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Abstract

This paper is a contribution to the study of the general problem of characterizing
those properties which can be computed on a graph or a network by means of local
transformations. By using an abstract model based on graph relabelling systems
we consider the majority problem : let G be a graph whose vertices have label A
or B ; we say that label A has the majority if the number of A-labelled vertices is
strictly greater than the number of B-labelled vertices (|G|a > |G|g). We prove
that there exists graph relabelling systems deciding for every connected graph &
whether |G|4 > |G| B (resp. |G|4 = |G|B) or not. On the other hand, we prove that
no such system can decide if |G|4 > |G|p — m (resp. |G|4 = |G| — m), for any
positive integer m.

1 Introduction

One of the main characteristics of distributed systems is the local nature of
the computation. A set of processors, connected in some specific way, try to
reach a common goal (e.g. computing some function) after a finite number of
elementary steps, each involving solely a subset of “near” processors. In this
framework, one of the main questions is to characterize those functions, that
is those global properties of the network, that can be computed by means of
local transformations in the network [1,2,6,9,10]. In this paper we investigate
that question by using a computational model introduced in [3], which allows
to express such computations by means of some graph relabelling systems.
More precisely, we will consider graph relabelling systems as recognizers of
labelled graphs families based as follows on local relabellings : the labelled
graph G to be recognized as a member of a specified set is labelled by some
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special initial labelling ; labels are then locally modified, that is on subgraphs
of fixed diameter of the current graph, according to some given relabelling
rules ; these modifications are iterated until some irreducible form is reached,
that is until no more transformation is possible. The presence or the absence
of some specific final labels decides whether GG is accepted or not.

The class of problems which can be solved by local computations is strongly
dependent on the assumptions which are made on the initial graph. For in-
stance all problems become easier when the graph has some distinguished
vertex (with a special label), or when such a vertex can be elected [1,6,7]. In
the same way when every vertex has some knowledge concerning the whole
graph (an upper bound on or the exact number of vertices, the whole or partial
topology of the graph, etc.) some problems may become solvable. We con-
sider here the more general case, that is no vertex can be distinguished and
no vertex has any knowledge concerning the rest of the graph. We are mostly
interested in the following paradigm, called the majority problem : let A and
B be any two labels, G be a graph whose vertices are labelled on {A, B}, |G|
(resp. |G|B) be the number of vertices of ¢ labelled with A (resp. with B). To
what extent are we able to compare the quantities |G|4 and |G|g 7 We prove
that using such graph recognizers we can decide whether |G|4 > |G|p (resp.
|Gi|4 = |G/|B) or not. Then, using the notion of k—covering, we prove that it
is not possible to decide whether |G|4 > |G|g — m (resp. |G|a = |G|g — m)
or not, for any m > 0.

This paper is organized as follows : in Section 2 we introduce the main
notions and notation. We prove in Section 3 our main result and in Section 4
our impossibility result. Due to the lack of space our main result is only es-
tablished for cycles (the ring is certainly the most commonly studied network)
and the main ideas are given for the general case. The complete proofs will
be given in the full version of this paper.

2 Basic notions and notation

Let L be a finite set of labels. A labelled graph G over L, denoted by (G, ),
is a graph with vertex set V() and edge set E((G) equipped with a labelling
function A : V(G) U E(G) — L. We assume that the set L is partitionned
into two subsets, the vertex and edge label sets respectively. The graph G
is called the wunderlying graph, and the mapping A is a labelling of it. The
class of labelled graphs over some fixed alphabet L will be denoted by Gr. Let
¢ € L, a c-labelled vertex (resp. edge) is a vertex v (resp. an edge e) such
that A(v) = ¢ (resp. A(e) = ¢).

Let (G,)A) and (G', X') be two labelled graphs. We say that (G,)) is a
subgraph of (G', X'), denoted by (G, X) C (G', '), if G is a subgraph of G/ and
A is the restriction of X' to V(G) U E(G). An isomorphism from (G, ) to
(G',X') is an isomorphism ¢ from G to G' which preserves the labelling, that
isVaeV(G)UEG), N(e(x)) = Ax). An occurrence of (G, ) in (G',X') is
an isomorphism ¢ from (G, A) to a subgraph (H,n) = (G, X) of (G', \').

