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Abstract

We consider the operator of taking the 2pth derivative of a function with zero boundary conditions for
the function and its first p — 1 derivatives at two distinct points. Our main result provides an asymptotic
formula for the eigenvalues and resolves a question on the appearance of certain regular numbers in the
eigenvalue sequences for p =1 and p =3.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let o be a natural number. We consider the eigenvalue problem

(—=D)%u® (x) = au(x) forx € [0, 1], (D)
uO0)=u'(0)=---=u*0) =0, uD=u/ (D= =u*Da)y=0. )

This problem has countably many eigenvalues, which are all positive and converge to infinity.
We denote the sequence of the eigenvalues by {1, o}52, , Where ng will be chosen in dependence
on « (the a priori choice ng = 1 will turn out to be inconvenient). Thus, the first eigenvalue
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iS Apg,«» the second i8 A,,41 o, and so on. We also put w, o = %/Apn . In [1] we determined the
asymptotics of the minimal eigenvalue Amin.o = Angy,o as o goes to infinity. The result is

pona =57 ) (10( 7)) @
min,oc = o 7 + ﬁ .

In [1] we also observed that Apin 3 is very close to (27)°. We here show that Amin,3 1s in fact
equal to (2)°. It is furthermore well known that Ayin 1 = 2. The purpose of this paper is to
give an answer to the question whether these coincidences are accidents or not. We shall prove
that they are due to the accidents that cosm = —1 and cos % = % are nonzero rational numbers.

We remark that there is a close connection between the eigenvalues of problem (1), (2) and
the eigenvalues of certain positive definite Toeplitz matrices: Parter [4] showed that for each
fixed v the appropriately scaled vth eigenvalue of a certain sequence {7,,} of Toeplitz matrices
depending on « converges to the vth eigenvalue of problem (1), (2) as m — oo. This result is
another source of motivation for the investigation of the present paper.

For o = 1, the eigenvalues of (1), (2) are known to be 1, | = (nm)? (n>1). If « =2, the
eigenvalues are given by 1,2 = “3,2 where {u, 2} is the sequence of the positive solutions of
the equation

1
coshp’

cos L = 4)
This was shown in [2,3]. From (4) we infer that if ng is appropriately chosen, then the se-
quence {Mn,z}?f:no has the asymptotics (i, 2 = % + nw + 8, with 8§, ~ 2(=1)"Hle T/2e=n7 45
n — 00. As usual, x, ~ y, means that x,/y, — 1 as n — oo. Thus, in contrast to the case @ = 1,
{n 2102, 0 does not contain an arithmetic progression. In both [2,3] it was also established that
Mmin,2 = 4.7300 and, accordingly, Amin,2 = 500.5467. We may therefore take no = 1 and write
the eigenvalue sequence in the form {(% + nm)* 4 &,}°° | with &, ~ 473133,
Now let o« = 3. The general solution of Eq. (1) is

5
u(x) = ZCj exp(pe?*lx)  withe =m0, =V
j=0
Consequently, the boundary conditions (2) are satisfied if and only if the determinant of the
matrix

1 1 1 1 1 1
e &3 &> g’ &2 gll
2 6 10 14 18 22
e & e & e e
A3(p) = aw ? bw bo~! w™? aw! )

w2e’ —lgll

—1.22

awe 3 bwed  bo Tl 07?0 aw
awe?  0?€® bwe'® bo et w7 4w
is zero, where

a= e;LRee — e”ﬁ/z, b= ef,uRes — eiﬂﬁ/z, o= elulms — ez,u/2‘ (6)

Figure 1 shows the minimum of the absolute values of the eigenvalues of the matrix Az(w) in
dependence on . The unit on the horizontal axis is 7. We see that the minimum of the moduli
of the eigenvalues and hence the determinant of A3(u) is zero for u, 3 sharply concentrated at
the values of nw with n > 2. The question is whether p, 3 is exactly nz or not. Theorem 1.1
provides the answer.
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Fig. 1. The minimum of the moduli of the eigenvalues of A3(u) in dependence of 1.

