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This paper is a contribution to the theory of weakly sequentially complete
Banach algebras A. We require them to have bounded approximate identities and,
for the most part, to be ideals in their second duals, so that examples are the group
algebras L1(G) for compact groups G or the Fourier algebras A(G) for discrete
amenable groups G. In Section 2 we present our main result, that the topological
centre (or set of weak* bicontinuous elements) of A** is identifiable with A. As a
corollary, we deduce in Section 3 that each left A-module homomorphism from A*
to A*A can be realized as right translation by an element of A. These conclusions
generalise recent advances in the subject. In Section 4 we take a special algebra,
l 1(S ) for a commutative discrete semigroup S, and show that if its second dual has
an identity then that identity must lie in l 1(S). � 1998 Academic Press

INTRODUCTION

This paper had its genesis in a beautiful and brief argument which can
be found in its clearest form in Lemma 2.1 of U� lger's paper [27]. Let us
recall it by proving informally a simple result: let A be a Banach algebra
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which is weakly sequentially complete as a Banach space, whose second
dual A** has an identity =, and suppose that the bounded approximate
identity (bai) (en) (which must then exist in A) is sequential; then = # A
(regarded as a subset of A**). The proof is this. Any weak* cluster point
in A** of (en) is quite easily seen to be a right identity for A** and there-
fore must be =. This means that en � = in the weak* topology. Hence (en)
is weakly Cauchy in A, and so convergent in A by weak sequential com-
pleteness. Uniqueness of limits in A** shows that = # A.

The simplicity of the argument prompts two questions. The first is
whether it can be applied in other situations. In fact it has already been
used to establish variations on the result given above. In [19] (Theorem
2.1) it was shown that a weakly sequentially complete Banach algebra A
with a sequential bai cannot be Arens regular, and later in the same paper
(Theorem 3.4(i)) that, with the additional hypothesis that A is a right ideal
in A** (actually a weaker assumption suffices), the topological centre of
A** (definition below) is A itself.

The second question is whether the restriction to countable bai's is
necessary. U� lger himself has already made progress in this direction. In
[27] he removed the hypothesis that the bai should be sequential from the
Arens regularity result already mentioned. In [28] he characterised the
elements of the topological centre of weakly sequentially complete algebras
without bai's, although he needed to impose other strong conditions (we
give more information in Section 2), and this generalises the result quoted
above. In Theorem 2.1(iii) we give a version of the latter result which
requires only a (non-sequential) bai but which again needs a further
hypothesis, that the algebra should be an ideal in its second dual. Our
approach to this problem requires a way of passing from countable situa-
tions to general ones. We find that our needs are met by the Eberlein�
S2 mulian Theorem which says that a weakly sequentially compact subset of
a Banach space is weakly compact.

In Section 3 we show that the theory of the topological centre is of other
than intrinsic interest by applying Theorem 2.2 to an apparently uncon-
nected situation. In Theorem 3.1 we show that if A is a weakly sequentially
complete Banach algebra with a bai which is an ideal in its second dual
then any left A-module homomorphism T : A* � A*A is of the form
Tf = fz ( f # A*) for some z # A. This applies in particular to L1(G)-
homomorphisms T : L�(G) � C(G) when G is a compact group, and to
A(G)-homomorphisms T : VN(G) � UCB(G� ) when A(G) is the Fourier
algebra of a discrete amenable group G.

One aspect of our second question concerns the result with which we
began. If A is a weakly sequentially complete Banach algebra whose second
dual has an identity, must A itself have an identity? An obvious place to
begin looking for a counter-example is amongst semigroup algebras l 1(S ).
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Section 4 is devoted to a proof that such a quest must fail if S is com-
mutative, for in that case if l 1(S )** has an identity, so does l 1(S )
(although there need not be an identity in S itself ). Of course, in this situa-
tion, l 1(S ) may not be an ideal in l 1(S )**. The actual result proved
(Theorem 4.2) is much stronger, for it determines the exact (infinite) vector
space dimension of the set of right identities in l 1(S )** if l 1(S ) has no
identity.

An essential ingredient in our development is a general structure theory
for second duals due to M. Grosser [7]. That this work has had less
impact than it deserves may be due to its generality (we shall present only
special cases below) and perhaps also to the fact that it is written in the
German language. We shall include in Section 1 the proofs of the results
from [7] which we use.

We should like to thank the referee for some significant contributions
to the paper, and in particular for telling us how to obtain the results of
Section 3 in the present quick manner.

1. GENERAL BANACH ALGEBRAS

Let A be a Banach algebra which for definiteness we take as over C,
though our results are equally valid for real algebras.

For +, & # A** there are nets (xi), ( yj) in A with w*-limi xi=+ (the weak*
limit in A** with A considered as embedded in A**) and w*-limj yj=&. Then
the first (resp. second) Arens product in A** is determined by

+&=w*-lim
i

(w*-lim
j

xiyj) (resp. + b &=w*-lim
j

(w*-lim
i

xi yj)).

This description makes the distinction between the two multiplications
clear, though it does not show why the limits exist; that comes from an
alternative approach which defines successively fx # A*, &f # A* and
+& # A** for x, y # A, f # A* and +, & # A** by

( fx, y) =( f, xy) , (&f, x)=(&, fx), (+&, f )=(+, &f )

and similarly

( yf, x) =( f, xy) , ( f+, y)=(+, yf ) , (+ b &, f )=(&, f+) .

These formulas show that + b y=+y and x b &=x& for x, y # A, +, & # A**.
The product +& is weak* continuous in + for fixed &, and weak* continuous
in & when + is fixed in A. Thus A�4(A**) where

4(A**)=[+ # A**: & [ +& is continuous in the weak* topology];
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4(A**) is the topological centre of A**. When 4(A**)=A**, A is called
Arens regular, and in that case + b &=+& for all +, & # A**. In this paper
when A** is referred to as an algebra it will be with respect to the first
Arens product unless the second is mentioned explicitly.

When A has a bounded right approximate identity (brai) (ei), any weak*
cluster point = of (ei) in A** satisfies firstly x==w*-limi xei=x (since
xei � x even in norm) and then (on taking weak* limits in x) +==+ for
+ # A**. Thus = is a right identity for A**. If (ei) is a (two-sided) bounded
approximate identity (bai) for A, then any weak* cluster point = is a right
identity for A** and a left identity for (A**, b), but not usually an identity
for A**; however for x # A it is true that x==x==x.

The closed subspace

WAP(A)=[ f # A*: (+&, f ) =(+ b &, f ) for all +, & # A**]

=[ f # A*: x [ xf (A � A*) is weakly compact]

(for the equivalence of these two descriptions see, for example, Theorem 1
of [2] and the remarks which follow it) is called the space of weakly almost
periodic functionals on A. The dual WAP(A)* has two multiplications
defined on it in the same manner as A** does, but these two coincide.
Restriction to WAP(A) is a homomorphism of both A** and (A**, b) onto
WAP(A)*.

