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1. INTRODUCTION

In this paper, we shall study the existence and regularity of local and
global (in time ¢) strong solutions for the following abstract Cauchy problem
in a real separable Hilbert space H:

du ‘
G OO FBeu) SO, 0<i<T (L))

u(0) = u,, (1.2)

where dp’ is the subdifferential of a time-dependent lower semicontinuous
convex function ¢ from H into [0, +oo] with ¢'# +co, and B(z,-) is a
possibly nonmonotone multivalued nonlinear operator from D(B(t, ))<= H
into H such that D(@p’) = D(B(t, -)) for all + & [0, T|. When B(t, -) is a
monotone-type operator, many results on the existence, uniqueness and
regularity of the (global) strong solution for (C.P.) have been established. In
particular, we refer to Brézis [8]|, Watanabe [32], Maruo [23], Attouch and
Damlamian [1], Kenmochi [18] and Yamada [33].

On the other hand, the study for the case that B(z, -) is not monotone has
been developed recently by several authors under some compactness
assumptions on D(p‘):= {u € H; ¢'(u) < +oo} similar to one other. For
example, Attouch and Damlamian [2] and Biroli [3] dealt with the case
where d¢° = dp (9p' is independent of £) and B(z, -) belongs to a class of
(time-dependent) upper semicontinuous operators. The case that dp' = dg
and B(t, -) = —8y was studied by Koi and Watanabe [19] and the author
[25].

The main purpose of the present paper is to extend these results in the
following three directions:
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(I) Allow the domains D(0¢’) and D(B(t, -)) of ¢ and B(t, -) to move
as time ¢ varies.

(I) Treat a much wider class of perturbations B(¢,-) aiming at an
abstract theory applicable to the Navier—Stokes equation.

(III) Study the case that the initial data u, belong to intermediate classes
between D(¢°) and D(p") (the closure of D(¢°) in the H-norm).

As for the t-dependence of D(d¢'), we shall employ a condition similar to
those of Yamada [33,34] and Otani [26] (see (4. ") below). Concerning
B(t,-), we shall assume only certain demiclosedness and boundedness
conditions relative to dp’ and a measurability condition with respect to time
t (see (A.2)). In order to pursue the last plan, we shall make use of the
nonlinear interpolation theory developed by D. Brézis |5], which makes it
possible to classify intermediate classes between D(p°) and D(p") by
measuring how fast (I + A 8¢®) ' u converges to u in H as 4 | 0. As will be
exemplified in Section 5, generalization in these directions gives a unified
abstract treatment for initial-boundary value problems of some nonlinear
heat equations with a difference term of monotone operators and the
Navier—Stokes-type equations in bounded regions with moving boundaries.

This paper is composed of five sections. Section 2 contains some notions
and known results on the nonlinear interpolation theory and a
Schauder—Tychonoff-type fixed point theorem for multivalued mappings
which will be used later. The existence results for local strong solutions of
(C.P.) are given in Section 3, where method of proofs of them is based on a
Schauder-Tychonoff-type fixed point theorem as in {2] and [3]. In Section 4,
in order to study the global, existence, we shall discuss continuation of the
local strong solutions constructed in Section 3. The last section is devoted to
applications of the preceding abstract results to some initial-boundary value
problems for the Navier—Stokes-type equations in a bounded noncylindrical
domain. In particular, concerning the 3-dimensional nonstationary
Navier-Stokes equation, it is shown that the results of Fujita and Kato [12]
still hold in a form reflecting the noncylindrical nature of the domain.

2. PRELIMINARIES

2.1. Notations and Subdifferential Operators

Let H be a real Hilbert space with the inner product (-, -),, and the norm
| - |4» which are often denoted by (-, ) and | - |, respectively. We denote by
C(la,b}; H) the set of all H-valued continuous functions on |a,b].
LP(a, b; H), 1 < p < o0, denotes the set of all strongly measurable functions
on |[a, b} such that
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b 1/p
Ohnasan = [ 1008 dr) <40 (1< p <o)
[0 0(a.:00) = €88 SUp [0(1)]y < 400 (p= ).
a<t<b

We also denote by L ((0, S]; H) the set of all functions v on (0, S) such
that v € LP(9, S; H) for all d € (0, S). In the case of H=R', we simply
write L?(a, b) or L{,.(0, S| as usual.

Let ¢ be a proper lower semicontinuous convex function from H into
(—o0, +00], where “proper” means ¢ % +o0. Define the effective domain

D(p) of ¢ by D(p) = {u € H; p(u) < +o0} and the subdifferential dp of ¢ by
dp(uy={uc H;p(v)—pW) > (fiv—u) for all v € H}

with domain D(dp) = {u € H; dp(u) + @}. Then, as is well known, dp is a
(possibly multivalued) maximal monotone operator in H and D(p) (the
closure of D(g) in the H-norm) coincides with D(dp). We designate by %
the minimal section of dg, i.e., @°¢p(u) is the unique element of least norm in

do(u).

2.2. Nonlinear Interpolation Classes

Let A be a maximal monotone operator in H with domain D(4), and let
Jy=(I+A4)"", 1> 0. For each a € (0, 1) and p € |1, |, we define the
intermediate class %, ,(4) between D(4) and D(4) by

Fop(A) = {4 € D(A); 1™ |u —J,uly € L5(0, D)},

where L% = L7(dt/t), i€ |/l = U§1S@NP (/D))" if 1< p< oo and
LF(0,1)=L*(0,1).
In what follows, we frequently use the notation

lulg, =17 u—Julylino.r-

.,
Since the function [¢7'(I —J,)u|, is a monotone decreasing function of
t€(0,1] for each u€ H, the following proposition is derived (see
Brézis [5-7]).

ProposITION 2.1. The following inclusion holds:

lulg, <2lulg, Jorall a€(0,1)if1< p<g< o, (2.1)

IuI%'q<z—_?|u|\,a‘p forall 1< p,ggoo if0<f<ac<].(2.2)

In the case of 4 =0dp, %, ,(dp) can be characterized by the behavior
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(near t=0) of the semigroup S(f)=e ‘* generated by —d¢p as follows
(see [5]).

THEOREM 2.2. Let a€(0,3) and u€ D(0p). Then the following
properties are equivalent to each other:
(i) u€.Z, (90)
(i) % |S(u—ul, € L5O, 1),
(i) 177 lo(S(tu)'"* € LE(O, 1).

More precisely, we have

[t~ "|5(t)u——u|,,\lp(0 y < 3]u\3 (2.3)
|¢1/2=e l(P(S(t)u)‘l/zng(o,n (2.4)
1/2~a
<gmma—y Gluls,  Hlu—wly + le(w)|'?)  forall w e D(p).

This theorem is proved by the standard argument on the subdifferential
operator theory with the aid of the following two lemmas due to Brezis.

LeEmMA 2.3. Let F(t) and G(t) be positive functions on (0, S| such that
F)eLL(0,S] 1< p< ), F(t)—> 0 as t— 0, and that

Fy<F(t/2)+ G(@)  forall te(0, 5] (2.5)
Let t77G(t) € L5(0, S) with y > 0. Then we have

Y

2
I Sy 17000 (2.6)

LeEmmA 2.4. Let F(t) and G(t) be positive functions on (0, S| such that
F(t)e L}, (0, S] (1< p< w), and that

FOKFQO)+G@)  forall 1€(0,S/2). (2.7)

Let G(r) € L5%(0, S/2) with y > 0. Then we have

¥

¢ F(t)lua(o o< ('t G(t)'LP(O s FHOF(Olnsa,s)- (2.8)

271
2.3. A Fixed Point Theorem for Multivalued Mappings

In this subsection, we mention a couple of results on upper semicon-
tinuous multivalued mappings without their proofs. (For details, we refer to
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the text of Browder [9].) Let us begin with the definition of upper semicon-
tinuous mappings.

DEFINITION 2.5. Let X and Y be two topological spaces and 7 be a
multivalued mapping from X into Y. Then T is said to be an upper semicon-
tinuous multivalued mapping from X into Y, if for each point x of X and
each open neighborhood V of T(x) in Y, there exists a neighborhood U of x
in X (with U depending upon V) such that T(U)< V, i.e, y € U implies
T(y)c V.

We have the following criterion for the upper semicontinuity of
multivalued mappings (see [9, Proposition 6.2)).