Theorem 1.1. For o = 3, the eigenvalues of (1), (2) are {A, 3},2 5 with
An3 = (nm)® ifn>2is even

and
Ap3 = (nm + 8n)6 ifn>3isodd,

where the 8,,’s are nonzero numbers satisfying 8, ~ 8(—1)*/21+1 e~ V321 Here n/2] stands
for the integral part of n/2. In particular, u, 3 = nm if and only if n is even.

Mark Embree computed the first five roots of Eq. (9) and thus the numbers p, 3 for n =3,
5,7,9, 11 up to ten correct digits after the comma. The results are presented Table 1. The last
column shows the values of 8(—1)l%/21+1e=(7 V3/2m

If o = 1 then {p,1},2 ; is an arithmetic progression, and if o = 3 then {j1,,,3},2, contains an
arithmetic progression. The following result involves the reason for these two peculiarities. Ac-
tually it does more. It gives the asymptotics of the eigenvalues of problem (1), (2) for arbitrary .

Theorem 1.2. If o > 5 is odd, one can choose ng so that the sequence {{i, o}5°,  satisfies

n=ng
2(_])n — nZ . /4 _ -2
Kna =NnT + ————e Sy sin| nw cos — | + O(e I sin %, ) 7)
sin” 7= o
o
If a > 4 is even, there is an ng such that {un,a},‘;o:no can be written as

Table 1
U3 8(_1)L'1/2J+167(71x/§/2)n
n=3 9.4270555708 = 37 4 0.0022776101 +0.0022821082
n=>5 15.7079533785 = 57 — 0.0000098894 —0.0000098893
n="7 21.9911486179 = 77 + 0.0000000428 +0.0000000428
n=9 28.2743338821 = 97 — 0.0000000002 —0.0000000002
n=11 34.5575191894 = 117 + 0.0000000000 +0.0000000000
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T 2=t . - T T
Hna == +nm+ %e_(ﬂ"m)smi cos( [ = +nm Jcos—
2 sin 2”—0[ 2 o
+ 0(6—2;17[ s1nE)' (8)
The sequence {in,a},2,, contains an arithmetic progression if and only if cos % is a nonzero

rational number, that is, if and only if o = 1 or o = 3.

We remark that (7) is also true for « = 3, but that in this case it amounts to u, 3 =nmw +

O(e ™ 3/ 2my_ which is weaker than Theorem 1.1. Formula (8) becomes valid for o« = 2 after
replacing the numerator 2(—1)"*! by (—1)"*!. The reason for this discrepancy will be given at
the end of Section 3.

In the cases o = 1, 2,3 the values of pmin« are m, 4.7300 (= %n), 27, respectively. This

suggests that the n¢ in Theorem 1.2 is the integral part of % and hence asymptotically equals 5
as « — 0o. However, (3) implies that pmin.o ~ 47" and thus nom ~ 47“, which shows that actually

no is asymptotically equal to %a = (0.4684«. It was just these tiny but significant differences
that have kindled our interest in the subject in [1] and here.

The properties of problem (1), (2) depend on whether « is odd or even. We therefore study
these two cases separately.

2. The odd case

There remains nothing to say on the case o = 1. So let us begin with « = 3. The following
theorem provides us with a formula for the determinant of matrix (5) for arbitrary a, b, w, that is,
for a, b, w that are not necessarily of the form (6).