We write A*A for the closed linear span in A* of [ fx : f # A*, x # A].
When A has a brai the Cohen-Hewitt factorisation theorem (Theorem
32.22 of [10]) shows that in fact A*A=[ fx : f # A*, x # A]. In our first
theorem and its corollary we show that, when A has a brai, A** is
isomorphic, in the category of Banach spaces and continuous linear maps,
to the direct sum A**$(A*A)*� (A*A)= and that this decomposition
carries with it a great deal of the algebraic structure. The results are, in all
their essentials, due to M. Grosser ([7], especially Satz 4.14 (i) and pages
181, 182). We give the simple proof.

Theorem 1.1. Let A have a brai. Then (A*A)= is the ideal of right
annihilators in A**. (A*A)* has a natural Banach algebra structure under
which it is isomorphic (as a Banach algebra, but not necessarily isometric)
with the Banach algebra HomA(A*, A*) of continuous homomorphisms of
the right A-module A* to itself (so that T # HomA (A*, A*) means T( fx)=
(Tf ) x for f # A*, x # A). In particular, (A*A)* has a two-sided identity.

Proof. If & # (A*A)= then (&f, x) =(&, fx)=0 ( f # A*, x # A), so that
(+&, f ) =(+, &f )=0 (+ # A**, f # A*) and & is a right annihilator. Con-
versely if & is a right annihilator then in particular x&=0 for all x # A,
whence (&, fx) =(x&, f ) =0 for all f # A*, x # A, so that & # (A*A)=.
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(A*A)* is, as a Banach space, isomorphic with the quotient
A**�(A*A)=; since this is the quotient of a Banach algebra by a closed
ideal, (A*A)* is a Banach algebra.

For each & # A**, T& f =&f ( f # A*) obviously defines a continuous right
A-module homomorphism of A*. The kernel of the continuous linear
map & [ T& consists of [& : &f =0 for all f # A*], so & is in the kernel if and
only if (&, fx) =(&f, x)=0 ( f # A*, x # A), that is & # (A*A)=. Thus
A**�(A*A)= is continuously and injectively mapped onto a subalgebra of
HomA (A*, A*). Conversely let = be any right identity for A**. We
associate with T # HomA (A*, A*) the element &T of A** obtained by
writing (&T , f ) =(=, Tf ) ( f # A*). Obviously T [ &T is continuous. Also
(&T f, x) = (&T , fx) =(=, T( fx))=(=, (Tf ) x) =(x=, Tf ) = (x, Tf ) =
(Tf, x) ( f # A*, x # A), so that Tf =&T f. Since T [ &T [ T&T

is the
identity map the isomorphism between HomA (A*, A*) and (A*A)* is
established.

To conclude we observe that HomA (A*, A*) obviously has an identity. K

The defining relation for &T in the above proof shows that =&T=&T .
From this observation we easily deduce

Corollary 1.2. Let = be any right identity of A**. Then =A** is
isomorphic (as a Banach algebra, but not necessarily isometric) with (A*A)*,
and (A*A)==[&&=& : & # A**]. Thus, as Banach spaces, A**$(A*A)*�
(A*A)=.

Together 1.1 and 1.2 provide a general form for much of the structure
theorem for the second dual of L1(G) where G is a compact group
(Theorem 3.3 of [12]).

Although the algebras =A** are Banach algebra isomorphic with
(A*A)*, they are not usually isomorphic with (A*A)* when =A** has the
topology induced by the weak* topology of A** and (A*A)* has its weak*
topology. For example, whereas (A*A)* always has a compact unit ball,
when A has a two-sided bai =A** is not closed unless =A**=A** (because
=A** contains =A=A and so is dense in A**).

The reason why (A*A)* plays such an important part in the theory of
A** was recognised long ago by M. Grosser ([9], Lemma 1). He intro-
duced the action C of our next theorem.

Theorem 1.3. The projection ?: A** � (A*A)* adjoint to the inclusion
A*A � A* is a weak* continuous surjective homomorphism.

There is a natural action + [ + C ! (+ # A**, ! # (A*A)*) of (A*A)* on
A** with the property that +&=+ C ?(&) (+, & # A**). Moreover,
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(i) if A has a left approximate identity, ? is injective on A (regarded
as a subalgebra of A**);

(ii) if (&i) is a bounded net in A**, ?(&i) � ?(&) in the weak* topology
of (A*A)* and * # 4(A**), then *&i � *& in the weak* topology of A**;

(iii) if + # A** is such that A+�A, then ' [ ?(+) ' is weak* con-
tinuous on (A*A)*.

Proof. That ? is a weak* continuous surjective homomorphism is
immediate from the observation that (A*A)* is the quotient of A** by its
ideal (A*A)=, and that from this viewpoint ? is just the quotient mapping.

Now we define an action f [ ! C f of (A*A)* on A* by writing for
! # (A*A)* and f # A*, (! C f, x)=(!, fx) (x # A). We define + [ + C !
to be the adjoint of f [ ! C f.

For & # A**, f # A* and x # A we have (&f, x) =(&, fx)=(?(&), fx) =
(?(&) C f, x). therefore, for + # A**, (+&, f )=(+, &f ) =(+, ?(&) C f ) =
(+ C ?(&), f ) .

To prove (i), let (ei) be the left approximate identity for A. If ?(x)=0
for some x # A, then eix=ei C ?(x)=0 for all i, whence x=0. Thus ? is
injective on A.

To prove (ii) we use the following lemma. We state it precisely because
we need it frequently.

Lemma 1.4. Let K be a compact set, let (ai) be a net in K and let a # K.
If each convergent subnet of (ai) has limit a then ai � a.

(The proof is simple. If ai�% a, there exist an open neighbourhood V of
a and a subnet (aij

) of (ai) with aij
� V for all j. Since K is compact, (aij

) has
a convergent subnet whose limit cannot be in the open set V, contrary to
the hypothesis that it is a.)

To finish the proof of (ii), take any weak* convergent subnet of (&i), say
&ij

� {. Then ?(&ij
) � ?({). By hypothesis, ?(&ij

) � ?(&), so that ?({)=?(&).
Since * # 4(A**) we find *&ij

� *{=* C ?({)=* C ?(&)=*&. The conclu-
sion now follows from the Lemma.

