
A Proof Theoretic Approach to Operational

Semantics

Dale Miller
1 ,2

INRIA & LIX, École Polytechnique
Palaiseau, France

Abstract

Proof theory can be applied to the problem of specifying and reasoning about the operational semantics
of process calculi. We overview some recent research in which λ-tree syntax is used to encode expressions
containing bindings and sequent calculus is used to reason about operational semantics. There are various
benefits of this proof theoretic approach for the π-calculus: the treatment of bindings can be captured with
no side conditions; bisimulation has a simple and natural specification in which the difference between bound
input and bound output is characterized using difference quantifiers; various modal logics for mobility can
be specified declaratively; and simple logic programming-like deduction involving subsets of second-order
unification provides immediate implementations of symbolic bisimulation. These benefits should extend to
other process calculi as well. As partial evidence of this, a simple λ-tree syntax extension to the tyft/tyxt rule
format for name-binding and name-passing is possible that allows one to conclude that (open) bisimilarity
is a congruence.

Keywords: operational semantics, proof theoretic specifications, λ-tree syntax, rule formats, π-calculus

A number of frameworks have been used to formalize the semantics of process

calculi and, more generally, programming languages. For example, algebra, cate-

gory theory, and I/O automata have been used to provide formal settings for not

only specifying but also reasoning about the operational semantics of calculi and

languages. In this note, we overview recent results in making use of proof theory to

encode and reason about such operational semantics. By the term “proof theory”

we refer the study of proofs for logics, particularly in the style initiated by Gentzen.

To illustrate an immediate and natural connection between operational seman-

tics and a proof theoretic approach to logic, notice that operational semantics (either

“big-step” or “small-step”) is often presented as inference rules. Occasionally, it is

possible to encode such inference rules directly as theories in a logic: typically, as

Horn clauses in a first-order logic. To achieve such an encoding, process calculus

1 Support for this work comes from INRIA through the “Equipes Associées” Slimmer and from the ACI
grants GEOCAL and Rossignol.
2 Email: dale.miller@inria.fr

Electronic Notes in Theoretical Computer Science 162 (2006) 243–247

1571-0661  © 2006 Elsevier B.V. 

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2005.12.089
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81124802?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dale.miller@inria.fr
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/


expressions, actions, labels, etc, are encoded as first-order (algebraic) terms, one

step transitions as atomic formulas, and inferences rules, such as,

A1 · · · An

A0
as the formula ∀x̄[A1 ∧ . . . ∧ An ⊃ A0] (n ≥ 0).

Here, A0, . . . , An are atomic formulas and the explicitly quantified variables in the

list x̄ are the schema variables implicitly quantified in the inference rule on the left.

When such an encoding works, one expects that an atomic formula A is provable

from the inference rules if and only if the corresponding Horn clauses (viewed as a

theory or logic program) prove A.

There are several possible benefits for encoding operational semantics into logic

in this fashion. For example, logic programming technology, such as unification and

backtracking search, can convert operational semantics into an executable specifica-

tions [1]. In addition, some properties of semantic specifications, such as reachability

and bisimilarity, can be automated [9].

It is not always possible to encode inference rules in this simple fashion. For ex-

ample, side conditions are frequently added to inference rules and these conditions

must also be encoded into logic and used as additional premises. If a process calculi

has a notion of binder, such as in the π-calculus, the join-calculus, or Concurrent

ML, then a number of side conditions are usually employed to enforce that variable

names respect scope. A large number of such side conditions can, in fact, be elimi-

nated by encoding inference rule into a logic that directly encodes λ-abstraction and

higher-type quantification over λ-terms. Church’s Simple Theory of Types provides

a good starting point for such a logic. The addition of λ-abstractions and higher-

type quantification is now a well studied and frequently implemented enhancement

to logic programming that provides an internalization of term-level binders as well

as α-conversion and object-level substitution [8].

The encoding of syntax involving binders as simply typed λ-terms in a logic with

an equality that includes α, β, and η conversion is called the λ-tree syntax approach

[3] to higher-order abstract syntax.