Theorem 2.1. Let ¢ = ¢™/® and let a,b, and w # 0 be arbitrary complex numbers. Then the
determinant of matrix (5) is

det A3(p) = 12ab(a + b)(w — 0~ ') +3(a® + b*) (0™ — ?)
+ 3ab(w4 —8w> +8w 2 — a)74) +12(a + b)(a) — afl)
= 12ab(a + b)(a) — w_l) — 3(a2 + bz)(a) — a)_l)(a) + a)_l)
+ 3ab(a) — a)_l)(a) + w_l)(w2 +o - 8) + 12(a + b)(a) — a)_l).
Proof. Let V;;; denote the determinant of the (Vandermonde) matrix that is constituted by the
first three rows and the columns i, j, k of A3(u). We expand the determinant of A3(u) by its last

three rows using Laplace’s theorem and group the (g) = 20 terms so that we get a polynomial in
a and b. What results is

azb(—wV136 Vaus + 0~ Vigs V235) + ab? (—a)V134 Vase + @~ Vagg V125)
+ a* (0 VizeVaus — @ 2 ViseVasa) + b (0 Vaza Vise — @2 Vaas Vig)
+ ab(—* V123 Vise + 0 V24 Vase — 0~ 2 Vis Vaze + 07 Va6 Vias — Vaae Vi3s
+ Vi35 Vaag — @ Vase Vioa + o~ * Vase Vi23)
+ a(—wVi2sVase + 0~ VaseVisa) + b(—wVass Viss + @~ Vaus Vize).

The determinants V;;y are
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Vize = Vazs = Vigs = 2¢/3¢2, Vaas = Vige = Vaze = 2v/3e*,
Vase = Vaae = Viaa = 2/365, Viza = Vias = Vase = 2¢/3¢'°,
Vi2e = Vaza = Viase = V/3, Vags = Vise = Vizs = —/3,

3 3
V246=—§~/§, Vizs = 5\/5-

Inserting these values in the above expression for the determinant of A3(u), we arrive at the
asserted formula. O

Theorem 2.2. For o = 3, the sequence of the eigenvalues of (1), (2) is {)»,13}3022 = {N2,3}Ziz
where |1, 3 =nm if n is even and (33, (53, (173, . . . are the positive solutions of the equation
w 4cosh # 1 u u
cos — = + cos —cosu —4cos — |. ©)]
2 coshpu/3  coshu/3 2 2

Proof. We apply Theorem 2.1 to the case where a, b, @ are given by (6). Since in that case
ab=1and

3
a+b:2coshM;/_, a2+b2=2005hu«/§,
a)—a)_1=2isin%, w+w_l=200s%, w2+w_2=2005p.,

we obtain that det A3(u) equals
13

241 sin % |:4 cosh — cosh /m/gcos % + cos K cos i —4cos ﬁ:| (10)

2 2

The factor sin% produces the eigenvalues Al 3 = (2km)® (k=1,2,3,...). The term in the
brackets of (10) is cosh i+/3 times

4 cosh “T“/g 7 jz 1z
+ cos —cosu —4cos — | —cos —, (11
coshu/3  coshu+/3 2 2 2

and the zeros of (11) are the solutions of (9). O

Theorem 1.1 is almost straightforward from Theorem 2.2. Figure 2 shows the graphs of the
functions on the left and right of (9). We see that the first intersection occurs at approximately 37.
Thus, the zeros of (11) may be written as

Un3=nmw+8, (n=3,57,..)

with §,, — 0 as n — oo. The right-hand side of (9) has the asymptotics 4e= 3/ 1t follows
that

+34 nmw ) 8
4=V  cog B3 o0 T T 0 Gy P in 2 (/21 e
¢ 2 2 p siny ~ (=D 2
and, in particular, that §,, # O for all sufficiently large n. As (11) is definitely nonzero for u =

3w, 5m,7x, ..., we conclude that §,, % 0 for all n.

We now turn to general odd numbers « > 5. One can build up the analogue Ay (u) of ma-
trix (5). The following theorem gives the first two terms of the asymptotics of det Ay () as
L —> 00.
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Fig. 2. The graphs of the functions on the left and right of (9), the unit on the horizontal axis being 7.