ProposSITION 2.6. Let K and K, be two compact topological spaces and
T be a multivalued mapping from K into K, with T(x) closed for each x in K.
Then T is upper semicontinuous if and only if the graph G(T):= {|u, w| €
KXK,; weT(u)) of T is a closed subset of K X K.

Now we mention an important Schauder—Tychonoff-type fixed point
theorem (see [9, Corollary 2 to Theorem 6.3]).

THEOREM 2.7. Let K be a compact convex subset of a locally convex
topological vector space X. Let T be an upper semicontinuous multivalued
mapping from K into X such that for each x in K, T(x) is a closed convex
subset of X whose intersection with K is nonempty. Then T has a fixed point
in K, i.e., there exists an element x, in K such that x, € T(x,).

3. LocAL EXISTENCE

In this section, we study the local (in time) existence of strong solutions of
(C.P.) when the initial data u, belongs to %, ,(3¢°) (0 <a<3), D(p°)=
Z12.,(00°) and D(p") = D(0¢"). Here and henceforth, we are concerned
with strong solutions of (C.P.) in the following sense.

DEerFINITION 3.1. A function u(¢) € C([0, S); H) is said to be a strong
solution of (C.P.) in [0, S|, if the following (i) and (ii) are satisfied.

(i) u(t) is an H-valued absolutely continuous function on [, S| for all
8>0 and u(t) > u, as t | 0.

(ii) u(t) € D(0g") for a.e. t € (0, S) and there exist two functions g(),
b(t) € LL.((0, S|; H) such that g(r) € dp'(u(z)), b(t) € B(t, u(r)) and

du(t)/dt + g(t) + b(t) = f(¢) 3.1
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hold for a.e. t&€ (0, S). In addition, if du(t)/dt, g(t) and b(t) belong to
L*(0, S; H), then u(¢) is said to be s-strong solution of (C.P.) in [0, S}.

3.1. Results

As was noted before, the operator B(t, -) is not assumed to be monotone.
Instead of it, roughly speaking, we assume the same type of compactness
condition on D(¢') just as in the previous paper [25], ie., (A.1) below.
Besides, boundedness conditions on B(t, -) are quite similar to those of [25].
In the present paper, however, —B(f, -) need not be of the form ay’, i.e.,
another (z-dependent) subdifferential operator, nor maximal monotone, but a
certain kind of demiclosedness, together with a measurability condition with
respect to time ¢, is imposed on B(¢, -) (see (A.2) below).

Throughout this paper, we assume that Hilbert space H is separable and
denote by .# the family of all positive monotone increasing functions on
[0, +00) and by M(-) a general element of .# which will have different
forms in different places. In order to formulate our results, we gradually
introduce several conditions for d¢' and B(t,-). We first introduce the
following four conditions.

(A.p") For each t€ |0, T, ¢' is a proper lower semicontinuous convex
function from H into {0, +c0]. Furthermore, for each t, € [0, T'] and x, €
D(g'"), there exist a positive constant J, (independent of ¢, and x,) and an H-
valued function x(z) on I(t,) := [max(0, t, — J,), min(¢, + d,, T')| such that

1(2) = Xolu <y (| Xo o) |1 — 4] (@'(xo) + my(1xo11))° (3.2)
and

o' (x(1)) < 9" (x0) + m,(|x0],) [£ — £} (9(x0) + My(1%]4)) (3.3)

hold for all ¢ € I(t,), where 8 is a constant in [0, 1] and m,(-) are continuous
functions belonging to .# (i =1, 2).

(A.1) For each r€[0,T] and L € (0, +), the set {u € H; ¢'(u) +
|u|}, < L} is compact in H.
(A.2) For each interval {a, b] in [0, T}, the following (i}-(iii) hold.
(i) B(t,u) is a convex subset of H for all t € [a, b] and u € D(d¢").
(i) B(t, +) is measurable in the following sense: For each function
u(t) € C(|a, b]: H) such that du(t)/dt€ L*(a,b; H) and there exists a
function g(r) € L*(a, b; H) with g(t) € do'(u(t)) for a.e. t€ |[a,b], there
exists an H-valued measurable function b(¢) such that b(¢) € B(¢, u(t)) for
a.e. tE€ [a, bl
(iii) B(t,-) is demiclosed in the following sense: If u,—u in
C(la, b]; H) g,— g weakly in L*(a, b; H) with g,(1) € d0'(u,(1)), gt) €
do'(u(t)) for a.e. t € |a, b}, and if b, > b weakly in L*(a, b; H) with b, (¢) €
B(t, u,()) for ae. ¢ € [a, b], then b(z) € B(t, u(t)) holds for a.e. ¢ € [a, b].
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Remark 3.2. 1If B(t,-) (or —B(,-)) is a tindependent maximal
monotone operator in H, then (A.2) is always satisfied.

(A.3), For an exponent a € (0, 1), there exist functions £y(-), {(-) € .#
and a(-) € L*(0, T) such that

B Wil < E(ula)ie 1% @y + 6(1/) o @) =272 + [a(n)]} (3.4)

for all €>0, t€[0,T] and u &€ D(dg"), where ||B(¢, u)ll,; =supi|bly:
b € B(t, u)} and 9%' denotes the minimal section of dg".
Then, in the case of uy € 29, ,:=.%, ,(¢°), 0 < a < 3, we have

THEOREM L. Let (A.9"), (A.1), (A.2) and (A.3), be satisfied. Let
uy € #° , with p € [1,2] and f(t) € L*(0, T; H). Then there exists a positive
number T, € (0, T| depending on |uy|y and |uy| 4 such that (C.P.) has a
strong solution u(t) in [0, T,] satisfying ~

2 du(e)/de, V%), Vb)) € LA, T, ; H), (3.5)
17 u(t) = tolys 127 @' @) € LY, T,) forall g€ |2, 0], (3.6)
where g(t) and b(t) are the sections of dp"(u(t)) and B(t, u(t)) satisfying (3.1)
in Definition 3.1.

COROLLARY 1. Let uy€ %% , with a €(0,3), pE (2, 0] and f(t) E

L*0,T;H). Let (A.¢"), (A.1) (A.2) and (A.3), be satisfied for some
a’ € (0, a). Then, as in Theorem 1, there exists a local strong solution u(t) of
(C.P.) in [0, T, satisfying (3.5) and (3.6) with a replaced by o'

As for the cases u, € D(¢°) and D(p"), we assume:

(A.4) There exist functions ¢(-) € .#, ¢(-) € L'(0, T) and a constant k €
(0, 1) such that

I BGe, w)llz < k [8%" (u)l + £(p" (u) + |uly) [c@)]
forall ¢t€[0,T) and u € D(@p"). (3.7)

(A.5) There exist functions ¢(-)€.#, a(-)€ L*(0, T) and a constant
y € (0, 1) such that

1B w)lll < €(ul@)(% @i 7 + (@' @)~ + |a(®)])
forall t€[0,7T] and u € D(dp’). (3.8)

Then our results are stated as follows.

THEOREM II. Let (A.p"), (A.1), (A.2) and (A.4) be satisfied. Let u, €
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D(9°) and f(t) € L*(0, T; H). Then there exists a positive number T, € (0, T
depending on \u,|, and ¢°(u,) such that (C.P.) has an s-strong solution u(r)
in |0, T,

THEOREM IIL  Ler (A.¢"), (A.1), (A.2) and (A.5) be satisfied. Let u, €
D(@°) and f(t)€ L*(0,T;H). Then there exists a positive number
T, € (0, T| depending on \u,), such that (C.P.) has a strong solution u(t) in
[0, T,] satisfving (3.5) with a =0 and

') EL'O,T,), 10" () € L7, T,). (3.9)

Remark 3.3. Under assumption (A.@"), if u(r) is a strong (resp. s-strong)
solution of (C.P.) in [0, S], then ¢'(u(?)) is absolutely continuous on (0, S|
(resp. |0, S1). (See Proposition 3.5 of [26].)

3.2. Some Lemmas
To prove our theorems, we need some a priori estimates. First of all we
investigate the behavior (near ¢t = 0) of strong solutions of the equations
dii(¢)/dt + ' (#(£)) 3 0, 0<t<S, (3.10)

(C.P.)