Finally we come to (iii). Take f # A*, x # A. Then x+ # A, so also
fx+ # A*A. For ' # (A*A)* we have '=?(&) for some & # A** and since ?
is a homomorphism we find

(?(+) ', fx)=(?(+) ?(&), fx)=(+&, fx)=(x+&, f )

=(&, fx+)=(?(&), fx+) =(', fx+)

which shows that ?(+) ' is weak* continuous in '. K
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Item (i) of the above theorem suggests that ? need not always be injec-
tive on A, or in other words that the natural map from A to (A*A)* need
not be injective. Here is a simple example which confirms that this is
the case. Let X be a Banach space made into an algebra by taking a fixed
f0{0 in X* and writing xy=( f0 , y) x. Then for f # X*, x, y # X we have
( fx, y) =( f, xy)=( f0 , y)( f, x), whence fx=( f, x) f0 , so that X*X is
one-dimensional.

Most of the Banach algebras A we consider are at least one-sided ideals
in A**. Under such conditions, conclusions like those of Theorem 1.1 or
Corollary 1.2 can often be strengthened.

Theorem 1.5. Let A have a brai and suppose A is a right ideal in A**.
Then ?: A** � (A*A)* is a weak* continuous surjective homomorphism of
both A** and (A**, b) onto (A*A)*. The multiplication in (A*A)* is weak*
separately continuous. If A has a two-sided bai, then WAP(A)=A*A.

Proof. We first prove separate continuity in (A*A)*. Since ? is surjec-
tive, ?(+) ?(&) represents an arbitrary product in (A*A)* for +, & # A**.
That ?(+) ?(&)=?(+&) is weak* continuous in ?(+) follows from the weak*
continuity of +& in + and the weak* continuity of ?. Continuity in ?(&)
follows immediately from Theorem 1.3(iii) since A is a right ideal in A**.

Since ? is a homomorphism on A, taking weak* limits shows that it is
a homomorphism for (A**, b).

(Readers familiar with second duals will recognize that when A is a right
ideal in A**, the subspace A*A of A* is right��as well as left��introverted,
so that ? is a homomorphism of the second Arens multiplications on A**
and (A*A)*. Separate continuity in (A*A)* says that the two multiplica-
tions in this space coincide. Notice that we are not saying that, for a right
identity = of A**, multiplication in =A** is separately continuous in the
topology induced by the weak* topology of A**.)

Weak* separate continuity in (A*A)* shows that A*A�WAP(A). Now
take = to be a weak* cluster point of a bai, so that it is a right identity for
A** and a left identity for (A**, b). Let f # WAP(A) so that (+&, f ) =
(+ b &, f ) for all +, & # A**. Put +== to find that for all & # A** we have

(&&=&, f )=(= b &&=&, f ) =0.

Thus, using Corollary 1.2, f # (A*A)===A*A. K

The inclusion WAP(A)�A*A is true more generally (Proposition 3.3 of
[16]). The equivalence (i) � (iii) of the next theorem is in [19] (Theorem 2.6).
One of the significant problems concerning A* as a right module over A
is to determine when it factorizes, that is, when A*=A*A. We give some
simple equivalences in terms of A**.
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Theorem 1.6. The statements (i)�(iv) are equivalent for a Banach
algebra with a brai.

(i) A* factorizes on the right (that is, A*=A*A).

(ii) A** has no non-zero right annihilator.

(iii) A** has an identity.

(iv) A** has a unique right identity.

Moreover if A has a two-sided bai and is a right ideal in A**, each of
(i)�(iv) is equivalent to

(v) A is Arens regular.

Proof. The equivalence of (i), (ii) and (iii) follows from Theorem 1.1
since A*=A*A � (A*A)==0 � A**=(A*A)*. To see the equivalence
with (iv), simply observe that, given a right identity = of A**, =$ is a right
identity if and only if =$==+\ where \ is a right annihilator. The equiv-
alence with (v) follows from Theorems 1.1 and 1.5. K

Of course any algebra A with identity satisfies (i)�(iv) of the last
theorem, so it is obvious that (v) is not equivalent to the other conditions
in general. The real point of the theorem is to suggest that the size of the
ideal of right annihilators in A** is a measure of the non-factorizability of A*.

Many of our arguments use sequential approximate identities. We next
give some variants of a lemma used by U� lger ([27], Lemma 2.2) to reduce
the general to the sequential case.

Lemma 1.7. Let (ei) be a bai (resp. brai) for a Banach algebra A. Let
X=[x1 , x2 , ...] be any countable subset of A. Then there exist a closed
subalgebra A(X ) of A and a sequence (in) such that X�A(X ), e in

# A(X ) for
all n and (ein

) is a bai (resp. brai) for A(X ).
In each case, the closed left ideal L(X ) generated by A(X ) has (ein

)
as a brai.

The algebras A(X ) are not uniquely determined, but for any two countable
sets X1 , X2 there is a third X3 such that A(X1)+A(X2)�A(X3).

Proof. We sketch the proof for the case of the bai. The construction is
inductive. Enumerate the elements of the subalgebra of A over the coun-
table field Q+iQ generated by x1 as u11 , u12 , ... . Choose i1 such that
&u11&u11ei1

&<1 and &u11&ei1
u11&<1. When (urm)�

m=1 and ir have been
chosen for r�n&1, enumerate the elements of the subalgebra over Q+iQ
generated by [x1 , ...xn] _ [ei1

, ...ein&1
] as un1 , un2 , ... and choose in such that

&urm&urmein
&<1�n and &urm&ein

urm&<1�n for 1�r, m�n. Then for
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any element u in the subalgebra over Q+iQ generated by [x1 , x2 , ...] _
[ei1

, ei2
, ...] we have &u&uein

& � 0 and &u&ein
u& � 0, and these relations

hold for u in the closure of this subalgebra too. We take this closure to be
A(X ), so that A(X ) is just the Banach subalgebra of A (over C) generated
by [x1 , x2 , ...] _ [ei1

, ei2
, ...].

For u # A(X ) we have uein
� u and so for each x # A also xuein

� xu.
Therefore (ein

) is a brai for the closed left ideal L(X )=AA(X ) generated by
A(X ). (We can also see that L(X )=[x # A : xein

� x].)
If X1 and X2 are two countable sets, A(X1) has bai (eim

) and A(X2) has
bai (ejn

), take X3=X1 _ X2 _ [ei1
, ei2

, ...] _ [ej1
, ej2

, ...] to get the required
result. (The subalgebra A(X ) is easily seen not to be uniquely determined
because of the arbitrary choices of in in its construction.) K

Corollary 1.8. Let (ei) be a brai for A and let X/A be countable. If
A is a left ideal in A**, then L(X ) is a left ideal in A** (and so in L(X)**).
Let (ein

) be the brai for A(X ) produced in Lemma 1.7. Let =X be any weak*
cluster point of (ein

) in A**. Then =X is a right identity for the weak* closure
of A(X ) in A** (which can be identified with A(X )**). Moreover L(X )**=
A**=X . If in addition A is a right ideal in A**, then L(X ) is a right ideal
in L(X )** and L(X )=A=X .