A graph relabelling system is given as a 4-tuple R = (L, 1, P,>) where
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L is a finite set of labels, I C L the set of initial labels, P a finite set of
relabelling rules and > a partial order over P. Each relabelling rule is given
as a triple (R, p, ¢') such that (R, ) and (R, u') are two graphs in Gr. Let
(G,A) be a graph in G, ¢ an occurrence of (R,p) in (G, ) ; if there is
no occurrence ¢ of a rule (S,v,v'), S > R, such that ¢(S,v) “intersects”
(in an obvious way) ¢(R, ) in (G, X), we say that (R, u, ') is applicable on
(G, X). The application of the relabelling rule (R, u,y') leads then to the
graph (G, X') obtained by relabelling the components of ¢(R, 1) according to
the labelling function p'. We will then write (G,A) R (G,)\). Note here
that the effect of the priority mechanism is strictly local : in order to decide
whether a relabelling rule may be applied or not, we only have to check the
neighbourhood of the corresponding occurrence.

Let (G, A) be a graph in Gy, that is a graph with labels in the initial set
I. We will denote by R(G, A) the set of R-irreducible forms of (G, ), that is
the set of graphs (G, X') such that (G, X) R* (G, \) and (G, N') is irreducible,
where R* denotes the reflexive and transitive closure of R. This set can be
interpreted as the set of possible results of the computation expressed by R
on (G, ). For that reason we will only consider noetherian graph relabelling
systems not allowing infinite derivation sequences (a derivation sequence is a
sequence (G, A1), (G Ag), ..., (Gy ), ... with Vi, (G,X) R (G, it1)).

A final condition over L is any finite propositional formula constructed
from variables of the set {II; | [ € L} by means of operations V, A and —. A
labelled graph (G, \) satisfies a final condition o over L, denoted (G, \) [ ¢,
if the formula ¢ where we define II; as true if A='(I) # () is true. Note that
this notion is invariant under isomorphism. Thus, such final conditions enable
us to check the presence or the absence of some labels in a labelled graph but
not to count vertices or edges with given labels, or to express some properties
on their relative positions. For intance, it is impossible to specify that there
is exactly one T-labelled vertex or that there exist two adjacent T-labelled
vertices. Let p be a final condition. We will denote by K(gp) the set defined
by K(p) = {(G,A) € G | (G, ) E o}

A recognizer is a pair (R, p) where R is a graph relabelling system and o a
final condition. The class of graphs recognized by (R, ¢), denoted by L(R, ¢),
is then defined as those graphs (G, ) in G; such that R(G,A) N K(p) # 0.
A recognizer (R, ¢) is said to be deterministic if for any graph (G, A) in Gy,
either R(G,A\) N K(p) = R(G,\) or R(G,A)NK(p) = 0. The class of graphs
deterministically recognized by (R, ¢), denoted by Lge:(R, p), is then defined
as those graphs (G, \) in Gy such that R(G, A) C K. In other words, a graph is
deterministically recognized if every computation leads to a graph satistying
the final condition. A graph is undeterministically recognized if there exists
some computation leading to a graph satisfying the final condition. Note here
that the term deterministic refers to the recognition procedure (whose result
is unique) but that the sets R((G, A) are in general not singletons. This notion
is very similar to the one used in [1].
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Fig. 1. Construction of A-paths on a cycle.

3 The main result

In this section we prove the following :

Theorem 3.1 Let A and B be two labels; the class of labelled connected graphs
G such that |Gla > |G| (resp. |Gla = |G|B) is deterministically recognizable
by local computations.

We first illustrate the technique we will use by considering the simple case
when the graph (' is a cycle. This technique will then be extended in order
to capture the general case.

3.1  The cycle case

The main idea can be intuitively described as follows : when a A-labelled ver-
tex has a B-labelled neighbour then they neutralize each other and become
X-labelled. By repeating this process it may happen that the graph still con-
tain some A- and B-labelled vertices which have only X-labelled neighbours.
The solution is then to build some A-paths (whose edges will be marked)
having one A-labelled vertex (the root of the A-path) and some X-labelled
vertices which will become a-labelled (see Figure 1). In this way, A-labelled
vertices will be able to “encounter” some B-labelled vertices not belonging to
their immediate neighbourhood.

When the computation stops we have one of the following situations :
(1) there are only X-labelled vertices, which means that ' was such that
|Gi|a = |G|B, (2) there are only a- and A-labelled vertices, which means that
(i was such that |G|4 > |G|p or (3) there are only X- and B-labelled vertices,
which means that ¢ was such that |G|g > |G]4.