4(0) = u,. (3.11) ’

(Note that under (A.¢‘), for all u, € D(p"), there exists a unique strong

solution of (C.P.),; see, e.g., [33] and {26].) To this end, we here prepare the

following proposition, which often plays an important role in the following
argument. (For a proof, see [26] and [28].)

PROPOSITION 3.4. Let (A.p') be satisfied and u(t) be an H-valued
absolutely continuous function on [0, S| with ¢'(u(t)) absolutely continuous
on (0,8} Put Z=1{t€|0,S]; du(t)/dt and do'(u(t))/dt exist,
u(t) € D(G")}. Then

o - (850 0)

<myf| u(t)lﬂ) | glute @(0) + my(u(@)])})?
+ m ()N o () + my(ju)))}

holds for all t € & and g € dp' (u(?)).

Remark 3.5. When assumption (A.¢’) is applied in the following
argument of this section, we restrict our consideration to the special case that
m,(-) = m (a positive constant), m,(-)=1 and I(¢;,) = [0, T| for the sake of
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simplicity; nevertheless, all the results of this section can be verified for the
general case with simple modification.
Concerning the behavior near = 0 of solutions of (C.P.),, we have

LEMMA 3.6. Let (A.9") be satisfied and u, € £, , with 0 < a < 7. Then
there exists a function M,(-) € # (depending on a) such that the unique
strong solution #(t) of (C.P.), in |0, S], 0 < S < 1, satisfies

[t~ |d(e) — uO|H|LP(0 5 S M (Jugly) - Gy ,(ug, w, S), (3.12)
lfm *lo’ (u(t))l <M (uoly) - Gy, (1o, W, S), (3.13)

o),

|ra (J:wm(s)) ds)

<M1(l uOIH) ’ Ga.p(um W, S)’ (314)

L2(0,5)

1/2
<All('”olll)'(;a,p(uO’ w, S)’ (3.15)

L2(0,5)

where G, ,(u,, w, S)—-luolgo +lug — wly +0°W)? + 8% and w is an
arbitrary element in D(¢°).

Proof. By virtue of (A.¢") (see Remark 3.5), for each v € D(p"), there
exists an H-valued function x(¢) such that

[x(s)—v

| < ms(p®(v) + 1) for all s€ [0, T,
Pi(x(s)) <o

°(v) + ms(°(v) + 1) for all s€ [0, T},

which, together with the definition of d¢°, imply
9*(i(s)) < ¢*(x(s)) + (—dil(s)/ds, id(s) — v + v — x(s))

<°(v) + ms(e®(v) + l)———I i(s) — v’

ms(p°(v) + 1).

Then integration of this inequality on [0, ¢] gives
-t
| 0°(s)) ds 10°(v) + mr*(@°(v) + 1)/2 + Jug — v[*/2
0
-t di 2
+ eJ s ‘—l (5)| ds+m*t*(p(v) + 1)*/8¢
0 ds

forall ¢>0and € [0, S]. (3.16)
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On the other hand, multiplying (3.10) by di(¢)/dt, we obtain, by
Proposition 3.4, that

GO ]+ Zea)
ai .
< ( p7 () ' + l)m((o'(u(t)) +1) for aet€]0,S].(3.17)

Since the standard argument (as in the proof of Lemma 3.10) shows that
@°(d(s)) €L'(0,1) and t9'(d(t)) < M(uy|). M(-)E.#, holds for a.e.
t €10, S, we deduce, by (3.17),

%f; s %l:— (5) | ds+ 19" (@) < (1 +m*M(uy|) + mt) J(: 0 (4(s)) ds

+(m+m*)?/2  foral t€(O,S]
(3.18)

Thus, combining (3.16) with (3.18), we easily find that there exists another
function M(-) € .# such that

%J;s ‘;f ()| ds+ to'(G(t) (3.19)

SM(uoD){te" @) +ug — v|* + (t9°(w))* + 7} for all 1€ (0, S].

Put v=uv(t):=e "y, in (3.19), then, sice tp’(v(t)) < M(luy}) for a.e.
t € {0, S|, by virtue of (2.3) and (2.4) of Theorem 2.2, we deduce (3.13) and
(3.14). Hence (3.16) with v =10(¢) also assures (3.15). In order to verify
(3.12), we note by (3.17) that

At
u (—2‘) — Uy

V12

LUt/2,t:H)

1) — uo| —

dil

<
= ds

)

dan
s (s)

L2t/2,t;H)
1/2

< o (@)} + 3(m2 +m) J:ﬂ (p°(i(s)) + 1) ds|  .(3.20)

Here, making use of (3.13), (3.15) and the fact that to'(d(¢)) < M(ju,|) for
a.e. t € [0, S], we easily find that the L% (0, S)-norms of £~ {te" (d(t/2))}'/*
and ¢~ %{t|9*(i(s)) + 117225} /* are dominated by M(Ju,)) - G, ,(up, W, S).
Thus (3.12) follows from Lemma 2.3. Q.E.D.
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We now consider the following auxiliary equation:

du,(1)/dt + 09 (u,(2)) 3 —h(r) + (1), 0<r<S, (3.21)

C.P)*
u,(0) = u,. (3.22) ( )

Let X§ be a Banach space with the norm
s 172
U]y s = (' t‘"z"fu(t)]f,dt) , O<a<i
v 0

Let u, and f(t) be given elements in .#5 , and L*(0, T; H), respectively.
Then, under assumption (A.¢‘), for each A(t) € X5, (C.P.)* has a unique
strong solution u,(¢) in [0,S] (see [33] and [26]). In parallel with
Lemma 3.6, we have the following a priori estimates.

LEMMA 3.7. Let (A.g") be satisfied. Let u, € %%, , and h(t), f(1) € X
with 0 < a < < 3, and put R =|h|; s +|fls.s. Then there exists a function
M,(-) €E # such that the unique strong solution u,(t) of (C.P.)* in [0, S|

satisfies

fe7 Juy() — tolulreco.s)

SMy(lugly) - (Gg, (4, w, S) + R), (3.23)
(727 Jo! (uu())'? L2(0,5)
<M, ({uply + R) - (Ga,p(uO’w’ S)+R), (3.24)

where G, ,(uy, w, S) is the function appearing in Lemma 3.6.

LEMMA 3.8. Ler (A.@') be satisfied. Let u, € %" ., and h(t), f(t) € X,
and put R = |h|, s +|fla.s- Then estimates (3.23) and (3.24) hold true with
p= 0.

LEMMA 3.9. Let (A.¢") be satisfied. Let u, € %% , and h(1), f(t) € X3,

and put R =\h|, s +|f\..s- Then estimates (3.23) and (3.24) hold true with
p = 2. Moreover, the following (3.25) and (3.26) also hold.

t' 2% u, (1) - 0 as t]o0, (3.25)

(‘.S AV AQ df)m <K My(tly + R) - (G (g, W, S) + R), (3.26)

where g,(t) = —du,(t)/dt — h(t) + f(¢) € 00" (u,(t)).
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Proof of Lemma 3.7. Let #(¢) be the strong solution of (C.P.), in [0, S],
then u,(t) — 4(¢) satisfies

@ un0) — 0) + 09" 10)) — "0
S—h(t)+ f(t) for ae t€[0,S]. (3.27)
Multiply (3.27) by u,(¢) — i(¢), then we have, by the monotonicity of dg’,
| (6) = 4N <Vh = floso.em
<R*N\/28 forall €0, S]. (3.28)

Hence (3.23) follows from (3.12) at once. On the other hand, by the
definition of d¢°,

9" (uy(5)) < @°(U(s)) + (—duy(s)/ds — h(s) + f(5), u,(s) — i(s))
|uy(s) — d(s))

+ (1A + S {uy(s) — d(s). (3.29)
Integration of (3.29) on |0, ¢] and (3.28) give

<o) — 5 25 l6) —HO) + | G- )

[ o ds< | etsnds+ [ s |56 ds

-t
0

+ R (1 +4iﬁ)/2ﬂ, for all ¢€ [0, S], (3.30)

whence we deduce, by (3.14) and (3.15),

i/2

<M(|4o)) - (G, (10, W, S) +R).  (3.31)

£2(0,5)

’f‘* 3 [ 0" un(s)) ds

Since @*(u,(s)) € L'(0, S), multiplying (3.21) by tg,(¢) = t{—du,(t)/dt —
h(t) + f(¢)} € 09" (u,(¢)) and integrating on [0,¢], we deduce, by
Proposition 3.4 (c.f. (3.17)),

[ s18i0)" ds + 10y (0)

<[ o un(s)) ds+ (m2 + m) || 0w, ) + 1) ds

+ R¥* for all t€ (0, S), (3.32)

505/46/2-9
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where we used the fact that |\/s(h(s) — f()|2s0.ci < R’t?P. Moreover, in
view of (3.30), applying Gronwall’s inequality to (3.32), we find that
19" (u,(t)) < M(u,| + R) for all 1€ (0, S]. Then (3.24) follows from (3.31)
and (3.32). Q.E.D.