When (ei) is a two-sided bai, then also =X x=x for x # A(X ). Moreover if
A is a right ideal in A** the idempotent ?(=X ) is an identity for the algebra
?(A(X )**). Thus ?(=X ) is uniquely determined by A(X ), and moreover
?(ein

) w�w* ?(=X ). Further if A(X )�A(Y ) then ?(=X ) ?(=Y)=?(=X )=
?(=Y) ?(=X ).

Proof. Since L(X )=AA(X ) we have A**L(X )�A**AA(X )�AA(X )=
L(X ). It is elementary Banach space theory that A(X )** is the weak*
closure of A(X ) and we know that any weak* cluster point of a brai for
A(X ) is a right identity for A(X )**. From AL(X )�L(X ) we get by weak*
continuity first that AL(X )**�L(X )** and then that A**L(X )**�
L(X )**. Since =X # L(X )** we deduce that A**=X �L(X )**. On the other
hand, since =X is a right identity for L(X )** we have L(X )**=
L(X )** =X�A**=X , so that L(X )**=A**=X . In particular, A=X�L(X)**.
If A is a right ideal in A**, then A=X �A, so A=X �L(X)** & A=
L(X ). Since L(X )=L(X ) =X�A=X , we conclude L(X )=A=X . Then
L(X ) L(X )**�AA**=X�A=X =L(X ).

When (ei) is two-sided, Lemma 1.7 gives ein
x � x in norm for x # A(X ),

and taking the weak* limit gives =X x=x. Moreover (?(ein
)) is a two-sided

bai for ?(A(X )), and since multiplication in (A*A)* is separately con-
tinuous in the weak* topology when A is a right ideal in A** (Theorem
1.5) we deduce that ?(=X ) is a two-sided identity for the weak* closure of
?(A(X )) in (A*A)*, that is, for ?(A(X )**). Thus ?(=X ) is unique and so
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does not depend on the cluster point =X of (ein
) chosen, and we deduce that

?(ein
) w�w* ?(=X ) in (A*A)*. The remaining conclusions follow easily. K

The meaning of Corollary 1.8 is illuminated by the special case in which
A=L1(G) where G is a compact group. Here A is a two-sided ideal in A**
and A*A is the space LUC(G) of left uniformly continuous functions on G
which, since G is compact, is just the space C(G) of continuous functions.
Thus (A*A)* is the convolution algebra M(G) of bounded measures on G.
We take the bai (ei) to consist of positive functions supported by
neighbourhoods of the identity in G. Each idempotent =X is a weak* cluster
point of a sequence (ein

) taken from (ei). Because (ein
) is a bai for a sub-

algebra of A its weak* cluster points are idempotents in A**. Also ?(=X )
is a weak* cluster point in M(G) of (?(ein

)), and so is a positive idempotent
measure. Therefore ?(=X ) is the Haar measure mH of a compact subgroup
H of G [29] and since (ein

) is countable H must be a G$ , so that G�H is
metrizable. A=X (or L1(G) V mH) is not only a subalgebra of A but is also
a quotient space via the map x [ x=X ; as such it is identifiable with
L1(G�H ) when G�H is equipped with its unique bounded left G-invariant
measure. Since H need not be normal, L1(G�H) need not have a natural
structure as a convolution algebra. Thus studying the algebra A by means
of the subalgebras A=X is an abstract version of studying L1(G) by con-
sidering the spaces L1(G�H ) for metrizable quotients G�H.

Since G is compact, its group algebra L1(G) has a two-sided bai which
is central (i.e., ei x=xei for all i and all x # A=L1(G)) (see [21]). For such
a bai, taking weak* limits gives =Xx=x=X for all x # A, which means that
the corresponding subgroup H is normal. The map x [ x=X is then a
Banach algebra homomorphism of A onto A=X =L(X ), and L(X ) is both
a left ideal and a quotient algebra of A.

2. ELEMENTS IN THE TOPOLOGICAL CENTRE

The main aim of this section is to produce a variant of a theorem of Lau
and U� lger [19] which is valid for all weakly sequentially complete algebras
with bai's and not just those in which the bai is sequential. Whether this
is possible without making additional hypotheses we do not know. U� lger
himself [28] has given a result which removes the requirement for a bai
altogether, but he has some strong extra assumptions. We state for com-
parison, as one theorem, three results which are (i) Theorem 3.4 of [19],
(ii) Theorem 2.2 of [28], and (iii) a consequence of our Theorem 2.2
below.

Theorem 2.1. Let A be a Banach algebra which is weakly sequentially
complete as a Banach space.
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(i) Let A have a sequential bai and suppose A4(A**)�A. Then
4(A**)=A.

(ii) Let A be commutative, semisimple and completely continuous
(definition below). Then + # 4(A**) if and only if +A**�A and A**+�A.
In particular if A has a bai, then 4(A**)=A.

(iii) If A has a bai, is a right ideal in A** and 4(A**)A�A, then
4(A**)=A.

A completely continuous Banach algebra A is one for which the maps
x [ xy and x [ yx are compact for each y # A. Since A is a right ideal in
A** if and only if x [ yx is weakly compact for all y # A (Lemma 4.3 of
[2] for example), completely continuous algebras A are left (and similarly
right) ideals in A**. On Banach spaces isomorphic with any L1-space, the
composition of two weakly compact operators is compact ([4], VI.8.13). If
A has a bai, then its elements factorize (Cohen's Theorem, 32.26 in [10]),
with the consequence that if multiplication by every element is weakly
compact, then it is compact. We deduce that in this case, being completely
continuous is the same as being an ideal in A**.

The reader might notice that where (i) has the hypothesis A4(A**)�A,
(iii) has 4(A**) A�A. This is of little significance, and is a consequence
of how the proof is arranged. However, hypotheses of the kind
4(A**) A�A are unsatisfactory. To see why, consider the case when
A=L1(G) where G is a locally compact, non-compact group. Here A does
satisfy the hypothesis but at present there is no way of verifying this apart
from proving that 4(A**)=A by other means (see [17]). The most
natural condition which implies this hypothesis is that A should be a left
ideal in A**, so that Theorem 2.1(iii) really requires that A should be an
ideal in A**. Of course, if A is commutative and is a one-sided ideal in A**
it is automatically two-sided (because A is then in the algebraic centre of
A**).

Theorem 2.1(iii) is an obvious consequence of the following more general
result. We take a brai (ei) in A and let E be a closed linear subspace con-
taining all the ei . Then E** is the weak* closure of E in A**.

Theorem 2.2. Let A be weakly sequentially complete. Let * # 4(A**)
satisfy *A�A.

(i) Suppose A has a sequential brai. Then * # A.

(ii) Suppose (ei) is a two-sided bai and that AE**�A where E is
some closed subspace containing (ei). Then * # A.