To illustrate this approach to encoding syntax, let type p denote the syntactic

category of processes and consider encoding process expressions of the π-calculus

into that type. For example, encoding the expression P + Q can be done by intro-

ducing a constructor plus of type p → p → p and (using “logic-level” application)

forming the term (plus P ′ Q′), where P ′ and Q′ are the encodings of P and Q,

respectively. Similarly, the expression x(y).P , where x is a name and y is a binding

with scope P , can be encoded using a constructor in of type n → (n → p) → p as the

expression (in x (λy.P ′)), where the type n denotes the syntactic type of names and

the expression P ′ denotes the encoding of P . Notice that a “logic-level abstraction”

has been used to form the expression λy.P ′ of type n → p. Similarly, other process

combinators that do not involve bindings can be encoded with constructors with

“algebraic type” (first-order type) while those involving binders would use second-

order types. In the π-calculus, the only other combinator that requires a binder is

the restriction operator: for this, the constants ν of type (n → p) → p can be used

D. Miller / Electronic Notes in Theoretical Computer Science 162 (2006) 243–247244



to encode restriction (we abbreviate ν(λx.P ) as simply νx.P ).

An important lesson learned from using computational systems involving λ-tree

syntax is that bindings within terms need to be matched with bindings in formula

(via quantifiers) and bindings in proofs (such as eigenvariables). In particular,

binders have mobility from terms to formulas to proofs: a bound variable never

becomes a free variable (or vice versa) during proof search [2].

To illustrate how bindings can be treated declaratively in operational semantics,

consider specifying the operational semantics of the π-calculus. First, we shall use

the up arrow ↑ and down arrow ↓ to encode input and output actions, respectively:

in particular, the expression (↑Xy) denotes an input action on channel X of value

y. Notice that the two expressions, λy.↑Xy and ↑X, denoting abstracted actions,

are equal up to η-conversion and can be used interchangeably. Second, we use the

horizontal arrow −−→ to relate a processes with an action and a continuation (a

process), and the “harpoon” −−⇀ to relate a process with an abstracted action and

an abstracted continuation.

The following three rules are part of the specification of one-step transitions for

the π-calculus: the full specification using λ-tree syntax can be found in [3,10,11].

∇n(Nn
A

−−→ Mn)

νn.Nn
A

−−→ νn.Mn

(res)
∇y(Ny

↑Xy
−−→ My)

νy.Ny
λy.↑Xy
−−⇀ λy.My

(open)

P
↓X
−−⇀ M Q

↑X
−−⇀ N

P | Q
τ

−−→ νy.(My | Ny)
(close)

The (close) rule illustrates that a bounded input and bounded output action

can yield a τ step involving a new restriction in the continuation. The (res) rule

illustrates how λ-tree syntax and appropriate quantification can remove the need for

side conditions: since substitution in logic does not allow for the capture of bound

variables, all instances of the premise of this rule has a horizontal arrow in which

the action label does not contain the variable n free. Thus, the usual side condition

for this rule is treated declaratively. Both the (res) and (open) rules illustrate

the ∇-quantifier that was introduced in [5,4] for encoding “generic judgments”. For

our purposes here, the expression ∇xγ .Bx can be thought of as provable if, given a

newly constructed object c of type γ, the formula Bc is provable. This rule should

be seen as being hypothetical: no assumption about whether or not the domain of

the type γ is non-empty is made.

With rules in this style, it is easy to provide definitions for simulation and

bisimulation: for example, the following equivalence can be used to define simulation

D. Miller / Electronic Notes in Theoretical Computer Science 162 (2006) 243–247 245



between two π-calculus expressions.

sim(P,Q) ≡ ∀A∀P ′

[
P

A
−−→ P ′ ⊃ ∃Q′

(
Q

A
−−→ Q′ ∧ sim(P ′, Q′)

)]
∧

∀X∀N

[
P

↓X
−−⇀ N ⊃ ∃M

(
Q

↓X
−−⇀ M ∧ ∀w.sim(Nw,Mw)

)]
∧

∀X∀N

[
P

↑X
−−⇀ N ⊃ ∃M

(
Q

↑X
−−⇀ M ∧∇w.sim(Nw,Mw)

)]

Notice that bound inputs require the ∀ quantifier to quantify the comparisons of

their continuation while bound outputs require the ∇ quantifier to quantify the

comparisons of their continuation. Formally speaking, in order for this equivalence

to correctly encode the greatest fixed point of the equivalence (bisimilarity), one

must deal with co-induction explicitly within inference rules, following, for example,

[7].