Proof of Lemma 3.8. It is clear that if p= co, then the very same
argument as in the above proof is also valid with a =f.

Proof of Lemma 3.9. To verify (3.23) and (3.24) with p =2, it suffices
to repeat the same procedure as in the proof of Lemma 3.7 with the aid of
the inequality of Hardy:

1 —
<;]t #(1)

I ds
't Jo [4(s)l r £2(0,8) (@>0,p>1)

12(0,S)
For example, we have, by (3.28),

1 () — Aoy < |07 [ 5105) — £ 2
0 N

L%(0,5)
= a,§

Then (3.23) follows from (3.12). Furthermore, since ¢~ >*¢’(u,(t)) € L'(0, S)
by (3.24), multiplying (3.21) by ¢'~?®g,(r), we can easily deduce, by
Proposition 3.4 (cf. (3.32)),

L1 gyl ds + 20y (0)

N

<[ (1 —2a) s 0 ) ds + (m? + m) [ 81700y 6) + 1) ds

t
+J s1°2 |h(s)— f(s)?ds  forall 1€ (0,S]. (3.33)
0
Hence, since 19’ (1, (t)) < M(Ju,| + R), (3.24) implies (3.25) and (3.26).
Q.E.D.

For each u,€ D(0¢°), f(t() EL*(0, T;H), SE(0,T] and h € X3, we
denote by E, . (%) the unique strong solution of (C.P.)* in [0, S']. We put

K¢ p i=theset {u € X§;|ul, s <R} furnished with the
weak topology of X2. (3.34)

Then K¢ , is metrizable, since H is assumed to be separable (see Dunford
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and Schwarz [10,p.426]). We further introduce a possibly multivalued
operator B . 5 » from K . into itself by

Bos.s.x(h) = {b € Kg x3 b(t) € B(t, E, ;. 5(h)(1))
for a.e. t € (0, S)}, (3.35)
D(Bzo,f.s,k) ={h € K5 3 [Bzo.f,s.k(h) + 3.

In what follows, we shall simply write £ and B (or Bf ;) instead of £, ,
and [Bjm r.s.r> respectively, if no confusion arises. On the continuity of E, we
prepare the following lemma.

LEMMA 3.10. Let (A.9") and (A.1) be satisfied. Let h", h € X and h"
converge to h weakly in X§ as n— +co. Then E(h") also converges to E(h)
strongly in C(|0, S]; H) as n—> +o.

Proof. Note that there exists an H-valued function #(f) on [0, S| such
that (see {33] and {26])

ro = max{|5(t)|, + ¢ (@(1)); t € [0, S]} +dD(£)/dt], 20,5} < +00-
Put u" _Euofs(h ) and multiply (3.21) by u"(¢) — #(¢). Then, from the
definition of d¢’, we have
T T~ 5O + 9w (D) — 050
<) — o do(e)/de] + |k () +1/@)}  for ae r€[0,S]

Hence there exists a constant C, depending only on |uy|,, 7o, | f1 0. 7., and
sup, |A"|,10.s:1 (but not on S explicitly) such that

max |u"(o)] + j 9" () dt < (3.36)
Moreover, since u" also satisfies the same estimate as (3.32) (with R*¢*®
replaced by |\/s(h"(s) — f(5))|;20..s))» Gronwall’s inequality, together with
(3.36), yields

Sup 19 (u"(t))+J tg"(0)de<C,, (3.37)

where g"(f) = —du"(t)/dt — h"(t) + f(¢) € dp'(u"(¢)) and C, is a constant

depending only on C,, 1\/f(t)|u(0 runy @nd sup, |/t "(0)| 2.5, Hence
v/t du"(t)/dt is also bounded in L2(0, S; H).

Let £ be an arbitrary (small) positive number. Then, since du"(t)/dt is
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bounded in L*(¢, S; H), {u"(¢)}, is equicontinuous on [, S]. In addition, by
(3.36), (3.37) and (A.1), {u "(t)} forms a compact set in H for all 1 € [, §].
Thus, by Ascoli’s theorem, there exist a subsequence {n’} of {n} and two
functions u, and g, on [e, ] such that

u" > u, strongly in C([¢, S]; H),
du™' (¢)/dt - du,(t)/dt ~ weakly in L, S; H),
g" - g, weakly in L*(g, S; H).

Here, by using Proposition 1.1 of Kenmochi [18], it is known that
g.(t) € 09" (u,(¢)) for ae. t€E€ [e, S] (see also [26]). Hence, by the usual
diagonal process, we can construct two functions u(¢) and g(z) on (0, §] such
that \/ du(¢)/dt, \/t g(t) € L*(0, S; H) and g(t) = —du(r)/dt — h(t) +f0)E
29'(u(t)) holds for ae. t€ (0, S]. Then, in order to see u=FE, ,(h) it
suffices to verify that u(f)— u, as ¢ | 0. To this end, set #(t)=E wg.r.5(0);
then, in parallel with (3.28), we find

[u" () — @) <|B" | vo.en < Cyt® for all n, (3.38)
where C, = sup, |h"|, s/\/2a < 400, whence follows
lu(t) —a(t) < C,t*  for all ¢€(0,S] (3.39)

Therefore, since |i(t) — uy| = 0 s ¢ | 0, we obtain that |u(f) —u,| >0 as ¢ | 0,
i.e., u=E, ,g(h). Furthermore, by (3.38) and (3.39),

lu" — tt]cqo.sm < 2C2€% + U — Uleqesim for all &> 0andn.

Hence, for a suitable choice of {n’}, we find that E(A"") converges to E(4)
strongly in C(|0, S|; H) as n’ — +0o. However, the above argument does not
depend on the choice of subsequences, then the original sequence E(k")
converges to E(A) as n— +o0. Q.E.D.

As for the operator B, we have

LEMMA 3.11. Let (A.9), (A.1) and (A.2) be satisfied. Then G(BS ), the
graph of B§ x, is closed in K X K z. Moreover, for each h € D(BS ),
B x(h) is a closed convex subset of Kg 4.

Proof. Since K§ , is metrizable, it is enough to show the closedness of
G(B) on sequences. Let A" — h in K§ ., b" € B(h"), and 6"~ b in K§ ,
Then, by Lemma 3.10, u" := E(h") converges to u :=E(h) in C([0, S]; H).
Let & be an arbitrary number in (0, S), then b" — b weakly in L*(d, S; H).
Furthermore, as in the proof of Lemma 3.10, there exist functions g”,
g€ L*4,S;H) such that g"(t) € dp'(u"(t)), g(t) € dp'(u(r)) for ae.
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t€ (5,S) and g" - g weakly in L?*(J, S; H). Hence it follows from (iii) of
(A.2) that b(t) € B(t, u(t)) for ae t€(0,S), ie, h€ D(B) and b € B(h).
The above reasoning also assures that B(k) is closed in K§ , for each
h € D(B). Then, by (i) of (A.2), B(h) is a closed convex subset of K , for
all h € D(B). Q.ED.