Proof. (i) Let (en) be the sequential brai. Each weak* cluster point =
of (en) is a right identity for A**. Since * # 4(A**), each weak* cluster
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point of (*en) is of the form *= for some =, and so equal to *. Therefore by
Lemma 1.4, *en w�w* *. Thus (*en) is weakly Cauchy and so convergent in
A to a limit which can only be *, whence * # A.

(ii) We shall show that [*e i] is weakly relatively compact in A. Then
A must contain all weak* cluster points of (*ei), and these are of the form
*==* because any weak* cluster point = of (ei) is a right identity.

We take K such that &ei&�K for all i, and we write EK** for the closed
ball in E** with radius K. We shall show [*+ : + # EK**] is weakly sequen-
tially compact and so (by Eberlein�S2 mulian) weakly compact. We take a
sequence X=(xm) in the ball EK in E and form a left ideal L(X ) with a
sequential brai (ein

) such that ein
xm � xm for each m (Lemma 1.7).

Now let =X be weak* cluster point of (ein
). We prove *=X # L(X )**.

Indeed, for any m, n we have (*eim
) ein

# Aein
�L(X ). Since (ein

) is a brai for
L(X ) and eim

# L(X ), taking the limit over n gives *eim
# L(X ). Since

* # 4(A**) we deduce that *=X is in the weak* closure (in A**) of L(X ),
that is, in L(X )**.

We now show that in fact *=X # 4(L(X )**). From the Krein�S2 mulian
Theorem (in particular Theorem V.5.6 of [4]) it is enough to show
that & [ *=X & is weak*�weak* continuous on bounded sets in L(X )**.
Further, L(X )** can be regarded as a subalgebra and a normed subspace
of A** (using the second adjoint of the inclusion L(X ) � A) and its weak*
topology _(L(X )**, L(X )*) is just the topology induced on L(X )** by
_(A**, A*) (this fact is easy to see directly because A* � L(X )* is surjec-
tive, and also follows from Theorem 16.11(i) of [14]). Now let (&j) be a
bounded net with &j w�w* & in L(X )**, and so also in A**. Since ?: A** �
(A*A)* is a weak* continuous homomorphism and A=X/A by hypothesis
(because =X # E**), we can apply Theorem 1.3(iii) to find ?(=X&j)=
?(=X) ?(&j) w�w* ?(=X) ?(&)=?(=X&). Then from Theorem 1.3(ii) we deduce
that *=X &j w�w* *=X &, in A** and so also in L(X )**, as required.

Since L(X ) has a sequential brai, we can apply the first part of the
present theorem to get *=X # L(X )�A. Therefore from our hypotheses
*=X E K**�A. Since & [ (*=X) & is now seen to be continuous from E**
with its weak* topology to A with its weak topology, we find that *=XE K**
is weakly compact. But since =Xxm=xm for each m (Corollary 1.8),
[*xm]�*=XE K**, and our conclusion follows from this. K

Corollary 2.3. Let A be weakly sequentially complete with a brai and
suppose that A** has a unique right identity =.

(i) If A has a sequential brai then = # A.

(ii) If the brai is two-sided and there is E as above for which
AE**�A, then = # A.
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Proof. Theorem 1.6 tells us that = is actually the identity of A**. It
therefore trivially satisfies = # 4(A**) and =A�A. So (i) (resp. (ii)) follows
from Theorem 2.2(i) (resp. 2.2(ii)). K

Examples 2.4. (a) When G is a compact group, L1(G) is a two-sided
ideal in L1(G)** (as in Examples 3.2(a)) so that 4(L1(G)**)=L1(G).
(This was proved in [12], Theorem 3.3(vi).)

(b) For a locally compact group G which is not compact, L1(G) is
not an ideal in its second dual ([8]). The best our theory can achieve here
is to take a compact neighbourhood V of the identity in G and write L1(V )
for the set of functions in L1(G) with supports in V. We take E of
Theorem 2.2(ii) to be L1(V ); this certainly contains a two-sided bai.
Then ?(L1(V )**) consists of those elements of LUC(G)* carried by V,
that is, the bounded measures M(V ) on V. Thus AE**=L1(G) L1(V )**=
L1(G) C ?(L1(V )**)=L1(G) V M(V )�L1(G). So Theorem 2.2(ii) holds.

Of course we again meet the problem of knowing which elements *
belong to 4(L1(G)**). Here we can use symmetry to deduce L1(V )**
L1(G)=L1(V )** b L1(G)�L1(G), and Theorem 2.2(ii) then gives L1(V )**
& 4(L1(G)**)�L1(G). This is not the best possible result: it is shown in
[17] that 4(L1(G)**)=L1(G).

(c) The weighted convolution algebra L1(R+, w) (where w is a con-
tinuous weight with w(0)=1 which is regulated, that is, lims � � w(s+t)�
w(s)=0 for all t>0) and the Volterra algebra V=L1(0, 1) are both ideals
in their second duals, so that Theorem 2.1 applies. The conclusion about
their topological centres is due to Ghahramani and McLure ([5], Theorem
2.2(a)), but since these two algebras have sequential bai's, this result follows
from Theorem 2.1(i) as was observed in [19]. However, the Volterra-like
algebras of [25], which generalize the Volterra algebra, need not be com-
mutative and they have bai's which need not be sequential, so that
Theorem 2.1(ii) is needed to obtain a new proof of Theorem 3.7 of [25].

(d) When G is discrete and amenable, the Fourier algebra A(G) has
a bai and is an ideal in its second dual (see Example 3.2(d)). We conclude
from Theorem 2.1(iii) that 4(A(G)**)=A(G); this was proved in [18]
(Theorem 6.5(i)) and also follows from Corollary 2.4 of [28].

(e) In [13], Kamyabi-Gol discusses the second duals of hyper-
groups. A hypergroup A is a Banach algebra of measures on a locally com-
pact space with certain properties which include having a bai. Being a
Banach space of measures, A is weakly sequentially complete. Also,
Kamyabi-Gol shows that A is an ideal in its second dual if and only if the
underlying space is compact. Thus we recover his conclusion that the cen-
tre of A** is A in this case. (Medghalchi ([20], Theorem 14(a)) has a
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similar result��also a consequence of Theorem 2.1(iii) when the underlying
space is compact��using a different definition of hypergroup.)

(f ) The conclusion that 4(A**)=A may not hold when A is not an
ideal in A**. An illustration of this fact is easy to provide. Let X be any
Banach space and turn it into a Banach algebra by writing xy=0 for
x, y # X. Let A be X with an identity adjoined (so that A trivially has a
bai). Then A** is just X** with an identity adjoined, and X** also has the
multiplication in which every product is zero. Therefore even when A is
weakly sequentially complete , 4(A**)=A**.

