors of a given length which occur in an infinite
word.1 In other words, factor complexity expresses the measure of irregularity in the word.

For eventually periodic words, the factor complexity is an eventually constant function. As shown by Morse
and Hedlund [8], an infinite word (un)n∈N which is not eventually periodic, i.e. is aperiodic, has factor complexity
satisfying C(n) ≥ n + 1 for all n ∈ N. Moreover, the language of the factors of an infinite word is factorial, hence one
has C(n + m) ≤ C(n)C(m) for all n, m ∈ N. It is therefore obvious that not every function C can represent the factor
complexity of an infinite word. For an overview of necessary conditions for a factor complexity function C see [4].

Aperiodic words with minimal complexity C(n) = n + 1, for all n ∈ N, are called Sturmian; their properties have
been studied by many authors, see [6]. On the other hand, words having maximal complexity satisfy C(n) = mn , where
m is the cardinality of the alphabet. Under the term infinite words of low factor complexity, one usually understands
words for which C is a sublinear function, i.e. there exist constants a, b such that C(n) ≤ an + b for all positive
integers n. A special subclass is formed by infinite words with affine complexity, i.e. such that C(n) = an + b for
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1 By N we denote the set of nonnegative integers N = {0, 1, 2, . . . }.
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all n ∈ N. Among the words with affine factor complexity, one finds Sturmian words, Arnoux–Rauzy words, words
coding generic interval exchange transformation, and others.

As shown in [9], fixed points of a primitive substitution have low factor complexity. Let us mention that, relaxing
the assumption of primitivity, the factor complexity is bounded by a quadratic function, see [10]. The determination
of the factor complexity of a fixed point from the prescription of the substitution is not a simple task.

In this paper we consider canonical substitutions associated with simple Parry numbers β. These are numbers
whose Rényi expansion of 1 is finite, i.e. is of the form dβ(1) = t1 · · · tm . The canonical substitution corresponding to
β is the substitution over the alphabet A = {0, 1, . . . , m − 1} given by

ϕ(0) = 0t1 1
ϕ(1) = 0t2 2

...

ϕ(m − 2) = 0tm−1(m − 1)

ϕ(m − 1) = 0tm .

(1)

Since t1 ≥ 1 and tm ≥ 1, one easily checks that for any letter i , ϕ2m(i) contains at least one occurrence of each
letter, hence the substitution is primitive. Moreover, the substitution ϕ admits a unique fixed point, which is the infinite
word

uβ := lim
n→∞

ϕn(0).

In [5], the factor complexity of such fixed points is determined for substitutions satisfying the condition t1 >

max{t2, . . . , tm−1}. In particular, it is shown that

(m − 1)n + 1 ≤ C(n) ≤ mn, for all n ≥ 1.

In the same paper it is shown that the word uβ is Arnoux–Rauzy, if and only if tm = 1 and t1 = t2 = · · · = tm−1. In
this case the factor complexity is equal to (m − 1)n + 1, which is an affine function.

The aim of this article is the characterization of substitutions of the form (1), for which the fixed point uβ has affine
factor complexity. We will show

Theorem 1.1. Let β be a simple Parry number with the Rényi expansion of unity dβ(1) = t1 · · · tm , and let uβ be the
fixed point of the substitution (1). Then the factor complexity of uβ is an affine function if and only if the coefficients
t1, . . . , tm satisfy

(1) tm = 1
(2) If there exists a nonempty word which is simultaneously a proper suffix and a proper prefix of t1 · · · tm−1 then

t1 · · · tm−1 = wk for some word w and k ∈ N, k ≥ 2.

If both conditions are satisfied, then the complexity function equals C(n) = (m − 1)n + 1 for all n ∈ N.

Note that infinite words uβ which are Arnoux–Rauzy (i.e. tm = 1 and t1 = t2 = · · · = tm−1), satisfy Condition
(2) of the above theorem with a one-letter word w = bβc. Condition (2) is satisfied also by other words uβ , which
are not Arnoux–Rauzy, but have the same complexity C(n) = (m − 1)n + 1. These words illustrate the fact that
Arnoux–Rauzy words of order m ≥ 3 cannot be characterized by their complexity, as is the case for Arnoux–Rauzy
words of order m = 2, i.e. Sturmian words.

Example 1.2. Consider fixed points uβ of substitution (1) over the alphabet {0, 1, . . . , 4} with parameters t1, . . . , t5.

• If t1t2t3t4t5 = 32321 then both conditions of Theorem 1.1 are satisfied, since tm = t5 = 1 and t1 · · · t4 = (32)2.
The infinite word uβ has affine complexity C(n) = 4n + 1, although it is not an Arnoux–Rauzy word.

• If t1t2t3t4t5 = 32221 then both conditions of Theorem 1.1 are satisfied as well, since tm = t5 = 1 and there exists
no nonempty word which is simultaneously a proper prefix and a proper suffix of t1 · · · t4 = 3222. Again, the
complexity of the corresponding uβ is affine and uβ is not an Arnoux–Rauzy word.

• If t1t2t3t4t5 = 32231 then Condition (2) is not satisfied, since 3 is a prefix and a suffix of t1t2t3t4 = 3223 but
t1t2t3t4 is not an integer power of any word.

• If t1t2t3t4t5 = 32322 then complexity of uβ is not affine, since Condition (1) is not satisfied.
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In order to prove that Conditions (1) and (2) of Theorem 1.1 are sufficient for affine factor complexity, we use
purely the tools of combinatorics on words. For the opposite implication, we use the geometrical representation of the
factors of the word uβ as coding of patterns occurring in the set of β-integers, see Section 2.