3.3. Proofs of Theorems
Proof of Theorem 1. For an arbitrary element w in D(¢°), put

=luglgn , +lug— why + {0° W +1fOla.r- (3.40)

Let he K7  and u=Ek, ., (h). Here T, is a positive number in
(0, min(1, T, "Ry- *))) which will be determined later more precisely. Then,
by (3.36), there exists a constant C, depending on R but not on T, such that

0m'a<x lu(t) + J‘TO o' (u(t)) dt < C,. (3.41)

Moreover, by virtue of (3.24), (3.26) (in Lemma 3.9) and (3.40), there exists
a function M,(-) € .# such that
[t72%" (10,19 < {M3(R) - R}, (3.42)
| 8Ola.r, <M;(R) - R, (3.43)
where g(¢) = —du(t)/dt — h(t) + f () € 20" (u(?)).
Let b(#) be a measurable function such that b(¢) € B(¢, u(t)) for ae. ¢t €
(0, T,). Then, by (A.3), and (3.41), we have
lb(t)ln.To <A(Co)ie| g(t)la,ro
+Eo(1/e) |11 72 (0" (u()) 2 22 Wl 1y
+la@®)la,r,} forall ¢>0. (3.44)
Put &= (36(C,) My(R))™!, then ((Cole|g(t),.r,<R/3 by (3.43).
Furthermore, since, by (3.42),
|2 () oy

< sup {0 (D)} T (ML (R)R Y, (3.45)

0<t<T,

recalling (3.25), we can choose a (sufficiently small) positive number T,
such that

(Co) Eo(1/6) 1122 (@ ()220 2012, < RJ3, (3.46)
(Cy)a(O),r, <R3 (347)
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Thus, for a suitable T, b(¢) belongs to K7 . Therefore it follows from (ii)
of (A.2) and Lemma3.11 that D(B7 p)=K7 z; G(B7 ) is closed in
K7 x X K7 r; and that BF .(h) is a nonempty closed convex subset of
K7 g for all h€ K7 .. Then, by Proposition 2.6, B}, is an upper semicon-
tinuous mapping from K7, into itself.

Hence Theorem 2.7 says that there exists an element b € K7 , such that
be BT x(b) ie,u=E, ,;(b)satisfies

du(t)/dt + 09" (u(2)) + b(1) 3 f(¢) for ae. t€ (0, T,),
b(t) € B(t, u(t)) for ae te(0,T,),
u(0) = u,.

Thus u(t) is the desired strong solution of (C.P.) in [0, T,]. Since %% , =
#% , (see (2.1)), Lemmas3.8 and 3.9 give estimates (3.26) and
(3.23)—(3.24) with p = 2 and o0, whence follows (3.5) and (3.6). Q.E.D.

Proof of Corollary 1. Since u, € 2, ,<.#,. , by (2.2), we can apply
Theorem I with a replaced by a’. Q.E.D.

In proving Theorems II and III, we apply the same idea as in the proof of
Theorem I. However, topological spaces where the operator B works have to
be reset.

Let X3 be a Banach space with the norm

2/(2+ )

o= ([ )+ (i a)

where y is the number appearing in (A.5). By X and |-|g, we mean
L*(0, S5 H) and | - |,2¢9.5.s)» Tespectively. Define K, (or K3 ) by (3.34)
with X and | - |, s replaced by X and | - |g (or X§ and | - |, ), respectively.
We also introduce B, ., (or BY ¢ :) by (3.35) with K§  replaced by
K i (or K3 ). Then it is clear that Lemmas 3.10 and 3.11 remain true with
X2, BE , and K$ , replaced by X, By, and K (or Xg, BS ; and K3 ),
respectively.

Proof of Theorem 11. Define a positive number R by

21 + 3k)?

2(1 + 3k)
(1 —k)?

0
1% 9" (up) +

R = max (1 OF)  (48)
where k is the given number in (A.3). Let k€ K, zand u=E, . (h). Here
T, is a positive number which will be determined later. Multiply (3.21) by
g(t) = —d(u(t))/dt — h(t) + f(t) € 8p'(u(?)), then Proposition 3.4 yields (c.f.
(3.33)
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80 + 50 ult) < ( +ek)|g(t)|2 Ay

4 O +mi e w(0) + 1)
k
+ m(p*(u(t)) + 1), (3.49)

where &, = (1 — k)/2(1 + 3k). Hence by (3.41) and Gronwall’s inequality,
there exists a constant C, depending on C, and R but not on T, such that
max{e"(u(t)); t € |0, T,]} < C,, whence integration of (3.49) on [0, T, ] gives

| 803, < (1 — 26,){R? + 20°(uy) + 65" 1)
+ &7 '(m? + m)(C, + 1)’ T,}. (3.50)
We now take T, in (0, T] such that
ex'(m?* + m)(C, + 1) Ty (1 — k)R?/4, (3.51)
€(Cy + Co) [elpio,ry < (1 — K)R?/A. (3.52)

Then, since k(1 —2¢,) 7' (20%(u,) + &7 ' |£(D)]3) < (1 —k)R?/4 by (3.48), it
follows from (A.4) and (3.50)~(3.52) that |b(¢)];, <R for all measurable
sections b(t) of B(t, u(t)). Hence, by Lemmas 3.10 and 3. 1, B, ;r,.zhasa
fixed point in K . Q.E.D.

Progf of Theorem 1II.  For w € D(e"), put

R =|uy — wl, + {p°(W)}'? + 1/l r-

Let h€ K5, , and u=E,_; r (h), where T, € (0, min(1, T, R)). Making use
of (3.16), (3 19) with v=v(t) = e %’y ; (3.28), (3.30) and (3.32) with
f=0; and the fact that v(f) satisfies (see [8, p. 77] or repeat the verification
for (3.19) with dp' = d¢°)

-l
| s
¥ 0

we can deduce

ds + 19" (v(1) + 3 [o(0) — w|* e (W) + 3 |ug — W,

Ve, + JSup 1ot(u() < (M (R)R)", (3:53)

Here we take a positive number T, such that

max{(1/2)"*(M,(R)R)' 77, (1/27)"*(M3(R)R)* "*"} £(C) TE < R/6,  (3.54)
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max

2 (Y2+y+2)/2(2+p)
_+_ 2 Y Y Y
(y—fy—) (M,(R)R)' ",

29(1 + )

2 2/(2+7)
(y(T N yi) (My(R)RY 27| - €(C,) T3 7/ < RJ6,  (3.55)

€Co) la(®lo,r, < R/3. (3.56)
Then (3.41), (3.53) and (A.5) with simple calculation show that b(t) € K‘}O.R
for all measurable sections b(¢) of B(t, u(z)). Q.E.D.

Remark 3.12. Obviously we have only to assume that f(¢), a(t) € X7
(resp. X7) in Theorem I (resp. III).

4. GLOBAL EXISTENCE

In this section, in order to establish the existence of global (in time) strong
solutions of (C.P.), we shall study the extension of the local strong solutions
constructed in the previous section.

4.1. Extension of Local Solutions with Arbitrary Data

In this subsection, we give a sufficient condition which guarantees that
every local strong solution can be continued globally to the given interval
[0, T]. Let us assume

(A.6) There exist a positive constant ¢ and a positive function d(¢) €
L'(0, T) such that
(—0@'(u) — B(t, u), u)y + ap'(u)
<d)(uli,+1) for ae t€[0, T] and all u € D(9¢"), (4.1)

where (—dp'(u) — B(t, u), u), = sup{(—g — b, u),; g € 6¢'(u), b € B(t, u)}.
Then we have

THEOREM 1V. Assume that (A.¢"), (A.1), (A.2), (A.6) and (A.4) be
satisfied with (3.7) replaced by

Il B(t, wll}; < k18°0" ()| + £(ulx){o' (@)} +]e(e))
Sfor all t€ [0, T| and u € D(G¢"). (3.7)

Let f(t) € L} (0, T|; H) (resp. L*(0, T; H)), then every local strong (resp. s-
strong) solution of (C.P.) can be continued globally as a strong (resp. s-
strong) solution of (C.P.) in [0, T|. In particular, the assertion of Theorem 11
holds true with Ty =T.
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COROLLARY IV. Let all assumptions in Theorems 1V and 1 (resp. 111) be
satisfied. Then the assertion of Theorem 1 (resp. I11) holds true with T, =T.

Proof of Theorem IV. Let u(t) be an s-strong solution of (C.P.) in [0, S|
(0 < S < 7). Then multiplication of (3.1) by u(t) and (A.6) yield

%E |u()® + ag' (u(t) < dO)(u()* +

+ /(@) [u(®) for ae t€(0,59).