A more satisfying example is supplied by Saghafi [26]. She presents
some commutative convolution L1-algebras on semigroups, with bai's, for
which the centres of the second duals are much larger than the original
algebra; these algebras are, of course, not ideals in their second duals.
A specific example is provided by L1(R) with the mutiplication max in R.
(See [26], Theorem 4.12).

(g) The existence in A of a bai cannot simply be omitted if the
conclusion 4(A**)=A is required. An easy example is provided by the
algebra A=l 1(N) with the pointwise multiplication. Then A** can be iden-
tified with the space M(;N) of bounded measures on the Stone�C2 ech com-
pactification of the discrete space N; we can write M(;N) as a direct sum
l 1(N)�M(;N"N) and the multiplication is just the original one in l 1

together with the zero multiplication in M(;N"N) (that is, +&=0 for all
+, &). It is easy to see that A has no bai, is an ideal in its second dual, and
that 4(A**)=A**. This also follows from Corollary 2.4 of [28].

3. MODULE HOMOMORPHISMS

In Theorem 1.1. we saw that the algebra of all right A-module homo-
morphisms from A* to itself can be identified with the algebra (A*A)*
when A has a brai. In the present section we shall see that the algebra of
left A-module homomorphisms from A* to A*A is naturally isomorphic
with A itself when A has a two-sided bai, is a right ideal in its second dual,
and is weakly sequentially complete as a Banach space. This conclusion
was proved for A=L1(G) where G is a compact group by Hewitt and Ross
([10], Theorem 35.13) and also applies when A=A(G), the Fourier
algebra of the discrete amenable group G��see Example 3.2(d). Because it
depends on the general structure of algebras our proof is simpler than the
original one for L1(G). It is possibly even a little shorter (even allowing for
the need to establish 2.2(ii)), and when the approximate identity is sequen-
tial��for example when the G in L1(G) is metrizable��so that only 2.2(i) is
required, it is much shorter.
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We wish to thank the referee for pointing out to us that Theorem 3.1 was
a consequence of Theorem 2.2. This insight has considerably shortened the
proof.

We begin by stating our result precisely. As for Theorem 2.2, there is a
stronger result for the case in which the brai is sequential. Although the
proof involves second duals in an essential way, the statement of the
conclusion only involves first duals. We therefore prefer to state our
hypotheses in terms of A and A*. To relate these to our other results, we
recall ([2], Section 4, Lemma 3) that A is a right ideal in A** if and only
if for each x # A the map y [ xy is weakly compact.

Theorem 3.1. Let A be a Banach algebra for which all maps y [ xy
(x # A) are weakly compact, which has a brai and which is weakly sequen-
tially complete as a Banach space. Let T : A* � A*A be continuous, linear
and satisfy T(xf )=xTf for all x # A, f # A*. Then under each of the addi-
tional hypotheses

(i) A has a sequential brai,

(ii) A has a two-sided bai,

there is z # A with Tf =fz ( f # A*).

Proof. There is a single proof for the two cases; the difference is that
appeal is made to Theorem 2.2(i) or (ii) as appropriate.

We first extend the defining property of T by showing that T(&f )=&Tf
for & # A**, f # A*. Let (ei) be a brai for A. Then for any x # A,

(T(&f ), x) =lim
i

(T(&f ), xei)=lim
i

(eiT(&f ), x)=lim
i

(T(ei&f ), x)

=lim
i

( (ei &)(Tf ), x)=lim
i

(&Tf, xei)=(&Tf, x)

which establishes our assertion.
Now let = be a right identity of A**, so that ?(=) is the identity of

(A*A)* (Theorems 1.1 and 1.3). We find, for any & # A**, f # A*,

(T*?(&), f ) =(T*(?(=) ?(&)), f )=(?(=&), Tf )=(=&, Tf ) =(=, &Tf )

=(=, T(&f ))=(?(=), T(&f ))

=(T*?(=), &f )=( (T*?(=)) &, f ).

Therefore if we write !=T*?(=) # A**, we see that T*?(&)=!&. (This for-
mula actually determines T* since ? is surjective. Although the right hand
side appears to involve & and not merely ?(&), Theorem 1.3 tells us that
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!&=! C ?(&).) We next prove that ! # 4(A**). Let &j w�w* & in A**.
Because T* is an adjoint and therefore weak* continuous, we find

!&j=T*(?(&j)) w�w* T*(?(&))=!&,

as required. From Theorem 2.2 (either (i) or (ii) for the corresponding
cases of the present theorem) we deduce that ! # 4(A**)=A, so that we
can write !=z # A. Finally for any & # A**, f # A* we have

(&, Tf ) =(?(&), Tf )=(T*(?(&)), f )=(z&, f ) =(&, fz).

Thus Tf = fz. K

We now comment on Theorem 3.1 by means of examples and applica-
tions. Although the conclusion of the theorem is asymmetric (it involves
left module homomorphisms, A*A rather than AA*, and so on) the
applications we give are all in fact symmetric since A*A=AA* when, for
example, A is L1(G) or A(G). We do not know whether there are signifi-
cant asymmetric applications.

Examples 3.2. (a) For a compact group G the convolution algebra
L1(G) has a bai and is an ideal in its second dual ([8]). Theorem 2.1 there-
fore applies to show that left module homomorphisms T from L�(G) to
L�(G) V L1(G)=C(G) are all given by convolution on the right by
elements of L1(G). This is Theorem 35.13 of Hewitt and Ross [10].

(b) The conclusion of (a) does not hold for non-compact groups,
and this shows that Theorem 3.1 may not be true if A is not an ideal in
A**. To illustrate using a simple case, let A=l 1(Z) (where Z is the usual
additive group). Since A has an identity, A*A=A*=l �(Z). Let + be an
invariant mean on l �(Z). Then Tf =(+, f ) 1 (where 1 is the constant
function) defines an A-module homomorphism from A* to itself which, as
its range consists of the constant functions, is obviously not convolution by
any element of A.

A conclusion for commutative locally compact groups which is parallel
to Example (a) was presented by Pigno [24]. His homomorphisms are
from L1(G) & L�(G), and his result does not appear to be related to our
theorem.

(c) The Volterra algebra A=L1(0, 1) consists of all functions
integrable on (0, 1) with respect to Lebesgue measure with multiplication
given by the convolution product x V y(t)=� t

0 x(t&s) y(s) ds a.e. (0<t<1).
It is a commutative radical Banach algebra which has a sequential bai and
is an ideal in its second dual (see for example [5] or [25]). For f # A*=
L�(0, 1) and x # A we find easily that fx(t)=�1&t

s=0 f (s+t) x(s) ds a.e., so
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that fx, being essentially the convolution on R of an L� function with an
L1 function, is continuous and bounded, and it is easy to see that
limtZ1 fx(t)=0. Thus A*A is contained in the space C0[0, 1) of con-
tinuous functions on [0, 1) which vanish at 1. Since A*A is closed, L1(0, 1)
has a bai carried by arbitrarily small neighbourhoods of 0, and functions
in C0[0, 1) are uniformly continuous, it is not hard to show that A*A=
C0[0, 1). We deduce from Theorem 3.1 that the space of operators from
L�(0, 1) to C0[0, 1) commuting with the action of L1(0, 1) can be iden-
tified with A.