Theorem 2.3. If « =2k + 1 > 5, then
det Ay () = K1e"*sinpu + Koe”?* sin(syr—1 ) + O(e”“), (12)
where K1, K> are nonzero constants satisfying —K»/K =2/ sin® e

1 =0 +2c2—3 + 2011, Y2 =0 + 23 + 1,

y3 =0 + k-3 + 2041,

k=2
L 44
o=2Z:1czj_1, czzcosg, sz:smg €=1,3,...,2k—1).
/:

Proof. To avoid heavy notation and to show the essence of the matter, we restrict ourselves to
the case where o = 5. The general solution of (1) is

9
u(x) = ZCj exp(ue®™x), e=e"10 = V.
j=0
Thus, the analogue As5(w) of matrix (5) is a 10 x 10 matrix of a structure completely analogous
to the one of (5). The first 5 rows are of Vandermonde type, the second row being

(8 83 85 87 89 811 813 815 817 819).

The remaining 5 rows result from the first 5 rows by multiplying each column by a factor. These
factors appear without the powers of ¢ in the 6th row, which is

(aa) bt 0 b 't alo alo! bzl 97l bt aw_l)

with
a =eHt, b =eMl3, w=e'Mt T =e'M53, 6 = e,
T T 1 . 3
C] = COSs —, 3 =C0S —, §] =sin —, §3 = sin —.
10 10 10 10

To make things absolutely safe, we still note that the first and second columns of As(u) are
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T
(1 & 82 83 84 aw awe Cla)82 Cla)83 Cla)84) s

( 1 &3 &% & &2 br bred bre® bred brel? )T
We expand det As(u) by its last 5 rows using the Laplace theorem. Taking into account that

2b2 — e;},(201+203)’ a2b — e,lL(2C1+C3), az — e;,L-ch , abz — e;l,(C]+203)

a
and that c; + 2¢3 > 2c¢1, we see that the asymptotics of det A5(u) is
L1a*b* + Lya*b + 0(ab?).

We are left with determining L and L. Let Vj, ;s denote the determinant of the Vandermonde

,,,,,

matrix at the intersection of the first 5 rows and the columns ji, ..., js of A5(u). With X := 10,
we have
Ly = —Vizsox Vase7s0 + Viogox Vasse76 ',

~1 —1
Ly = Vi238x Vas679T + Vi249x V35678T — V1279x V345687 — Vi389x V245677

It remains to compute the products of the form Vy; Vs where M’ denotes the set {1,2,...,
10} \ M. Obviously,

Vi = 1_[ (82171_82j71): 1_[ (82E71+82j71+10)

j.teM j.leM
j<t j<t

1—[ Qo ;e IH2I-1+10/2 H 00 eIt

JjleM j.leM
j<t j<t
where
_ i =)
0r—j=|e*1 g% 1]:251n710] )

Letting

l_[ Qt—j H 0t—js
jteM j.leM’
j<t j<t

we get Vi Vi = Ryre? with
5
q=4(1 +2+--~+10)+2<2) -4 =300.

Since £20 = 1, it follows that £3%° = 1 and thus Vj, Vyr = Ry. A direct computation shows that

Ri230x = Rizsox = —05050503 =: -5,
Ri23sx = Ri249x = Ri270x = Rizsox = 0505030505 = T,
whence
=50 —6"")=2iSsiny, Ly =2T (v — v ') = 4iT sin(us3).
In summary,

det As(u) = 2i Set(e1t2e3) sinp + 4; T e (2c1+c3) sin(us3) + O(eM(Cl+2C3))’

and since —4iT/2iS = 2@%/912 =2/ sin? 1- this is (12) for o =
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The above arguments work equally well for general odd « > 5. It is only the computation of
the constants Ry, that is more expensive and requires special care. O

We are now in a position to prove Theorem 1.2 for odd «. By Theorem 2.3, the equation
det Ay () =0 is of the form

K
sinpu = —K—ze_(y'_m)" sin(sok—1p) + O (e~ V1771), (13)
1

The solutions of (13) are nz + §, with small §,’s satisfying
sin(nr + 8,) = (—1)"sind, = O (e 1 71)),

which implies that 8, = O (e "1772)) Consequently,
(—1)" (5n +0 (672nﬂ()/1 *Vz)))