Hence there exists a constant C, depending on |u,| and |f(t)|, ., but not
on S such that

-S
t
max |u(0)ly + JO p'(u(t) dt < C,. (4.2)
Moreover, from (3.49), (4.2) and (3.7)', there exists a function M(-) € .#

such that

3k(1— k)
2(1 + 3k) 3k)

<M(CHHe ()} + 1+ |e@) + SO for aet€(0,8) (4.3)

1507 + 2 o'(u@)

Whence, by Gronwall’s inequality and (4.2), we obtain the a priori bound
for @'(u(f)) independent of S. Then Theorem Il assures that u(z) can be
continued globally to [0, T| as an s-strong solution of (C.P.). As for the
extension of strong solution u(t) in [0, S}, it suffices to recall that
u(S) € D(p%), i.e., p*((S)) < +oo (see Remark 3.3). Q.E.D.

4.2. Extension of Local Solutions with Small Data

When condition (A.6) is absent, there is a case that if u, and f(¢) satisfy
certain conditions, then the corresponding (local) strong solution u(f) of
(C.P.) blows up in a finite time T, ie., |u(t)|, » +oo as t | T, (see, e.g.,
Fujita [11], Tsutsumi [31], Ishii [17] and the author [27}). In such a case,
at the same time, it is often possible to construct the so-called stable set W
such that if u, & W, then u(f) stays in W for all >0, so u(f) can be
continued globally. For example, see [17], [25] and [27], where the case that
op'=0p and B(t,-)= —0dw is treated. Nevertheless, for the more general
perturbing operator B(f,-) and the time-dependent function ¢’, it seems
hardly possible to construct the same kind of stable set as in [17], [25] and
[27]. From another point of view, however, the stable set is, roughly
speaking, often composed of small elements in a sense (see |25,
Proposition 4.2]). So, under this observation, we here intend to investigate
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the global existence of strong solutions of (C.P.) for sufficiently small initial
data u, and external forces f(¢) in some sense. To this end, set

D;={(u€D(@p'); ¢'(u) <&}, >0,
and introduce the following condition (A.7).

(A.7) The following (i) and (ii) hold.
i) ¢°0)=0.
(iil) There exist positive constants &;, k, a, K,, p and a function
¢(-) € # such that

B, il <k18°0 W)+ '), 0<k<1, (4.4)
(—0¢'(u) — B(t, u), u)y + ap'(u) <0, (4.5)
Kolulp<o'(w), 2<p<+om, (4.6)

hold for a.e. £ € (0, T) and all u € Dy .

Remark 4.1. Assume that there exist functions ¢(-)E€.# and f,(-),
6,()E My = {{(-) €. #;lim,_,{(r) =0} such that

B wlll7 <k + £, (0" @D 8% Wl + o' (@), 0 <k <1,(44)
(00" (u) — B(t; u), u)y + ap' () < (0" (W) - ¢'(w) (4.5)'

hold for a.e. t € (0, T) and all u € D(d¢’). Then (4.4) and (4.5) are fulfilled
for a sufficiently small ¢,.

Remark 4.2. Relation (4.6) with p € (0, 2) for all u € D(0¢') implies
(4.6) with p =2 for all u € D if ¢, € (0, K,|.
Assuming T > 1 without loss of generality, we use the notation

“f(t)”q,T = Sup”f(t)'L'J(x—l,s;H); 1<s T

Then our extension results are stated as follows.

THEOREM V. Let (A.p"), (A.1), (A.2) and (A.7) be satisfied. Then there
exists a positive number r independent of T such that if |uyly + 9" (1) < r
and || f(t)|,.r < 1’7", then every (local) s-strong solution of (C.P.) can be
continued globally as an s-strong solution of (C.P.) in |0, T|, in particular,
(C.P.) has a global s-strong solution.

TueoreM V1. Let all assumptions in TheoremV and (A.3), (resp.
(A.5)) be satisfied with a(t)=1. Then there exists a positive number r
independent of T such that if |uy|, + IuOIQO £r (resp. |uyly <r) and
SOl <r°~", then every (local) strong solufion of (C.P.) satisfying (3.5)



NONLINEAR PARABOLIC EQUATIONS 289

(resp. (3.5) with a =0) can be continued globally as a strong solution of
(C.P.) in |0, T), in particular, the assertion of Theorem1 (resp.11l) holds
true with Ty=T.

Before we proceed to he proofs of Theorems V and VI, we prepare the
following Theorem II’, a variant of Theorem II, and Lemma 4.3.

THEOREM II'. Let (A.9"), (A.1), (A.2) and (A.7) be satisfied, and let
u, € D(¢°) and f(t) € L*(0, T; H). Then there exists a number ¢, € (0, €,)
independent of f(t) such that if ¢"(u,)<¢€,, then there exists a positive
number T, depending on \u,\, and f(t) such that (C.P.) has an s-strong
solution in 10, T,).

Proof. Let R*=¢, and h, u be as in the proof of Theorem II. Then it
easily follows from (3.41) and (3.49) that there exist positive numbers ¢ €
(0, &,) (independent of f(¢)) and S (depending on |u,|, and f(¢)) such that if
0%(uy) < &), then max{p'(u(?)); 0< < S)<¢g,- Hence, since (4.4) is
applicable for u(f) in [0,S], taking ¢°(u,) <€, :=min(e), (1 — k)ey/
4(1 + 3k)), we can repeat the same procedure as in the proof of Theorem Il
with T replaced by S. Q.E.D.

LemMa 4.3. Let f(t)EL'(0,T) and j(t) be an absolutely continuous
Sfunction on |0, T such that

d
EU(!)HGIJ(OI"_‘<K|f(t)| Jor ae.te(0,7), (4.7)

where a > 0, K > 0 and p > 2. Suppose that |jO) <r and || f(), ;<"
(r > 0), then there exists a function M, , «(-) € # depending on a, p and K
such that | j(t) < M, , x(r)r for all t€ [0, T).

Proof. 1In the case of p= 2, by (4.7),
901 <15 exp(—at) + |' K1(5) expiale — ) ds,

whence we can take M, ((r)=1+ K/(1 —exp)(—a)). As for the case
p> 2, put

6,00 = (J@P™ + alp— Dt —a) " P + K[ |f()|ds.  a€0. T}

Then ¢,(t) satisfies
de,(D)/dt + ag (1)’ ' = K| f(¢) for ae. t € (a, T),
9.(a) =|Jj(a)}.
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Therefore we obtain, by (4.7),

[0 < 9,(8) < min(|j(@)), {a(p — 2)(t — a)} " /")

+KJ"|f(s)j ds forall a€[0,T)and € [a,T].

Hence, putting r, = r~ =2, we deduce

(i) 1JOI<do() K7+ K(1+ry) ! for all 1€ [0, r,],
i) 1JOI<s (< {a(p—=2} VPP r+ K1 +1,) """ for all €
[re, T] (if 7o < 7).
Thus we can take M, , ((r) =1 + {a(p —2)} "V*=D L K(1 + rP~?).
Q.E.D.

Proof of Theorem V. First of all, we set

Ny ={(ey)/2 + m*(ey + 1) C\ + m(ey + 1),
m=m(&)  Cy=(1+3k)/(1-k),
N=M,(e,) + {M(e,)*/2 + (e, + 1) M (&,) €5} /a

L 0de £ NeP-3 L N L1
T M\ T 1) U T iV T i,

M,(-)=M,k, ,.(-) (the function in Lemma 4.3),

which will appear in the following calculation.

For an arbitrary positive number r satisfying Nr <eg,, let |ugl, +
9°(uo) <1, |/, r<r? and u(r) be an s-strong solution of (C.P.) in
[0,S]. Then we here claim that max{E(s):=|u(t)|, + ¢'(u());
t € [0, S]} < Nr. Suppose that E(¢) > Nr for some ¢ € [0, S], then, since E(f)
is continuous in € [0,S] and E(0)<r < Nr, there exists a number
t; € (0, S] such that E(r) attains Nr at t=¢, for the first time. Since
o' (u(t)) < Nr<g, for all € [0,¢ ], multiplying (3.1) by u(f) and using
(4.5), we have

1 d

5 [UOF + @' @@) If@) - |u@)  for ae tE[0,1,]. (48)

Then, by (4.6),

%lu(t)] + aK, lu())P ' < (@) for ae. t€]0,1¢,]. (4.9)
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Hence, by Lemma 4.3,
lu(e)) < M, (r)r for all (€ (0,1} (4.10)
Thus integration of (4.8) on [f,,¢,], 0< ¢, < ¢, gives
[0 U gy < MLV P24 (8, = 1] + D) M) P} e (@11
On the other hand, we obtain by (3.49), (4.4) and (4.10) that
do'(u(t))/dt <Ny + C, | f()*  for ae. t€[0,¢,],
whence follows
0" (u(1))) < 0 (u(s)) + |1, — 5| Ny
+ C(1 + ¢, —s[)r?»D 0<s<ty) (4.12)

If ¢, <r, then (4.12) with s=0 contradicts the definition of N. So,
integrating (4.12) with respect to s on [t, —r, t,], we find by (4.11) with 1, =
t, — r that

0" (u(t)) < [{M,(60)*/2 + (€0 + 1) M,(g,) €5 *}/a
£ Nyt Cyleg + 1) &2 (4.13)

Then (4.10) and (4.13) contradict the definition of N. Thus we obtain the a
priori bound max{E(t); 0t S} Nr, which is independent of S.
Therefore Theorem I’ assures that if Nr <¢,, then u(f) can be continued
globally to [0, T as an s-strong solution of (C.P.). Q.E.D.