The Volterra algebra has a sequential bai and so the full generality of
Theorem 3.1 is not needed to deal with it. The more general Volterra-like
algebras of [25] do have two-sided bai's and are ideals in their second
duals, so the conclusion also holds for them.

(d) When G is discrete and amenable, the Fourier algebra A(G) is an
ideal in its second dual ([15], Theorem 3.7) and has a bai ([23],
Section 4.34). The dual of A(G) is identifiable with the von Neumann
algebra VN(G) defined by the left regular representation of G. The space
VN(G) A(G) (=A(G) VN(G) because A(G) is commutative) is the sub-
algebra UCB(G� ) generated by the operators in VN(G) of compact support
(see [6], p. 65). Theorem 3.1 applies to show that the algebra of left A(G)-
homomorphisms from VN(G) to UCB(G� ) can be identified with A(G).

4. RIGHT IDENTITIES IN l 1(S )**

In Corollary 2.3 we saw that certain types of Banach algebras can only
have identities in their second duals if they themselves have identities. As
usual in this paper, there was a contrast there between the situations in
which A the bai was sequential and when it was not, with the latter case
requiring an additional hypothesis. U� lger has another such result in which
an additional hypothesis is needed ([27], Theorem 2.4): a weakly sequen-
tially complete Banach algebra with a bai which is also Arens regular must
have an identity (and, of course, a regular algebra with a bai has an iden-
tity in its second dual). The motivation for the work in this section was the
hope of finding an example which would indicate that some extra
hypothesis was essential; in fact, we shall show that for the convolution
algebra l 1(S) of a discrete commutative semigroup S it is not:

Theorem 4.1. If S is commutative and l 1(S )** has an identity then l 1(S )
has an identity.

We shall establish a result more general than Theorem 4.1. From the
proof of Theorem 1.6 we can see that the set of right identities of l 1(S )**
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is a translate of the subspace consisting of the right annihilators. It there-
fore makes sense to speak of its vector space dimension. We shall show that
if l 1(S)** has a right identity but l 1(S ) does not, then the dimension of the
set of right identities in l 1(S )** is infinite (we give the precise number in
Theorem 4.2). In this form it recalls the result of [1]: if ;S has a right iden-
tity but S does not, then ;S has infinitely many right identities. In fact we
shall need the latter result to establish our conclusion. However, Theorem
4.1 is not a straightforward consequence of [1], for l 1(S )** can have right
identities even though its subsemigroup ;S has none.

The restriction to commutative S follows the tradition set by Hewitt and
Zuckermann [11]. For commutative S they were able to find necessary
and sufficient conditions for l 1(S ) to have an identity (notice that it is not
necessary for S to have an identity��this is apparent from Lemma 4.12).
We shall need to use what is essentially their construction for an identity.
The only work on the non-commutative case we are aware of is for inverse
semigroups in [3]; we shall consider their situation in Corollary 4.14
below.

We begin by describing our cardinal number. If = is a right identity in
l 1(S )** we write

}(=)=min[card(U ) : U�l 1(S ) and = # w*-cl(U )]

and then

}(S)=min[}(=) : = is a right identity for l 1(S )**].

Observe that if = � l 1(S ) then }(=) is infinite, while if = # l 1(S ) then }(=)=1.

Theorem 4.2. Let S be a commutative discrete semigroup, and suppose
l 1(S ) has no identity. If l 1(S )** has a right identity then the vector space
dimension of the set of right identities is at least 22}(S)

.

In this section, we shall denote the unit mass at a point s by s� .
We present the proof through a sequence of lemmas. The first is trivial,

but we state it formally as we use it so often.

Lemma 4.3. If s, t, u # S, st=s and tu=t then su=s.

Proof. su=(st)u=s(tu)=st=s. K

Lemma 4.4. If l 1(S )** has a right identity =, then for each s # S there is
t # S with st=s.

Proof. Because l 1(S)** has a right identity, l 1(S ) has a brai (ei) ([22],
Theorem 5.1.8) and so, being commutative, a bai. In particular we can find
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i such that &s� &s� ei &<1. If ei=�t # S at t� where at{0 for at most countably
many t, this means that &s� &�t at st&<1. Since &s� &=1, this can only
happen if s� =st for at least one t, that is s=st for some t. K

Definition 4.5. Let A�S. A set B is called an identity set for A if for
each a # A there is b # B with ab=a. R(A) denotes the set of all identity sets
for A. We write \(A)=min[card(B) : B # R(A)].

From Lemmas 4.3 and 4.4 we get immediately

Lemma 4.6. If B # R(A) and C # R(B) then C # R(A). If A is finite, then
\(A)�card(A).

Notation 4.7. Fix a finite subset A of S. Take B # R(A) with card(B)=
\(A)=m (say), so that B=[b1 , ..., bm]. Write for 1�i�m,

Si=[s # S : there is t # S with bi st=bi].

Lemma 4.8. Let l 1(S )** have a right identity. Then S1 , ..., Sm are dis-
joint prime subsemigroups of S (that is, st # Si implies both s # S i and t # S i).
Any identity for bi or for any u # Si is in Si .

Proof. That each Si is a semigroup is easy from associativity and com-
mutativity. If st # Si then there is u # S with bi s(tu)=bi (st) u=bi so that
s # Si . Since S is commutative, t # Si also follows, so that S is prime.

To show the Si are disjoint, suppose there is s # Si & Sj with i{ j.
Then there exist ti , tj with bisti=bi , bjstj=bj . Let u be an identity for s
(Lemma 4.4). By Lemma 4.3, biu=bi and b ju=b j . Then, using Lemma 4.6,
we see that B$=([b1 , ..., bm]"[bi , bj]) _ [u] # R(A). But card(B$)�m&1,
contradicting \(A)=m.

Now take any identity s for bi . Let t be an identity for s. Then bist=
bi s=bi , whence s # Si . Again, given u # Si , let t be an identity for u, so that
ut=u. Then for some s we have bius=bi and bi t(us)=bi (ut) s=b ius=bi ,
so that t # Si . K

Lemma 4.9. For any right identity = of l 1(S )**, m�&=&.