2. Preliminaries

2.1. β-numeration

In [12] the author introduces and studies the properties of the positional number system with base β ∈ R, β > 1.
For arbitrary real x > 0, the β-expansion of x can be found by the greedy algorithm, as follows. There exists a unique
k ∈ Z such that βk

≤ x < βk+1. Set xk := bx/βk
c and rk := x − xkβ

k . For each i < k, set xi := bβri+1c and
ri := βri+1 − xi . Obviously,

x = xkβ
k
+ xk−1β

k−1
+ xk−2β

k−2
+ · · · (2)

and xi ∈ {0, 1, . . . , dβe − 1}. Note that the elements of the sequence (xi )i≤k satisfy the relation xi
=

⌊
βT k−i

β (xβ−(k+1))
⌋

, where the map Tβ is defined by

Tβ : [0, 1] → [0, 1), Tβ(x) = βx mod 1. (3)

For the expression of x in the form of its β-expansion (2) we use the notation x = xk · · · x0 • x−1x−2 · · · , if
k ≥ 0, or x = 0 • 000 · · · 0︸ ︷︷ ︸

−k−1 times

xk xk−1 · · · if k < 0. If the β-expansion ends in infinitely many 0’s, we omit them. These

expansions are said to be finite.
Numbers x with vanishing β-fractional part, i.e. such that xi = 0 for i < 0 are called nonnegative β-integers and

we denote them x = xk · · · x1x0•. The set of nonnegative β-integers is denoted by Z+

β , and the set of β-integers is

defined as Zβ = Z+

β ∪ (−Z+

β ).
Unlike the situation with integer base β, in case that β /∈ N, there exist sequences (xi )i≤k , x ∈ {0, 1, · · · , dβe − 1}

that are not the β-expansion of some x > 0. For the description of admissible sequences of digits, one needs the
so-called Rényi expansion of one. For β ∈ R, β > 1, put t1 := bβc and let 0 • t2t3t4 · · · be the β-expansion of the
number β − bβc. Then the sequence dβ(1) = t1t2t3 · · · is called the Rényi expansion of 1. We have obviously,

1 =

∞∑
i=1

ti
β i and ti ∈ {0, 1, . . . , dβe − 1}.

In order that a sequence t1t2t3 · · · of integers be the Rényi expansion of 1 for some base β, the so-called Parry
condition must be satisfied [11],

ti ti+1ti+2 · · · ≺ t1t2t3 · · · for all i ∈ N, i ≥ 2, (4)

where the symbol ≺ stands for ‘strictly lexicographically smaller’. In the same paper [11] it is shown that a finite
sequence of digits xk xk−1 · · · x1x0 over the alphabet A = {0, 1, . . . , dβe − 1} is the β-expansion of a β-integer if and
only if

xi xi−1 · · · x0 ≺ dβ(1) for all i ∈ N, i ≤ k. (5)

Using the Rényi expansion of 1, one can even describe the distances between consecutive β-integers on the real
line. If β ∈ N, the β-integers are precisely the rational integers, therefore the distance between consecutive β-integers
is always 1. The situation is very different if the base β is not an integer. The distances between consecutive β-integers
are the elements of

{
T i

β(1) | i ∈ N
}
, see [13]. Note that, since Zβ is a discrete set for any β > 1, one may define the

successor and predecessor maps, respectively as

pred(x) = max{y ∈ Zβ | y < x} and succ(x) = min{y ∈ Zβ | y > x}.

Example 2.1. Consider the base β =
1
2 (1 +

√
5), i.e., β is the golden ratio. The number β is a root of the equation

x2
= x+1, and its Rényi expansion is equal to dβ(1) = 11. Condition (5) implies in this case that xk · · · x0 ∈ {0, 1}

k+1

is the β-expansion of a β-integer if and only if xi xi−1 6= 11 for all i = 1, . . . , k. The set of β-integers thus starts with
the numbers (written in their β-expansion)
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Fig. 1. The set of β-integers for β =
1
2 (1 +

√
5) drawn on the real line.

0•, 1•, 10•, 100•, 101•, 1000•, etc.

The distances between consecutive β-integers take only two values, namely T 0
β (1) = 1 and Tβ(1) = β −1, see Fig. 1.

Numbers β, for which the Rényi expansion dβ(1) is eventually periodic, are called Parry numbers. In this case the
number of values for distances between consecutive β-integers is finite. In other words, Parry numbers are numbers
for which the elements of the sequence (T i

β(1))i∈N take finitely many distinct values. If moreover dβ(1) = t1t2 · · · tm ,

tm 6= 0, then β is called a simple Parry number; one has T i
β(1) = 0• ti+1 · · · tm for any i ∈ {1, . . . , m −1}. Associating

with these distances letters in the alphabet A = {0, 1, . . . , m − 1} in a natural way, T i
β(1) 7→ i , the sequence of

β-integers can be coded by an infinite word over A. This infinite word is the fixed point of the substitution ϕ defined
by (1).

Example 2.2. The infinite word uβ for β =
1
2 (1 +

√
5) starts with

uβ = 01001 · · ·

In [3] it is shown that the infinite word uβ is a fixed point of a canonical substitution (1) associated with β. Note
that a canonical substitution can be associated also with a nonsimple Parry number β, see [3]. For more details about
the properties of β-numeration we refer to [6].

2.2. Combinatorics on words

Let A = {0, 1, . . . , m − 1} be a finite alphabet. A finite concatenation w = w0w1 · · · wn−1 of the letters is called
a word, its length n is denoted by |w|. The set of finite words over an alphabet A together with the empty word ε and
the concatenation operation forms a free monoid, denoted by A∗.

The sequence u = (ui )i∈N of letters in the alphabet A is called an infinite word. A word w is a factor of a word u
(finite or infinite) if there exist words w(1) and w(2) such that u = w(1)ww(2). If w(1) is an empty word, then w is a
prefix of u. If w(2)

= ε, then w is a suffix of u. The set of all factors of an infinite word u is called the language of
u and denoted by L(u). The set of all factors of u of length n is denoted by Ln(u). Obviously L(u) =

⋃
n∈N Ln(u).