Proof of Theorem V1. Since ¢°(0) =0, as a special case of (3.40), we
reset

R=ugl g+ ltholss + 1/ (D)l (4.14)

Let u(r) be an arbitrary strong solution of (C.P.) in [0, S| satisfying (3.5).
Then we claim that for sufficiently small R, u(f) can be continued to |0, 7T, |
with T, = {2(1 — a)R?/(3¢(C,) + 1)*}/2' "% To see this, we note that u(r)
can be continued to the right of [0, §] as long as |b(t)|, s < +0o. Indeed, by
(3.24) with p= o0 of Lemma 3.8, |b(¢)|, s < 400 implies ¢°(u(S)) < +o0,
then Theorem I is applied with u, replaced by u(S). Suppose here that
|6(t)la,s, = R for some S, € (0, T,). Then (3.24) with p= +oo gives

0'u(t)) < ML(R)R’ "' 4+¢)  forall t€(0,8,).  (4.15)

On the other hand, since S, < T, and a(f) = 1, (3.47) is easily verified with
T,=S,. Moreover, by (3.45) and (4.15), we find that (3.46) is also satisfied

505/46/2.10
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with T, = §, for a sufficiently small R. Hence, as in the proof of Theorem I,
we deduce |b(¢)|,,s, < R, which is a contradiction. Thus we find that (4.15)
holds true for all ¢ € (0, 7], whence follows

" W(T ) KMR)RV'",  M(-)EA.

Then, taking R small enough, we can apply Theorem V with u, replaced by
u(T,).

As for the case u, € D(¢"), repeating the same argument as above (with
a =0) for (3.54)-(3.56), we can take

=RV /MR 1) and 0T (u(T,) < MR) RV,
Q.E.D.

Remark 4.4. In Theorem VI, condition || f(¢)|,., <"~ can be replaced
by [f(t)la,] + Sup2<s<T'f(t)|L2(s—l.s:H) <rftlhae (0, %) (see Remark 3.12).

5. APPLICATIONS

In this section we shall exemplify the applicability of our abstract
theorems to some initial-boundary value problems for the Navier—Stokes
equations and their variants in bounded regions with moving boundaries. Let
T be a given number in [1, +00) and Q(¢) be a bounded domain in R} with
smooth boundary I'(t) for each ¢ € [0, T]. When ¢ moves over (0, 7), Q(¢)
generates a (x,)-domain Q= (U, ., (Q@) X {t}) and I(t) generates a
(x, t)-hypersurface I'={J,.,.r (I'(#) X {t}). Throughout this section, we
always make the following assumptions on Q as in Yamada [34] and Otani
and Yamada [28].

(0.1) For each t€ [0, 7], the boundary I(t) of Q(t) is a (n— 1)
dimensional sufficiently smooth manifold (say, of class C*).

(@2) Q is covered by m slices QO(s;, 1) = U<, () x{t}) (=
1, 2,..., m) such that for each slice Q(s;,?;) is mapped onto the cylindrical
domain Q(s;) X (s;, t;) by a diffeomorphism ¥, which is of class C* up to the
boundary and preserves the time coordinate ¢.

In stating our results, we need an auxiliary open ball 7 in R’ such that
the closure of Q is contained in @ X [0, T]. We mean by C(I; X(Q(¢))) the
set of all functions » on Q such that v(-, t) belongs to X(Q(¢)) for all t€ [
and that the zero extension § of v to @ X I is an X(¢7)-valued continuous
function in ¢ € I, where [ is an interval in [0, T| and X(£2) (2 = Q(¢) or &) is
a function space defined on 2 such as L*(22), W;?(2), etc.
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Example 1. Navier-Stokes Equations

We first consider the following initial-boundary value problem for the
Navier—Stokes equation in Q:

aa—l:(x,t)—du+(u-V)u=f—Vp* in Q, (5.1)
divu(x,t)=0 in Q, (5.2) (Pr.NS)

u(x, 1)=0 onl, (5.3)

u(x, 0) = uy(x) in Q(0), (5.4)

where the unknown u and given f, u, are real n-dimensional vector functions,
while the unknown p, is a real scalar function.

In recent years, this kind of probiem has been studied by several authors.
Fujita and Sauer [14] established the existence of a Hopf-type weak solution
by the so-called penalty method. In Bock [4], the existence of a unique weak
solution of the Kiselev-Ladyzhenskaya type is proved. We aliso refer to
Inoue and Wakimoto [16] and Otani and Yamada [28]. Our result here is a
natural extension to the noncylindrical case of Fujita and Kato {12], where
(Pr.NS) is solved in a class of strong solutions for the cylindrical case
Q(t) = Q(0). In particular, our method can give an explicit estimate of the
time derivative of the solution (near the lateral boundary).

Let £2 be a bounded domain in RY with smooth boundary and put

C(2) = {u= (', u’,.., u"); u' € CP(RQ) (i =1, 2,.., n), divu =0},
HQ) = (L*(2)" == {u= ', u’,.,u"); u' €L*(Q) i= 1,2,.,n},
H,(£2) = the completion of C*(2) under the H(2)-norm,
P, = the orthogonal projection from H(£2) onto H_(£2),

WeP(R) = (W (2))" N H,(R2),

H (@)= {u= (", s, u"); ' EH(Q), u'|,0=0,i=1,2,.,n},

H(R) = H; (2) N H,(2), 3 <s,
where W('7(2) and H*(£2) are the usual Sobolev spaces of order 1 and s,
respectively. We denote by A, the Stokes operator —P,A, which works on
Di4,)=H 30(!2) N H,(2) = H2(£2). Let A% be the fractional power of 4, of
order a, then Fujita and Morimoto [13], together with Fujiwara [15], give
the concrete characterization of the domain D(4§) of 4F. For example,

D(A3) = H2%(0) for § < a < 3.
Now our results are stated as follows.
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THEOREM 5.1. Let n=3, f€L*(0, T; H(Q(?))) and u, € D(43,,) with
i <a< 3. Then there exists a positive number T, (T, < T) depending on
[Uol4as the A -norm of u,, such that (Pr.NS) has a unique strong solution
u(-, t) in [0, T,| satisfying

u(-, 1) € C([0, T, ]; H(Q(1))) N C((0, T, |; Ho(Q(r)))
Sor @€ i 1)u(-, 1) € C([0, T |5 H(Q()))
for a=3, (5.5)
127 gu(-, t)/ot, 17 Au(-, b),
"2 % - Vyu(-, 1) € L¥(0, T,; H(Q(t)), (5.6)
27 u(, Ol ELAO,T,)  forall p€ (2, +ool, (5.7)
£ Ju(-, 1) — (M oy ELEO, Ty)  forall p€E (2, +oo]. (5.8)

Moreover, there exists a (suffciently small) positive number r independent
of T such that if

.t 1/2
wadio+ 500 (| 106 gy d5) < (59)
1<t<T Vi

then (Pr.NS) has a unique global strong solution u(-, t) in [0, T| satisfying
(5.5)-(5.8) with T, =T.

THEOREM 5.2. Let n=2, £€ L*(0, T; H(Q(t))) and u, € D(Ag,,) with
0 < a < 3. Then (Pr.NS) has a unique global strong solution u(-,t) in [0, T
satisfying (5.5)-(5.8) with T,=T.

Proof of Theorem 5.1. Set

1

9o(u) = Z ‘—(x) if u€H\(®),

2,
=+oo if uweH (@\H(@).