K
— _?26—('17T+5n)()/1—)/2) sin(sax— 177 + 52—18,) + O (¢TI,
1

and since e~ 1= =1 4 O (e "1 =72)) and
sin(s2k— 1177 + 52k —16,) = sin(sox—117) COS(S2k—18,) + COS(S2%— 1717 ) SIN(82%k—18p)
=sin(sox_1nmw) + O(e_"”(yl_m),
we arrive at the formula
K
(=1)"8, = —K—ze*””m*m) sin(sax—1n7) + O (e ") (14)
1
with y = min(y; — y3,2(y1 — ¥2)). Because
4 .2
2(y1 — y2) = 2c2k—1 =2sin o SN =cas=n -y

we see that y =y — 3 = sin %” Finally, taking into account that —K,/K| = 2/sin® 7, and
$2k—1 = €08 7, we obtain (7) from (14).

Now suppose {itn o} contains an arithmetic progression. Because u, o = nmw + o(1) by
virtue of (7), this progression must be of the form {nfm}>° ,, with some natural number £. As
sin(nfm) = 0, we obtain from the second-order asymptotics of Theorem 2.3 that

Kae"™ sin(spk—1nlm) + o(e}’Z”(”) =0

for all n > N, which implies that sin(spx—jnfmr) — 0 as n — co. Consequently, sox—nf must
converge to zero modulo 1. By Kronecker’s theorem, this is only possible if sy;_1¢ and thus
S2k—1 1s a rational number. Since sp;_1 = cos g, we conclude that cos % has to be rational. In
Appendix we prove that this is not the case for o > 4.

3. The even case
Let o« > 4 be an even number. Here is the analogue of Theorem 2.3.

Theorem 3.1. If « = 2k > 4, then
det Ay () = K1e"" cos u + Kre"?* cos(sg_1 1) + O(e”“),
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where K1, Ky are nonzero constants such that —K> /K1 =2/ sin? %

y1 =0 +2ck_1, V2 =0 +cCk-1, Y3 =0,

k=2 . .
JT . JT .
=142 . i = C0Ss —, i =sin — =1,2,....,k—1).
o + ]ZICJ Cj " S i » (j )

Proof. We confine ourselves to the case & = 4. The matrix A4(u) is

1 1 1 1 1 1 1 1
1 € &2 &3 et &> g g’
1 2 o4 &6 &8 £10 o2 ol4
1 o4 6 &2 el2 AE o8 &21
a bw T b lw a™! b le™! 71 bo!
a bwe 12 b lwed a et bloled  tleb pole?
a bwe? et b lwe® a1l bloTleld 12 pyylgld
a bwe* 1e® blwe® ale!? ploTleld B peylg?l
with
e =e"i/4 a=e", b =e't, w = e, T =¢e'",
T .o
] =COoS — §] =sin —.
4’ 4

Laplace expansion through the last 4 rows yields
det A4 () = Liab®> + Loab + O(a)
with

—1
Ly = Vi238Vas67T + V1278 V3as6T

Ly = —Vi237Vases® — Vioag Vasero — Viaes Vaas1o ™' — Vizrg Vaasew ™. (15)
‘We have
VuVy = £0 1_[ 00—j l_[ 00— =: 86RM = —iRy,
j.eeM jeeM’
j<t j<t
where
. L —
Ot—j = gt —81_1| =2sin %

This gives
Ri238 = Ri278 = Q?Qé@% =: 5,
R1237 = Ri248 = Ri268 = Ri378 = Q?Q%Q%QZ =T.
We finally obtain that
det As(u) = —iSab*(t + 17 ') +2iTab(w + o~ ') + 0(a)
= —2iSe 12D cos p + 4i Te 1TV cos(sy 1) + O (e)
with —4iT/(—2iS) =203/0} =2/sin*%. O
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Armed with Theorem 3.1 we can prove Theorem 1.2 for even numbers «. The equation
det Ay (i) = 0 reads