The cardinality of the set Ln(u) is the factor complexity, i.e., the function C : N → N, given by

C(n) := #Ln(u).

Note that any language which is the set of factors of an infinite word is extendable, that is, every factor w0 · · · wn−1 of
length n can be extended in at least one way to a factor w0 · · · wn−1wn of length n + 1. Hence the factor complexity is
a nondecreasing function. The set of letters by which it is possible to extend a factor w to the right is called the right
extension of w,

Rext(w) = {a ∈ A | wa ∈ L(u)}.

The increment of complexity can be calculated using the number of right extensions of all factors of length n,

1C(n) = C(n + 1) − C(n) =

∑
w∈Ln(u)

(
#Rext(w) − 1

)
.

A factor w, for which #Rext(w) ≥ 2 is called a right special factor. Only such factors are important for the
determination of the first difference of factor complexity.

In this paper we study recurrent words. These are infinite words, in which every factor appears at least twice.
Factors of a recurrent word can be extended in at least one way to the left, and so all the above considerations can be
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analogously stated. In particular, we have

1C(n) =

∑
w∈Ln(u)

(
#Lext(w) − 1

)
, (6)

where Lext(w) = {a ∈ A | aw ∈ L(u)}. Factors with #Lext(w) ≥ 2 are called left special. Factors which are both
right special and left special are called bispecial.

A substitution is a morphism on the free monoid A∗, i.e. a mapping ϕ : A∗
→ A∗ satisfying ϕ(wv) = ϕ(w)ϕ(v)

for every pair w, v ∈ A∗. It is obvious that a substitution is uniquely determined by images of all letters a ∈ A. The
action of a substitution can be naturally extended to infinite words (un)n∈N as

ϕ(u) = ϕ(u0u1u2 · · · ) := ϕ(u0)ϕ(u1)ϕ(u2) · · · .

An infinite word u satisfying u = ϕ(u) is a fixed point of the substitution ϕ. We are concerned with substitutions
satisfying ϕ(a) 6= ε for all a ∈ A, and such that there exists a0 which is a proper prefix of ϕ(a0). Such substitution
is called nonerasing prolongable substitution and has at least one fixed point, namely limn→∞ ϕn(a0). A substitution
is called primitive, if there exists k ∈ N such that, for every pair of letters a, b ∈ A, the letter a appears in the word
ϕk(b). It is known [2] that a fixed point of a primitive substitution is a linearly recurrent word, which implies that the
distances between consecutive occurrences of a given factor are bounded.

3. Affine factor complexity of infinite words uβ

Our aim is to describe the substitutions of the form (1) whose fixed points

uβ = 0t1 1 0t11 · · · 0t1 1︸ ︷︷ ︸
t1 times

0t22 · · ·

have affine factor complexity, i.e. the first difference 1C(n) is constant. For the determination of 1C(n) we use the
left special factors of uβ . In [5] it is shown that every prefix w of the infinite word uβ is a left special factor and its
left extension is Lext(w) = A = {0, 1, . . . , m − 1}. Therefore using (6) we have 1C(n) ≥ m − 1 for every n ∈ N.

Infinite words whose every prefix is a left special factor are called left special branches [1]. As we have mentioned,
uβ is a left special branch of itself. In [5] it is, moreover, shown that uβ has no other left special branch.

For the description of left special factors of another type (i.e. which are not prefixes of a left special branch) we
use a lemma from [5].

Definition 3.1. Let dβ(1) = t1t2 · · · tm . For 2 ≤ k ≤ m we denote

jk := min{i ∈ N | 1 ≤ i ≤ k − 1, tk−i 6= 0}.

Note that the index jk always exists, because t1 > 0.

Lemma 3.2. All factors of uβ of the form X0r Y , where X, Y are non-zero letters and r ∈ N, are the following,

jk0tk k, for k = 2, 3, . . . , m − 1,

k 0t11, for k = 1, 2, . . . , m − 1,

jm0t1+tm 1.

This lemma is exactly Lemma 4.5 in [5].

Remark 3.3. (i) Since jk ≤ k −1, the only factors of the form (m −1)0r Y are, according to Lemma 3.2, the factors
(m − 1)0t1 1 and possibly jm0t1+tm 1. In any case, the letter (m − 1) is always followed by the letter 0.

(ii) Recall that for parameters t1, . . . , tm of the substitution it holds that tm ≥ 1, and from the Parry condition t1 ≥ ti
for all i = 2, . . . , m.

Corollary 3.4. Every left special factor w with |w| ≤ t1 is a prefix of uβ .
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Proof. We prove the statement by contradiction. Let w be a left special factor satisfying |w| ≤ t1, and suppose that w

is not a prefix of uβ . Since uβ has a prefix 0t1 , necessarily w is of the form 0r Y for some Y 6= 0, r ∈ N, r < t1. If
Y = 1, then from Lemma 3.2 we know that w has a unique left extension, namely 0, and thus cannot be a left special
factor. If Y > 1, then again, w has a unique left extension, namely 0, if r < tY , or jk , if r = tY . �

Proposition 3.5. Let β be a simple Parry number. The infinite word uβ has affine factor complexity if and only if every
left special factor is a prefix of uβ .

Proof. Since every prefix w of uβ satisfies #Lext(w) = m, Corollary 3.4 implies that 1C(n) = m − 1 for all n ≤ t1.
If uβ has affine factor complexity, then 1C(n) = m − 1 for all n ∈ N, and so no left special factors other than prefixes
of uβ can exist. The opposite implication is obvious. �

Corollary 3.6. If uβ has affine factor complexity, then tm = 1.