More precisely, this computation can be done by a relabelling system R
using the set of rules depicted on Figure 2. These rules work as follows :
R1, R2 : when a a- or A-labelled vertex has a X-labelled neighbour this
neighbour is added to the A-path.
R3 : when a A-labelled vertex has a B-labelled neighbour, this neighbour
becomes X-labelled, and the vertex becomes AX labelled. The AX label
means that we have to change the labels of all the vertices of its A-path to X
(this will be done by rules R10,... ,R15).
R4 : when a a-labelled vertex has a B-labelled neighbour it needs to ask the
root of its A-path whether the B-labelled vertex can be neutralized or not.
The B-labelled vertex is marked as B and thus cannot be “attacked” on its
other side until the decision is taken. The a-labelled becomes ax?-labelled.
R5 : The ax? label is brought along the A-path towards the root.
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Rl o o — o <o R2 o o — o <o
A B AX X a B ax? B

R3 o e - o |1 Y S— — <o
a ax? ax? ax? A ax? A ax

R5 oo —- *—<—o R6 o <o —- *—<—o
ar azx? ar  ax ar ar B ar B X
R7T oo — <o RS ¢ oo — oxeo—o
A ax B AX X X a AX AX X
R) ¢xeoxeo — o—o—9eo RO ¢ <o — oo
ar? AX AX X B AX B AX
RIl oo - <o R12 ¢ o - oo
R13 A;X N A;X R14 AX X N X AX

AX X Priority : R10, R11, R12 > R13,

RIS o - . R14 > R15.

Fig. 2. The set of relabelling rules in the cycle case.

R6 : The ax? label reaches the root which is free (A-labelled). The root
then accepts the neutralization and becomes marked as A and thus cannot
neutralize another B-labelled vertex on its other side. The az? label becomes
az.

R7 : the ax label return back to the neutralized (B-labelled) vertex.

RS, R9 : when the ax label reaches the neutralized vertex, the B label is
brought back to the root. When the B label reaches the root the root becomes
AX-labelled, in order to change the labels of all the other vertices of the A-
path.

R10, R11 : the AX label goes down the A-path (it may encounter only a or
az? labels) and marks as X the encountered vertices.

R12, R13 : the AX label reaches the end of the A-path. If a B-labelled vertex
is encountered then the B-label is restored. The AX label can now become
AX. Note that thanks to the priority relation, this is only done when the end
of the A-path is reached.

R14, R15 : all the X-labelled vertices are now unmarked as X-labelled and
the whole A-path is thus destroyed.

Note here that by marking with X the A-path to be destroyed before effec-
tively destroying it we ensure that the system thus obtain always terminates.
Without using that trick we could have such a A-path indefinitely turning
around the cycle, growing on one side and being destroyed on the other side.

We will now sketch the proof of Theorem 3.1 for cycles. Due to the lack of
space our intent is to illustrate here the proof techniques which are used for
the general case. Let P = xq...,x, be a marked path in ¢ (that is whose all
edges are marked). Let us call the label of P the word A(aq)..... Alx,). We

denote by U~ the mirror image of any rational language U.

Claim 3.2 In every derivation sequence in R the labels of the marked paths
are of the form U= AU, U VAV, VAU, U AX.X or AX. X", where
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U =a(c+ (a:z;?)"’.?) and YV = (a:z;)"’.(a:z;?)*.?. Moreover, all the vertices
which are not incident to a marked edge have label A, B or X.

Proof. It suffices to check these invariants for every rule in R. O
Claim 3.3 The system R is noetherian.

Proof. Let (G,)\) be a graph whith n vertices labelled on {A, B}. For ev-
ery rational language U let T(U) denote the total number of vertices of all
(maximal) paths in ¢ whose label is in ¢. The tuple :

(1G]5 +|Glz +1Glas [Glax, n = T(AX.XT), T(AX.X7),
Y(A.(ax)*.(ax?).B), n — Y(A.(az)*), n — Y((ax?)*), n — Y(a*) )
is then a noetherian order compatible with the system R [3] : every component
is positive and if we consider the usual lexicographic order on tuples, every
rule in R decreases this quantity. The following table gives for every rule
the component of this tuple which is decreased (in every case the previous
components are unchanged) :

Rule: | 12345 |6|7 (8910|111 12|13 |14]15

Component : |8 |8 | 1|7 |71 |6|5|1] 3|3 |2 ]2]|4]|4

Thus every derivation sequence in R starting from a graph G labelled on

{A, B} is finite. 0

Claim 3.4 [If (G, )) is an irreducible graph then either (1) all its vertices are
X-labelled or (2) all its vertices are X - or B-labelled or (3) all its vertices are
a- or A-labelled.