As described in [10], it is also possible to specify the modal operators of [6] in

a similar, declarative style. Again, the need for side conditions on names, their

scopes, and their occurrences is taken care of declaratively by logic.

Implementing the logic containing the ∇-quantifier does not require significant

new technical devices. For example, rather straightforward extensions of higher-

order logic programming techniques [8] have been used to build the deductive system

described in [12], which computes not only one-step transitions but also symbolic

bisimulation for finite π-calculus expressions (those not involving replication).

Given the high degree of declarativeness of specifications written using λ-trees

syntax, it has been possible to define a generalization [13] of the tyft/tyxt rule

format that captures name-binding and name-passing calculi and for which (open)

bisimilarity is a congruence.

References

[1] Despeyroux, J., Proof of translation in natural semantics, in: Proceedings of Symposium on Logic in
Computer Science, Cambridge, Mass, 1986, pp. 193–205.

[2] Miller, D., Bindings, mobility of bindings, and the ∇-quantifier, in: J. Marcinkowski and A. Tarlecki,
editors, 18th International Workshop CSL 2004, LNCS 3210, 2004, p. 24.

[3] Miller, D. and C. Palamidessi, Foundational aspects of syntax, ACM Computing Surveys 31 (1999).

[4] Miller, D. and A. Tiu, A proof theory for generic judgments: An extended abstract, in: Proc. 18th IEEE
Symposium on Logic in Computer Science (LICS 2003) (2003), pp. 118–127.

[5] Miller, D. and A. Tiu, A proof theory for generic judgments, ACM Transactions on Computational
Logic 6 (2005), pp. 749–783.

[6] Milner, R., J. Parrow and D. Walker, Modal logics for mobile processes, Theoretical Computer Science
114 (1993), pp. 149–171.

[7] Momigliano, A. and A. Tiu, Induction and co-induction in sequent calculus, in: M. C. Stefano Berardi
and F. Damiani, editors, Post-proceedings of TYPES 2003, number 3085 in LNCS, 2003, pp. 293 – 308.

[8] Nadathur, G. and D. Miller, An Overview of λProlog, in: Fifth International Logic Programming
Conference (1988), pp. 810–827.

D. Miller / Electronic Notes in Theoretical Computer Science 162 (2006) 243–247246



[9] Ramakrishna, Y. S., C. R. Ramakrishnan, I. V. Ramakrishnan, S. A. Smolka, T. Swift and D. S. Warren,
Efficient model checking using tabled resolution, in: Proceedings of the 9th International Conference
on Computer Aided Verification (CAV97), number 1254 in LNCS, 1997, pp. 143–154.

[10] Tiu, A., Model checking for π-calculus using proof search, in: M. Abadi and L. de Alfaro, editors,
CONCUR, Lecture Notes in Computer Science 3653 (2005), pp. 36–50.

[11] Tiu, A. and D. Miller, A proof search specification of the π-calculus, in: 3rd Workshop on the
Foundations of Global Ubiquitous Computing, ENTCS 138, 2004, pp. 79–101.

[12] Tiu, A., G. Nadathur and D. Miller, Mixing finite success and finite failure in an automated prover, in:
Proceedings of ESHOL’05: Empirically Successful Automated Reasoning in Higher-Order Logics, 2005,
pp. 79 – 98.

[13] Ziegler, A., D. Miller and C. Palamidessi, A congruence format for name-passing calculi, in: Proceedings
of SOS 2005: Structural Operational Semantics, 2005.

D. Miller / Electronic Notes in Theoretical Computer Science 162 (2006) 243–247 247


	References