Proof. Suppose that tm ≥ 2. Then according to Lemma 3.2, the word 0t1+tm−1 is a left special factor, because it has
two distinct left extensions, namely zero and jm . In the same time, 0t1+tm−1 is not a prefix of uβ . Proposition 3.5
implies that the factor complexity of uβ is not an affine function. �

In [5] it is shown that under the conditions

(a) tm = 1 (b) t1 = t2 = · · · = tm−1 or t1 > max{t2, . . . , tm−1},

the factor complexity of uβ is affine. Note that the condition (b) is a very special case of Condition (2) of Theorem 1.1,
whose proof is the aim of this paper.

Definition 3.7. A left special factor w of an infinite word u is called maximal if for any letter a ∈ A the word wa is
not a left special factor of u.

If tm ≥ 2, then 0t1+tm−1 is maximal, since extending it to the right using Lemma 3.2, we do not obtain a left special
factor. Let us mention that if w is a maximal left special factor, then it is a bispecial factor: since w is left special,
there exist X1, X2 ∈ A such that X1w, X2w ∈ L(uβ). Every factor of uβ can be extended in at least one way to the
right, and thus we can find Y1, Y2 ∈ A so that X1wY1 and X2wY2 belong to L(uβ). Since w is a maximal left special
factor, we have Y1 6= Y2. This, however, means that w is a right special factor.

Every left special factor w is either maximal or it can be extended by a letter a ∈ A such that wa is again a left
special factor. Since the only infinite left special branch of uβ is uβ itself, every left special factor which is not a prefix
of uβ is a prefix of a maximal left special factor. Proposition 3.5 therefore implies the following corollary:

Corollary 3.8. The infinite word uβ has affine factor complexity if and only if uβ has no maximal left special factor.

3.1. Sufficient condition for affine factor complexity of uβ

In the previous part we have derived that uβ can have affine factor complexity only if tm = 1. Therefore we shall
consider only simple Parry numbers with Rényi expansion

dβ(1) = t1t2 · · · tm−11

and study the substitution

ϕ(0) = 0t1 1
ϕ(1) = 0t2 2

...

ϕ(m − 2) = 0tm−1(m − 1)

ϕ(m − 1) = 0.

(7)

In agreement with Corollary 3.8, the study of conditions under which the factor complexity is an affine function,
resumes into the study of existence of maximal left special factors in the language of uβ . Lemma 3.2 under the
condition tm = 1 states that the longest factor containing only zero letters is 0t1+1, and this factor has a unique
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extension to the left and to the right. Therefore a left special factor of the form 0r satisfies r ≤ t1, and hence it is a
prefix of the infinite left special branch uβ .

We have thus shown the following simple observations:

Lemma 3.9. Any maximal left special factor contains at least one nonzero letter.

From the form of the substitution (7) one can deduce the structure of left special factors.

Lemma 3.10. If w ∈ L(uβ) is a left special factor (not necessarily maximal) then

w =

{
0r , for some r ∈ N, r ≤ t1;
ϕ(v)0s, for some left special factor v and s ∈ N.

Lemma 3.11. Let w ∈ L(uβ).

(1) If w is a left special factor then ϕ(w) is a left special factor with the same number of left extensions;
(2) If w is a maximal left special factor then there exists q ∈ N, q ≤ t1 such that ϕ(w)0q is a maximal left special

factor.

Statement (2) of Lemma 3.11 says that if there exists one maximal left special factor, then there exist infinitely
many such factors.

Definition 3.12. A maximal left special factor w is called noninitial if there exists a maximal left special factor v and
an integer q ∈ N such that w = ϕ(v)0q . A maximal left special factor which is not non-initial is called initial maximal
left special factor.

If L(uβ) contains a maximal left special factor, then it contains an initial maximal left special factor as well. In
order to describe initial maximal left special factors, we introduce the notion of trident.

Definition 3.13. A factor w ∈ L(uβ) is called a trident if there exist letters X, Y, Z ∈ A such that

(1) wX is a left special factor;
(2) wY and wZ are not left special factors;
(3) the unique left extensions of wY and wZ are distinct.

The letter X is called the rooted tooth, the letters Y and Z are called nonrooted teeth of the trident w.

Clearly, the teeth X, Y, Z are different.

Remark 3.14. If 0r is a trident, then the rooted tooth X = 0 or 1. This fact follows from Lemma 3.2, since 0r X is a
left special factor only if X ≤ 1.

Lemma 3.15. Let w be a trident containing a nonzero letter with rooted tooth X and nonrooted teeth Y , Z.

(i) If X = 0 then tY = tZ .
(ii) If X 6= 0 then there exist an integer s ∈ N and a trident ŵ with rooted tooth X̂ 6= m − 1 and nonrooted teeth Ŷ ,

Ẑ , such that
(a) w = ϕ(ŵ)0s ,
(b) A = Â + 1 for every nonzero tooth A of the trident w,
(c) s = tA for every nonzero tooth A of the trident w,
(d) if A = 0 is a nonrooted tooth of w, then Â = m − 1 or t Â+1 > tX = tX̂+1.

Proof. From the definition of a trident, it follows that w is a left special factor. According to Lemma 3.10, there exist
a left special factor ŵ and s ∈ N such that w = ϕ(ŵ)0s .

(i) Let X = 0. Since wY = ϕ(ŵ)0sY and wZ = ϕ(ŵ)0s Z are factors of uβ , and Y, Z 6= X = 0, it follows that
s = tY = tZ .