(5.10)

Then ¢, is a proper lower semicontinuous convex function on H_ () and
0p, coincides with the Stokes operator 4,. We next put K(¢) = {u € H_(2);
u=0ae. x € 2\Q(t)} and denote by I, the indicator function of K(¢), i.e.,
Ix(w) =0 if u € K(t), and I, (u) = +oo if u € H,(Z)\K(¢). Define another
proper lower semicontinuous convex function ¢’ by

9'(u) = pp(u) + I, (u) for all we& H (2). (5.11)
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Then we have

D(‘Pt) ={uEH,(?);u IQ(!) € lH:;(Q(t))’ u ‘/"\Q(t) =0},
D(99") = {u € D(¢p"); uly,y € HAQ)},
99" (u) = {f € H,(@); Py Flowy =g lowm -

We further introduce another nonlinear operator B(z, -) by

B(t,u)=Ps(u- Viu for u €& D(dp"),

(5.12)
D(B(t, -)) = D(9").

Then there exists a constant C such that
| B(t, ), (/") Clo (“)}3/4 lao(/’t(“)hl»-{/z(m forall ue D(a(/’l)’ (5.13)

(see Fujita and Kato [12], Ladyzhenskaya [20], and Temam [30}), which
implies (A.3), with a =% and a(¢)=0.
We here consider the following abstract Cauchy problem in H_(#):

di(t)/dt + 89" (8(t)) + B(t, a(t)) D PLE(t), 0<t<T,
u(0) =1,,

where f(¢) and i, are the zero extensions of f(¢) and u, to ¢, respectively.
Since (B(t,u), w7 =0, (g u)y (»=2¢'(n) for all u€ D(Gp') and
g€ dp'(u), and since there exists a constant C such that |ulf, (o S
Clultiz < ¢'(u) for all u € D(p*) (see [20] and [30]), conditions (A. 1) and
(A.7) are fulfilled. To verify (A.2), it suffices to note that ((u - V)u, ¢)y s =
—((u-V)g,u)y s for all u€ D(Gp’) and ¢ € CP(?). Moreover, under
assumptions (Q.1) and (Q.2), we can verify (A.p") by the same reasoning as
in the proof of Lemma 3.1 of [28] (see also Yamada [33, 34]). Thus, noting
that u, € D(43,,) if and only if &, € F, ,(0¢") for 0 < a < 3 (see [13] and
i5]), we can apply Theorems I, II, V and VI to (C.P.),. Then the desired
strong solution u(-, ¢} is given by the restriction of the strong solution a(-, ¢)
of (C.P.); to Q(1), ie., u(-,£) =10(-, ) oy, since Ga(-, £)/dt low = ou(-, t)/dt
and Py ,(Pgh) |y, = Pyyh g for all h € H (7). Estimates (5.6)-(5.8) are
derived from (3.5), (3.6) and the inequality ||z, < Const. |8%!(u)| for
all u€D(@¢") (see [20] and [30]). Furthermore, by Remark 3.3,
{a(-, )l e) is absolutely continuous on any compact interval of (0, 7| (or
on [0, T]). Hence, since u(¢) is also continuous in (0, 7] (or [0, T]) in the
weak topology of H!(<?), u(¢) turns out to be continuous in the strong
topology of H!(¢?). The uniqueness part is proved by much the same
argument as in Serrin [29]. Q.E.D.

(C.P.),
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Proof of Theorem 5.2. If n=2, then instead of (5.13) we now have (see
(30])

| B(t, w), Lo < Cluly, Ao ‘(w)}
X 18%" (W)l () for all u € D(d¢"), (5.14)

which implies (A.3), for all @ € (0, 7] and (3.7)" in Theorem IV, Then we
can apply Theorems I, II, IV and Corollary IV for (C.P.),. Q.E.D.

Remark 5.3. As for the case n=4, we can obtain a result similar to
(but somewhat weaker than) that of Theorem 5.2; i.e., there exists a
(sufficiently small) positive number r independent of 7T such that if
[9olhi o) + SUPs /<7 (Ui- 1 12 o5y d5)'72 < 1, then (Pr NS) has a unique
strong solution u(-, t) satisfying (5 5)-(5.8) with a =3} and T, = 7. Indeed,
since | B(t, u)ly, (s < Const.{p‘(u)}'/?|8°"(u)|y, (», holds for all u € D(dp")
(see [16]), we can apply Theorem V.

Example 11. Modified Navier—Stokes Equations

We now consider the initial-boundary value problem for the Modified
Navier—Stokes equation of the form

(Pr.MNS) ( H+Au+ (u-Viu=Ff—Vp, in Q,

with the same conditions (5.2)-(5.4) as in (Pr.NS),

where  d,u=—Y1, (9/ax)(VuP(ufox)),  p>2  [Vul=XI,_,
I(ou’/ox;)|*. This problem is posed in the book of Lions [22] for the case that
Q is a cylindrical domain £ X [0, T|, where the Galerkin’s method is
employed to construct weak solutions belonging to LP(0, T3 Wl?(2)) M
L*(0, T; H,(2)) (cf. [24]).

THEOREM 5.4. Suppose that p>2 and pz4n/(n+2). Let w €
H,(Q(0)) and £€ L*(0, T; H(Q(r))), then (Pr.MNS) has a global solution
u(-, t) in |0, T] satsifying

u(-, 1) € C([0, T]; Ho(Q))) N C((0, T]; W P(Q(1)))
N L2, T; W (Q(1))s (5-15)
V't éu(-, 1)/ot € L*(0, T; H(Q(1))), (5.16)
t7P(u - V)u(-, £) € L*(0, T; H(Q(?))). (5.17)
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Furthermore, if u, € W2?(Q(0)), then (Pr.MNS) has a solution u(-,?)
satisfying

u(-, 1) € C([0, T]; W, P(Q(1)))s (5.18)
ou(-, /6t € L0, T; H(Q(1))), (5.19)
(- V)u(-, 1) € L=, T; H(Q(1))). (5.20)

Proof. We can carry out the proof as in the proof of Theorem 5.1.
Instead of (5.10), put p(u) =|Vu|},./p if u € W) ?(?) and ¢ .(u) = +oo if
u € H (ON\WL?(?), and define ¢’ by (5.11).

Then we find that D(p") = {u € H,(); ulg,y € W P(Q(N), u |y =0k
and that u € D(dp") and f € Jp'(u) if and only if u € D(¢’) and

a ou o
3 ([Vu[H—“ —w) — (W), forall weE D)
i=1 H(#?)

ox;’ ox;
(formally, Py,flo) = PoiA,8 o) Define B(t, -) again by (5.12), then,
since W'-?(?) is embedded in (L**/?~2(2))", we easily have

| B(t, w)lyy, (= < Const.{p'(u)}>” for all u € D(o"),

which implies (A.5) with a(¢)=0 and (3.7)’ in Theorem IV. Thus ;ve can
apply Theorems II, IIf and IV to (C.P.);. Q.E.D.

Remark 5.5. Another type of modified Navier-Stokes equation,

ufor — (1 +v (J

Q(l)IVuI2 dx) )Aqu(u-V)u——:f—Vp>k (v,a > 0),

can be treated within our abstract framework. Indeed, repeating the routine
with (5.10) replaced by @o(u)=|Vu|?s.e/2 +v|Vu|hi2 2 2(1 + ) if
u€ HL?), and +oo if u€ H_(?)\H!(), we can obtain some existence
results similar to those of Theorems 5.1 and 5.2. In particular, if # =3 and
a > 1, then there exists a global strong solution for any u, and f as in
Theorem 5.4 (cf. |20, 22, 24)).

Remark 5.6. Our abstract framework can also deal with some nonlinear
heat equations such as

ou Y0
E(x’t)—zle_.(

i=1

=2 oy

5)—5) —lulfu=fnn)  inQ,

ou
ox;

(PR.NH) u(x,t)=0 on 0,

u(x, 0) = uy(x) in Q(0).
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For example, for the case p=2, assume 0 <a<+o0 if 1=<2,0<a<
4/(n—2) if n=3 (resp. 0 <a < 4/n), then (Pr.NH) has a local strong
solution for any uy(x) € Hy(Q(0)) (resp. u, € L*(Q(0))). Moreover, if |u,],:
(resp. |ugl,») is sufficiently small, then the solution can be continued globally.
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