Proof. Let E be the finite semigroup with elements e1 , ..., em , � in
which each element is idempotent and any product of distinct elements is
�. It is easy to check that l 1(E) has identity e=e1+ } } } +em&(m&1) �;
this has norm 2m&1. Define .: S � E by .(s)=ei if and only if s # Si and
.(s)=� if s � �m

i=1 S i . Then . is a surjective homomorphism since the S i

are prime subsemigroups. Now . extends to a surjective algebra homo-
morphism .� : l 1(S ) � l 1(E), and so the second adjoint .� ** is a surjective
homomorphism .� **: l 1(S )** � l 1(E )**=l 1(E) (because l 1(E) is finite
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dimensional). Therefore .� **(=) is a right identity for l 1(E); but this can
only be e. Since &.� &�1 we find 2m&1=&e&=&.� **(=)&�&=&. Since m�1
is an integer, m�&=& follows. K

The point of Lemma 4.9 is that the set of integers \(A) is bounded as A
runs through the finite subsets of S.

Notation 4.10. Let M=max[\(A) : A�S is finite]. Fix AM with
\(AM)=M and take BM=[b1 , ..., bM] # R(AM). Form S1 , ..., SM as in 4.7.

Lemma 4.11. (i) For each t # S there exist j with 1� j�M and u # Sj

with tu=t.
(ii) Take j with 1� j�M. Let F�Sj be finite. Then there is u # Sj

with tu=t for all t # F.

Proof. The proofs of the two parts of the lemma use the same tech-
nique.

(i) The set [b1 , ..., bM , t] is finite. There is therefore a finite set
[s1 , ..., sk] of minimal cardinal k, with k�M from 4.10, such that for
1�i�M there is ri with bisri

=bi and also there is j with tsj=t. But this
means that [sr1

, ..., srM
] # R(BM), and therefore it is also in R(AM) and con-

sequently has at least M elements. Thus sr1
, ..., srM

must be distinct, and so
by permuting them we may assume that k=M and bi si=bi for all i. Then
bj sj=bj tells us that sj # Sj (Lemma 4.8) and tsj=t gives the conclusion of
(i) with u=sj .

(ii) For simplicity in notation take j=M. We find a finite set of mini-
mal cardinal [s1 , ..., sk] of identities for the finite set [b1 , ..., bM&1] _ F. As
in (i) we find k�M and we may suppose bi si=bi for 1�i�M&1. Since
t # F implies t # SM , tsi=t for some i with 1�i�M&1 is impossible from
Lemma 4.8. Therefore k=M and tsM=t for all t # F. K

We can now construct right identities for l 1(S )**.

Lemma 4.12. Let S1 , ..., SM be as in 4.10. Then each l 1(Si)** has a right
identity =i and

==\:
i

=i+&\ :
i< j

=i=j++\ :
i< j<k

=i =j =k+& } } } +(&1)M+1 =1=2 } } } =M

is a right identity for l 1(S )**.

Proof. From Lemma 4.11(ii) for each finite set F�Si there is an iden-
tity eF for F in Si . Direct the net (eF )F by inclusion. Then (eF )F , which
consists of elements of norm 1 in l 1(Si)�l 1(S ), must have a weak*
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cluster point =i in l 1(S i)**�l 1(S )**, and this is a right identity for
l 1(S i)**.

Now take t # S. From Lemma 4.11(i) there exist j and u # Sj with tu=t.
Thus t� =j=t� u� =j=t� . Since t� # l 1(S ) commutes with all elements of l 1(S )**,
we find (for example) for any i, k,

t� =i =j =k== it� =j =k==i t� =k=t� =i =k .

From such relationships it is easy to calculate that t� ==t� . That = is a right
identity for l 1(S )** follows. K

Lemma 4.13. Suppose l 1(S ) has no identity. Then there are at least 22}(S)

linearly independent right identities = for l 1(S )** of the form given in
Lemma 4.12.

Proof. Fix any j. Make Sj _ [�] a semigroup by taking [�] to be an
adjoined semigroup zero. Then �j : S � Sj _ [�], defined to be the identity
on Sj and to map S"Sj to �, is a surjective semigroup homomorphism
because Sj is prime (Lemma 4.8). The element =j of l 1(S j)** is a right
identity for l 1(Sj _ [�])**. �j extends to a surjective homomorphism
�j **: l 1(S )** � l 1(S j _ [�])** and �j**(=i)=�� if i{ j, but �j**(=j)=
=j . Therefore �j**(=)==j for each = as in Lemma 4.12. We conclude that
�j ** maps the set of right identities of l 1(S )** onto the set of right iden-
tities of l 1(Sj)** (regarded as a subalgebra of l 1(S j _ [�])**).

If the semigroup Sj has an identity ej then the point mass ej is an identity
=j for l 1(S i), and so also for l 1(S j)**. If every S j has an identity, Lemma
4.12 shows that l 1(S ) has an identity. We deduce that under our
hypotheses, at least one Sj has no identity. We take such a j. According to
[1], the Stone�C2 ech compactification ;Sj of the discrete semigroup Sj has
22}( j)

right identities, where }( j) is the smallest cardinal of a set Uj�Sj

whose closure in ;Sj contains a right identity for ;Sj . We may regard ;S j ,
which can be described as the set of complex homomorphisms of
l �(Sj)=l 1(S j)*, as a subset of l 1(Sj)**, and as such all its elements are
linearly independent. Thus the dimension of the set of right identities in
l 1(S j)** is 22}( j)

. We conclude (using �j** above) that the set of right iden-
tities in l 1(S)** has dimension at least 22}( j)

.
We finish by relating }( j) to }(S). For each j we can find a subset U j of

Sj with card(Uj)=}( j) and = j # cl U j for some right identity =j of ;(S j)
(recall that if =j # Sj then }( j)=1). Take uj # Uj for each j. Consider

u=\:
i

ui+&\ :
i< j

uiuj++\ :
i< j<k

ui ujuk +& } } } +(&1)M+1 u1u2 } } } uM .
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The iterated limit of u when we let first uM w�w* =M , then
uM&1 w�w* =M&1 , ..., and finally u1 w�w* =1 is =. Thus the right identity = is
in the closure of the set of all such u 's, and this has cardinal
max[}(1), ..., }(M )] since at least one of the }( j)'s is infinite. Therefore
}(S)�}( j) for at least one j, and our proof is complete. K

Theorem 4.2 can be applied to prove a result for type of non-com-
mutative semigroup. S is called an inverse semigroup if for each s # S there
exists a unique s* in S with ss*s=s, s*ss*=s* (see [3] for more informa-
tion).

Corollary 4.14. If S is an inverse semigroup and l 1(S ) has a brai but
no right identity, then l 1(S )** has at least 22}(S) right identities.

Proof. The set I(S) of idempotents in S is a commutative semigroup.
According to the proof of Lemma 13 of [3], l 1(S ) has a brai if and only
if l 1(I(S)) does, and the brai for l 1(I(S)) will serve as a brai for l 1(S ). As
l 1(I(S)) is commutative, its brai is actually a bai. We need only apply
Theorem 4.2 to l 1(I(S)). K
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