(ii) Let X 6= 0. Since wX = ϕ(ŵ)0s X = ϕ
(
ŵ(X − 1)

)
is a left special factor, also ŵ(X − 1) is a left

special factor and s = tX . As teeth Y, Z are distinct, at least one of them is nonzero, say Y 6= 0. Since
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wY = ϕ(ŵ)0sY = ϕ
(
ŵ(Y − 1)

)
is not a left special factor, due to Lemma 3.11, ŵ(Y − 1) is also not a left special

factor and tX = tY .
If moreover Z 6= 0, we have analogously tX = tZ and ŵ(Z − 1) is not a left special factor. As factors ϕ

(
ŵ(Y − 1)

)
and ϕ

(
ŵ(Z − 1)

)
have distinct left extensions, also factors ŵ(Y − 1) and ŵ(Z − 1) have distinct left extensions, and

therefore ŵ is a trident with teeth X − 1, Y − 1, Z − 1.
Suppose now that Z = 0. Since ϕ

(
ŵ(X − 1)

)
, ϕ

(
ŵ(Y − 1)

)
and ϕ(ŵ)0tX 0 are factors of equal length, there must

exist a letter Ẑ 6= X − 1, Y − 1 such that ŵ Ẑ ∈ L(uβ) and ŵ Ẑ has a unique left extension. If Ẑ 6= m − 1, then
w0 = ϕ(ŵ)0tX 0 is a proper prefix of ϕ(ŵ Ẑ) = ϕ(ŵ)(Ẑ + 1), and hence tẐ+1 ≥ tX + 1. �

Corollary 3.16. If w is a trident with rooted tooth X = 1 and Y 6= 0 is a nonrooted tooth, then tY = t1.

Tridents play an important role for the existence of maximal left special factors.

Proposition 3.17. Let v be an initial maximal left special factor. Then there exists a trident w with rooted tooth X
and an integer s ∈ N such that

v = ϕ(w)0s, X 6= 0, m − 1, and

tX+1 < s = min{tA+1 | A is a nonrooted tooth of w, A 6= m − 1}.
(8)

Proof. Let v be an initial maximal left special factor, and let y′, z′
∈ A be its distinct left extensions. Denote by Y ′

the right extension of y′v and by Z ′ the right extension of z′v. Since v is a maximal left special factor, necessarily
Y ′

6= Z ′. According to Lemmas 3.9 and 3.11, we have v = ϕ(w)0s for some left special factor w and some s ∈ N,
s ≤ t1. Since ϕ(w)0sY ′ and ϕ(w)0s Z ′ belong to the language L(uβ), there exist distinct letters Y, Z such that wY ,
wZ ∈ L(uβ), and wY , wZ have unique left extensions.

Since v = ϕ(w)0s is an initial maximal left special factor, the left special factor w is not maximal, and thus there
exists a letter X such that wX is a left special factor. This shows that the factor w is a trident with rooted tooth X and
nonrooted teeth Y, Z .

Let us now show that X 6= 0, m − 1. Suppose that X = 0. Then using Lemma 3.11, the factor ϕ(wX) = ϕ(w)0t11
is left special. Since v = ϕ(w)0s and s ≤ t1, this implies that v is a prefix of a left special factor ϕ(w)0t11, which
contradicts the maximality of v.

Suppose now that X = m−1. Then using (i) of Remark 3.3, the factor w(m−1)0 is left special, and thus ϕ(w)0t1+1

is also a left special factor. Again, we obtain a contradiction with the maximality of v, since v is then a proper prefix
of another left special factor.

The same reason leads us to the fact that s > tX+1, because otherwise v = ϕ(w)0s is a proper prefix of the left
special factor ϕ(w)ϕ(X) = ϕ(X)0tX+1(X + 1), where we use that X 6= m − 1.

It remains to determine the value of s. Since at least one of the letters Y ′, Z ′ is nonzero, say Y ′
6= 0, we have

vY ′
= ϕ(w)0sY ′

= ϕ(wY ), and thus Y ′
= Y + 1, s = tY+1 ≤ t1 and Y 6= m − 1. If, moreover, Z ′

6= 0, we have by
the same arguments that s = tZ+1 = tY+1, and Z 6= m − 1. If Z ′

= 0, then either Z = m − 1 or Z 6= m − 1 and
tZ+1 > s = tY+1. �

We are now in position to prove that condition (2) of Theorem 1.1 is sufficient for uβ to have affine factor
complexity.

Proposition 3.18. Let uβ be the infinite word associated with the Parry number β with dβ(1) = t1 · · · tm−11. If uβ

does not have affine factor complexity, then

(1) there exists a nonempty word which is both a proper prefix and a proper suffix of the word t1 · · · tm−1;
(2) for every k ∈ N, k ≥ 2, and every word w it holds that wk

6= t1 · · · tm−1.

Proof. If the factor complexity of uβ is not an affine function, then there exists an initial maximal left special factor
v. According to Proposition 3.17, there exist an integer s and a trident w with rooted tooth X and nonrooted teeth
Y, Z satisfying conditions (8). Denote l = X . Relations (8) imply that 1 ≤ l < m − 1. We want to construct l tridents
w(1), w(2), . . . , w(l) with triples of teeth (1, Y1, Z1), (2, Y2, Z2), . . . , (l, Yl , Zl), and integers s1, s2, . . . , sl such that
w(i), w(i+1) and si+1 have properties of tridents ŵ, w and the integer s from Lemma 3.15 for all i = 1, . . . , l − 1, and
Yl = Y and Zl = Z . If l = 1, this role is played obviously by the trident w, its triple of teeth (1, Y, Z) and the integer
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s. If l ≥ 2, then according to Remark 3.14, the trident w contains a non-zero letter and satisfies the assumptions
of Lemma 3.15, which implies the existence of the sequence of tridents w(1), w(2), . . . , w(l) with triples of teeth
(1, Y1, Z1), (2, Y2, Z2), . . . , (l, Yl , Zl), and integers s1, s2, . . . , sl with required properties.