Proof. Using Claim 3.2 it is not difficult to deduce the following : if GG has
a A-labelled vertex then the rule R9 is applicable ; if G has a az?-labelled
vertex then one of the rules R5, R6, R7 or R11 is applicable ; if (¢ has a
az-labelled vertex then one of the rules R7, R8 or R9 is applicable ; if G has a
AX-labelled vertex then one of the rules R10, R11, R12 or R13 is applicable ;
if G has a AX-labelled vertex then one of the rules R14 or R15 is applicable ;
if (¢ has a X-labelled vertex the rule R14 is applicable ; if G has a B-labelled
vertex then one of the rules R8, R9 or R12 is applicable . Moreover, if GG has
some B-labelled vertices together with some a- or A-labelled vertices then one
of the rules R3 or R4 is applicable. O

Claim 3.5 Let G and G’ be two labelled graphs such that G R G'. Then
Gla + Glx = Gl =Gl = |G'la + |Gz — |G'ls — |G'lg

Proof. This quantity is clearly preserved by every rule in R. O

Let us now define the following final conditions : px = -4 A —llp,
@4 = Il4. By using the previous claims one can prove that the two recognizers
(R,px) and (R,pa) satisfy the requirements of Theorem 3.1 : let (G, \)
be any graph whose vertices are labelled on {A, B} and (G, )\) be any R-
irreducible form of (G, A). By Claim 3.4 and Claim 3.5 we know that either
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(G,X') has only X-labelled vertices (in this case |(G,A)|a = [(G,A)|g) or
(G, X) has only X- and B-labelled vertices (in this case |(G,A\)|a < [(G,A)|B)
or (G,X) has only X-, a- and A-labelled vertices (in this case |(G,\)]|4 >
|(G,A)|B). Note that in this latter case we know by Claim 3.2 that (G, )
has at least one A-labelled vertex. Moreover, the final number of A-paths
is exactly the difference between the number of initially A- and B-labelled
vertices.

3.2 The general case

For the general case we simply use A-trees instead of A-paths. Those trees
will be directed (the orientation of any tree can be simulated by using three
additional labels, see [3]) and rooted at a A-, A- or AX-labelled vertex. The
relabelling system is quite more complex but the basic idea is still the same :
every A-tree try to neutralize a B-labelled vertex among those which are
neighbours of its vertices. When such a neutralization occurs, the whole A-
tree is destroyed and all its vertices become X-labelled.

4 Impossibility result

Let (G,)\) be a labelled graph and x a vertex of (G, A). The centered ball
Bea(x, k) of radius k is the subgraph of (G, \) induced by those vertices which
are at distance at most k from z. Let k be a positive integer. We say that a
graph (7 is a k—covering of a graph ' via a mapping v from V(&) onto V(G’)
if v is a surjective homomorphism such that for every vertex v of V((), the re-
striction of 7 to Bg(v, k) is an isomorphism between Bg (v, k) and Bea/(v(v), k).
In [4] the following is proved :

Theorem 4.1 [4] Every class of connected graphs recognizable by local com-
putations is closed under coverings.

Using that, we easily obtain :

Theorem 4.2 Let A and B be two labels, let m > 0 be an integer ; the class of
labelled connected graphs G such that |G|a > |Glg—m (resp. |Gla = |G|p—m)
is not recognizable by local computations, even in a non deterministic way.

Proof. It suffices here to consider the case of cycles : if C' = (zox1...2,-1,)
is a labelled cycle on p > k vertices, the labelled cycle C" = (yoy1 . . . y2p—1, '),
with N(y:) = M mod ), 18 a k-covering of C'. Suppose that there exists
a recognizer for the family of graphs G such that |G|a4 > |G|s — m (resp.
|Gi|a = |G| — m). By Theorem 4.1, if this recognizer accepts C then it also
accepts €', a contradiction since |C'|4 — |C’|g = 2(|C|a — |C|B)- O

5 Concluding remarks and open questions

By slightly modifying our system (we mean by using B-trees instead of isolated
B-labelled vertices) we obtain a new system such that in any irreducible graph
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every vertex knows the result of the computation (if a vertex has a A- or a-
label (resp. B- or b-) then label A (resp. B) has the majority and if a vertex
has a X-label then there is no majority). But no vertex is able to detect
the termination of the computation. Whether a system with such a local
termination detection property exists or not is still an open question.

Our main concern here was the existence or non-existence of systems solv-
ing the majority problem. The design of systems achieving a better time
complexity has not been yet considered (this complexity can be measured by
the average length of a derivation sequence). This complexity could maybe
be improved by using A-, B- and X-trees, leading then to more complicated
systems.

Consider a finite set C = {Ay,..., Ax} of labels. By combining several
copies of our system (that is by using tuples of labels) we can decide for every
graph GG whether |G|a, > Max{|G4,;2 < @ < k} (vesp. |Gla, = |Ga,,
Vi, 2 <1 < k) or not. However, we do not know whether it is possible or
not to recognize those labelled graphs G satisfying |Ga > k x |G|p (resp.
|Gi|a = k x |G|B). Note that in this case the k-covering argument fails.
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