K
cos L = _%e*(m*n)u cos(sk—1 ) + 0(6*(7/1*}/3)11-)
1

and we have y| — y» = cx—1 and y; — y3 = 2c—1. The solutions of this equation are % +nmw + 38,
with §, = O (e7""“-1) It follows that

(—=D)"*sing, = cos(% +nmw + 6,,)
— _ﬁe—((%+nn+8n)ck_|)COS<Sk1 (% +nr +5n>) + O(e_znnck—l),

K

and since

sind, =6, + O(e_zmmk—l)’ e—‘San—l =1+ O(E—nnck_l)’

cos(sk1 <% +nmT + 8n>> = cos(sk1 (% +nn>> + O(e—nnck_]),

we get the representation

(-=D)"tls, = —%e*((%”‘”)q‘*l) cos(sk_l <% +nn>> + 0(672}””]"1).
1

It remains to notice that —K» /K| =2/ sin® > Sk—1 =c0s -, and ¢x | =sin 7.
If {{4n.«} contains an arithmetic progression, we can argue as in Section 2 to see that there is
a natural number ¢ such that

1 1
—Sk—1 +Lnsp_1 — 2 modulo 1

2
as n — o0o. Kronecker’s theorem implies again that sy | = cos 7. must be rational.
Finally, in the case o = 2 we have to deal with the matrix

1 1 1 1
| &2 &

A = ,

2() a . a' !

a te ale? 7l

where ¢ = ¢™/2, qa = ", T = . The determinant of this matrix is Lia + Lo + O(a~—!) with
Ly = ViaVagt + VagVipr !, Ly =—Vi3Vo4 — Vo4 Vi3.

We see that the constant L, is the sum of two terms, which is in contrast to the case o > 4, where
the constant L, is the sum of four terms as in (15). This explains why for o = 2 the numbers 1, 2
are % + n plus half of the subsequent term of (8). Incidentally, a straightforward computation
yields det A> () = 8(1 — cos p cosh ), which leads to (4).

Appendix

Here is, just for completeness, a proof of the fact that cos % is irrational for o > 4. Since
cos(nf) is a polynomial with integer coefficients of cos6, the rationality of cosf implies that
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of cos(nf). We are therefore left with proving that cos % is irrational if « is 4, 6, 9 or a prime
number p > 5.
The cases @« =4 and « = 6 are trivial. So let « be 9 or a prime number p > 5 and put

x = cos 7. We denote by ¢ the polynomial ¢(y) = 2y%2 — 1 and by ¢" the nth iterate of ¢,
©*(y) = ¢(p(y)) and so on. Clearly ¢"(x) = cos % If n = 6 then 2" = 1 modulo 9, and if
n = p—1then 2" = 1 modulo p (Fermat). Thus, for these n we have ¢” (x) = cos W ==+x.
Since ¢"(0) = 1 for n > 2 and the leading coefficient a,, of ¢"(y) is a power of 2, a,, = 2k it
follows that x satisfies an algebraic equation of the form 2€x™ + ... 4+ 1 = 0. The only rational
solutions of such an equation are of the form x = +1/2/. Because 1 > cos Z >cosz > %, we
arrive at the conclusion that cos % must be irrational.

References

[1] A. Béttcher, H. Widom, From Toeplitz eigenvalues through Green’s kernels to higher-order Wirtinger—Sobolev in-
equalities, math.FA/0412269.

[2] C.O. Horgan, A note on a class of integral inequalities, Proc. Cambridge Philos. Soc. 74 (1973) 127-131.

[3] S.V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer.
Math. Soc. 99 (1961) 153-192.

[4] S.V. Parter, On the extreme eigenvalues of truncated Toeplitz matrices, Bull. Amer. Math. Soc. 67 (1961) 191-196.