According to Corollary 3.16, we have

s1 = t1. (9)

Since the rooted teeth X1 = 1, X2 = 2, . . . , Xl = l are non-zero, (c) of Lemma 3.15 implies

s2 = t2, s3 = t3, . . . , sl = tl . (10)

Using Proposition 3.17 we obtain

tl+1 < s := min{tA+1 | A is a nonrooted tooth of w(l), A 6= m − 1}. (11)

Lemma 3.15 implies that the sequence Y1, Y2, . . . , Yl is formed by consecutive integers separated by blocks of 0’s.
More precisely, for any i = 1, . . . , l − 1, we have

Yi+1 =

{
Yi + 1 if Yi < m − 1 and tYi +1 = si+1,

0 if Yi = m − 1 or tYi +1 > si+1.
(12)

The same rule is valid for the sequence Z1, . . . , Zl .
Since nonrooted teeth Y1, Z1 are distinct, we can without loss of generality assume that Y1 ≥ 2.
In order to show Statement (1) of the proposition, denote by k ≤ l the maximal index such that the sequence Y1,

. . . , Yk is formed by consecutive non-zero integers, i.e.

Y1 Y2 · · · Yk = j ( j + 1) · · · ( j + k − 1) for some j ∈ N, j ≥ 2.

This, however, means, using (12), (10) and Corollary 3.16 that

t j = t1, t j+1 = t2, . . . , t j+k−1 = tk . (13)

We now show that the nonrooted tooth Yk = ( j + k − 1) is equal to (m − 1), which together with (13) results in
Statement (1) of the proposition. For the contradiction, assume that Yk = ( j + k − 1) < m − 1. Let us distinguish two
cases according to whether k < l or k = l. If k < l, then from the definition of k it follows that Yk+1 = 0, which, due
to (12), can happen only if

tYk+1 = t j+k > sk+1 = tk+1. (14)

If k = l, then (11) implies

tk+1 < s ≤ tYk+1 = t j+k . (15)

In any case, (13) together with (14), or (15) gives

t j t j+1 · · · t j+k � t1t2 · · · tk+1,

which contradicts the Parry condition (4).
Besides the validity of Statement (1) of the proposition, we have thus proved that the sequence Y1, . . . , Yl contains

at least one letter m − 1.
In order to show Statement (2) of proposition, denote by p the shortest nonempty word which is both a proper

prefix and a proper suffix of the word t1 · · · tm−1. It is obvious that p is not a power of a shorter word.
We show Statement (2) by contradiction. Assume that there exists a word w such that wk

= t1 · · · tm−1 for some
k ≥ 2, k ∈ N. First we claim that such an assumption implies that t1 · · · tm−1 = pn for some n ∈ N, n ≥ 2. Since w

is a prefix and a suffix of t1 · · · tm−1, we must have |w| ≥ p. If |w| = |p|, the claim is valid. If |w| > |p|, then p is
a proper prefix and a proper suffix of w. Moreover, the prefix p and the suffix p do not overlap in the word w, since
otherwise the overlap would be a proper prefix and a proper suffix of t1 · · · tm−1 shorter than p, which contradicts
the minimality of p. The condition |w| > |p| thus implies that w = pw′ p for some (possibly empty) word w′. If
w′

= ε, the claim is valid. In the opposite case, the word t1t2 · · · tm−1 has the prefix pw′ ppw′ p. The Parry condition
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for dβ(1) implies that w′ p � pw′, and ppw′
� pw′ p which then implies pw′

� w′ p, and therefore pw′
= w′ p. It is

known that if two words commute, then they are powers of the same word. For proof of this assertion, see for example
Chapter 1 of [7]. Since p itself is not a power, we must have w′

= p j for some j ∈ N, as we wanted to show.
Let now t1t2 · · · tm−1 = pn for some n ∈ N, n ≥ 2. Denote s = |p|. Obviously m − 1 = ns. If s = 1, then

dβ(1) = t1t1 · · · t11, and in that case uβ is an Arnoux–Rauzy word, for which directly from the definition follows that
the factor complexity is an affine function. Thus s ≥ 2.

Let us come back to the sequence of tridents and the triples of their teeth, (1, Y1, Z1), (2, Y2, Z2), . . . , (l, Yl , Zl).
We already know that one of the letters Y1, . . . , Yl is equal to m − 1. Denote by q the maximal index, such that Yq
or Zq is equal to m − 1 = ns. Since the role of Yq and Zq is symmetric, without loss of generality we can assume
that the last m − 1 occurred was Yq = m − 1. We will show that both the corresponding rooted tooth q and the other
nonrooted tooth Zq are multiples of s.

For a contradiction, suppose that q = as + b, where 1 ≤ b < s. According to Lemma 3.15, we have

tq = tYq = tm−1, tq−1 = tm−2, . . . , tq−b+1 = tm−1−b+1.

Since the word p of the length s is the period of t1 · · · tm−1, we have

tq = tas+b = tb = tm−1, tb−1 = tm−2, . . . , tq−b+1 = t1 = tm−b,

and therefore t1 · · · tb is both a prefix and a suffix of t1 · · · tm−1, shorter than p, which contradicts the choice of p. In
the same way, one can show that the nonrooted tooth Zq is a multiple of s, say Zq = cs for some c ∈ N.

Since for the sequence of letters Z1, . . . , Zl one can derive a rule analogous to (12), we obtain from the periodicity
of t1 · · · tm−1 and the assumption Zi 6= m − 1 for i ≥ q , given by the definition of the index q, that tZi = ti = ti mod s ,
and therefore Zi+1 = Zi + 1 for all i , q ≤ i ≤ l. The periodicity of t1 · · · tm−1 also implies tl+1 = tZl+1 = tZ + 1,
which contradicts (11). �

3.2. Necessary condition for affine factor complexity of uβ

We now show that if there exists a word p which is both a proper prefix and a proper suffix of t1 · · · tm−1, and
t1 · · · tm−1 is not an integer power of p, then the factor complexity of uβ is not an affine function. According to
Proposition 3.5 it suffices to find a left special factor which is not a prefix of uβ .

For that, we use the fact that the words of L(uβ) code the patterns of Z+

β . Indeed, the word w = w0w1 · · · wn ∈

{0, 1, . . . , m − 1}
∗ is a coding of the set [x, y] ∩ Zβ , if the distances between points of [x, y] ∩ Zβ are consecutively

T w0
β (1), . . . , T wn

β (1). With this, we can reformulate the main problem of this section in the language of Z+

β .
Construction of a left special factor of uβ which is not a prefix of uβ is equivalent to the construction of β-integers z,
x1, x2 such that

(i) the codings of the sets [x1, x1 + z] ∩ Zβ , [x2, x2 + z] ∩ Zβ and [0, z] ∩ Zβ are equal to the same word w; more
formally,(

[x1, x1 + z] ∩ Zβ

)
− x1 =

(
[x2, x2 + z] ∩ Zβ

)
− x2 = [0, z] ∩ Zβ ;

(ii) x1 − pred(x1) 6= x2 − pred(x2);
(iii) 1 = succ(x1 + z) − (x1 + z) = succ(x2 + z) − (x2 + z);
(iv) 1 6= succ(z) − z.

Note that as the distance 1 = T 0
β (1) is coded by the letter 0, Conditions (i)–(iv) ensure that the word w0 ∈ L(uβ) is a

left special factor of uβ which is not a prefix of uβ .
The construction of suitable β-integers z,x1,x2 with the above properties, is the contents of this section, we shall,

however, need some preparation.
Let p = p1 · · · ps , be a proper prefix and a proper suffix of the word t1 · · · tm−1 of the minimal nonzero length.

From the Parry condition and the fact that t1 · · · tm−1 6= pk for k ≥ 2 one can easily deduce that there exist words p′,
q , and a positive integer r such that

dβ(1) = pr p′qp1, (16)
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where p′ is a prefix of p and |p| > |p′
| := j , and q is a nonempty word starting with the letter q1 < p j+1. Let us

mention that the words p, p′, q are words over the alphabet {t1, t2, . . . , tm−1}. Since t1 · · · tm−1 is not an integer power
of p, we must have

pp′q 6= p′qp.

As |pp′q| = |p′qp|, we can find a word c ∈ {t1, t2, . . . , tm−1}
∗ and digits h1, h2 ∈ {t1, . . . , tm−1} such that h1 6= h2,

h1c is a suffix of pp′q, and h2c is a suffix of p′qp. Note that since q1 < p j+1, c as a common suffix of pp′q and
p′qp must satisfy

|c| ≤ |p| + |q| − 1. (17)

Denote h := min(h1, h2) and A = |pr p′q1| = rs + j + 1. Then we can define β-integers x1, x2, z using their
β-expansion as

z := pr p′q1• + hc0A
•

x1 := pr p′q0A
• − hc0A

•

x2 := pr p′qp0A
• − hc0A

• .

(18)

Directly from the definition of A, h and c, it follows that the word hcpr p′q1 satisfies the Parry condition, and thus
z = hcpr p′q1• is a β-integer. In the same time, from the definition of h and c it is obvious that subtraction in the
prescription for x1 and x2 can be performed digitwise and hence also x1, x2 ∈ Z+

β .
We now prove that the above defined z, x1, x2 satisfy Conditions (i)–(iv).

ad(i) In order to prove that the word w coding the distances between consecutive β-integers in the segment [0, z],
codes also the segments x1, x1 + z and x2, x2 + z, we use the following lemma, which is a consequence of the fact
that the infinite word uβ codes the distances between consecutive β-integers.

Lemma 3.19. Let x, z ∈ Z+

β such that

for every z′
∈ Z+

β , z′
≤ z we have x + z′

∈ Z+

β . (19)

Then codings of [0, z] ∩ Zβ and [x, x + z] ∩ Zβ coincide.

For x = x1 we divide the verification of condition (19) into three cases.

• If z′
∈ Zβ , 0 ≤ z′ < hc0A

• +p10A−s−1
•, then the summation x1 + z′ can be performed digitwise. The result is

again a string satisfying the Parry condition, and therefore x1 + z′
∈ Zβ .

• If z′
= hc0A

• +p10A−s−1
•, then we have x1 + z′

= pr p′q0A
• +p10A−s−1

• = 10m0A−s−1
•.

• If z′
∈ Zβ , hc0A

• +p10A−s−1
• < z′

≤ z, then x1 + z′
= 10m0A−s−1

• +z′′, where z′′
∈ Zβ , 0 < z′′

≤

pr p′q1 • −p10A−s−1
•, and again by digitwise summation we obtain an admissible β-expansion of x1 + z′.

In order to prove condition (19) for x = x2, we again separate z′
∈ Zβ , z′

≤ z into three cases. Now the separating
point is z′

= hc0A
• +10A−1

•. For such z′ we have x2 + z′
= 10m+A−1

•. The remaining cases x2 + z′ can be solved
by digitwise summation, similarly as for x = x1.

ad(ii) For the proof of property (ii) we use another statement, which allows one to determine the distance of an element
of Z+

β to its predecessor.

Lemma 3.20. Let the β-expansion of a β-integer y be yn yn−1 · · · yk0k
•, where yk 6= 0, k ∈ N. Then y − pred(y) =

T k′

β (y), where k′
∈ {0, 1, . . . , m − 1} is such that k′

= k mod m.

Proof. If k = 0, the statement is obvious. Assume that k ≥ 1. Denote d∗
β(1) =

(
t1t2 · · · tm−10

)ω. This is the
lexicographically greatest word which is lexicographically strictly smaller than dβ(1) = t1 · · · tm−11. Therefore the
predecessor of y has the β-expansion of the form yn · · · yk+1(yk −1)v•, where v is a prefix of d∗

β(1) of length |v| = k.
We thus have

y − pred(y) = 10k
• −v• = 0 • tk′+1tk′+2 · · · tm = T k′

β (1),
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where k′
∈ {0, 1, . . . , m − 1} is such that k′

≡ k mod m. The latter follows from the m-periodicity of d∗
β(1). �

The definition of h implies that the number of zeros at the end of β-expansions of x1, x2 differ modulo m. Therefore
property (ii) is valid.

ad(iii) For verifying the property (iii) we have to show that both x1 + z + 1 and x2 + z + 1 belong to Zβ . Let l
be the length of the Rényi expansion of 1. It is easy to compute that x1 + z = 10l(p1 − 1)p2 · · · ps pr−2 p′q1• if
r ≥ 2 and dβ(x1 + z) = 10l(p′

1 − 1)p′

2 · · · p′

j q1• otherwise. In both cases, since q1 < p j+1, the digit 1 can be
added at the last position of x1 + z without altering the validity of the Parry condition. The same argument holds for
x2 + z = 10l(p1 − 1)p2 · · · ps pr−1 p′q1.

ad(iv) In order to prove that succ(z) 6= z + 1 we use the statement which is a simple consequence of the proof of
Lemma 3.20.

Lemma 3.21. Let the β-expansion of a β-integer y be yn yn−1 · · · y0•. Denote by k the maximal index such that
yk−1 yk−2 · · · y0 is a prefix of d∗

β(1) =
(
t1t2 · · · tm−10

)ω. Then succ(y) = y + T k′

β (1), where k′
∈ {0, 1, . . . , m − 1} is

such that k′
≡ k mod m.

For y = z = hcpr p′q1•, the index k satisfies

0 < |pr p′q1| ≤ k < |hcpr p′q1| ≤ m,

where we have used inequality (17). Therefore T k
β (1) 6= T 0

β (1).

Example 3.22. Let us illustrate the use of β-integers for the construction of a left special factor not being a prefix of
uβ . We consider the most simple example of a simple Parry number β not satisfying Condition (2) of Theorem 1.1,
namely such that dβ(1) = 2121. Note that the word t1 · · · tm−1 = t1t2t3 = 212 has a nonempty proper prefix and
proper suffix 2, in the same time it is not an integer power of any word. Since m = 4, the infinite word uβ is over
the alphabet {0, 1, 2, 3}. The β-integers are strings with digits 0, 1, 2 = bβc = t1. The distances between consecutive
β-integers take the following four values:

T 0
β (1) = 1•,

T 1
β (1) = 0 • 121 = 10 • −2•,

T 2
β (1) = 0 • 21 = 100 • −21•,

T 3
β (1) = 0 • 1 = 1000 • −212 • .

(20)

With these distances we associate letters 0, 1, 2, 3, respectively.
Let us find β-integers z, x1, x2 satisfying Conditions (i)–(iv) and explain how they correspond to a left special

factor of uβ which is not a prefix of uβ . Using (18), we obtain z = 121•, x1 = 2001•, x2 = 21100•.
Each of the intervals [0, z], [x1, x1 + z], [x2, x2 + z] contains sixteen β-integers. These β-integers are listed in

Table 1 in the form of their β-expansion and drawn on the real line in Fig. 2. Using (20) one can verify that the
segments of β-integers in all the three intervals are coded by the same word w = 001001020010010. Note that the
distance between x1 + z and its successor is the same as the distance between x2 + z and its successor, namely
T 0

β (1) = 1. Therefore the word w0 belongs to the language of uβ . Since the distance between z and its successor is

equal to T 2
β (1), the word w0 is not a prefix of uβ = w2 · · · . In order to verify that w0 is a left special factor of uβ ,

it suffices to see that the distance between x1 and its predecessor (namely T 3
β (1)) is different from the distance of x2

and its predecessor (namely T 2
β (1)). In particular, both 3w0 and 2w0 belong to the language of uβ .

4. Conclusions

Among the words uβ which have affine factor complexity are words for which the Rényi expansion of unity in
base β is of the form dβ(1) = t1t2 · · · tm−11 = pk1, for some k ≥ 2. If p is a word of length 1, such words are
Arnoux–Rauzy, and thus have for each n exactly one left special and one right special factor of length n. If p is of
length |p| ≥ 2, then uβ has for every n ∈ N one left special and |p| right special factors.
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Table 1
The list of β-integers contained in intervals [0, z], [x1, x1 + z] and
[x2, x2 + z] where z = 121•, x1 = 2001•, x2 = 21100•

pred(x1) = 1212 pred(x2) = 21021
0 x1 = 2000 x2 = 21100
1 2001 21101
2 2002 21102

10 2010 21110
11 2011 21111
12 2012 21112
20 2020 21120
21 2021 21121

100 2100 21200
101 2101 21201
102 2102 21202
110 2110 100000
111 2111 100001
112 2112 100002
120 2120 100010

z = 121 x1 + z = 10000 x2 + z = 100011
succ(z) = 200 succ(x1 + z) = 10001 succ(x2 + z) = 100012

These are strings of digits {0, 1, 2} ordered by the radix order, which
moreover satisfy the Parry condition.

6
pred(x2)

6x2
6x2+z 6
succ(x2+z)

6
pred(x1)

6x1
6x1+z 6
succ(x1+z)

60 6z 6
succ(z)

2 0 0 1 0 0 1 0 2 0 0 1 0 0 1 0 0

3 0 0 1 0 0 1 0 2 0 0 1 0 0 1 0 0

0 0 1 0 0 1 0 2 0 0 1 0 0 1 0 2

Fig. 2. The β-integers from Table 1 drawn on the real line.

As a continuation of this paper, it would be interesting to study the factor complexity of a fixed point of a
substitution defined by a nonsimple Parry number. It would also be interesting to compute explicitly the factor
complexity in the nonaffine case. In particular, is it possible that the factor complexity is ultimately affine, that is,
C(n) = an + b for n ≥ n0 ? Due to Lemma 3.11, there cannot exist finitely many maximal left special factors in the
nonaffine case, hence a > m − 1 in such a case.
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