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Abstract

A methodology is presented for observation-based settlement predictions by considering the spatial correlation structure of soil. The

spatial correlation is introduced among the settlement model parameters, and the settlements at various points are spatially correlated

through these geotechnical parameters, which naturally describe the phenomenon. The method is based on Bayesian estimations,

considering both prior information, including spatial correlation, and observed settlements, to search for the best estimates of the

parameters. Within the Bayesian framework, the optimized selection of the auto-correlation distance, by Akaike’s Bayesian Information

Criterion (ABIC), and the spatial interpolation of the model parameters, by the kriging method, are also proposed. The application of

the proposed approach in secondary compression settlement predictions, based on the linear relationship between settlement and the

logarithm of time, is presented in this paper. Several case studies are carried out using both simulated settlement data and actual field

observation data. It is concluded that the accuracy of settlement predictions can be improved by taking into account the spatial

correlation structure, especially when the spacing of the observation points is shorter than half of the auto-correlation distance, and that

the proposed approach produces rational predictions of settlements at any location and at any time with quantified errors.

& 2012. The Japanese Geotechnical Society. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Thus far, all methods for predicting future settlements
using past observations have been based solely on the
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temporal dependence of their quantity. However, the fact
that soil properties tend to exhibit a spatial correlation
structure has been clearly shown in several past studies, e.g.,
Lumb (1974), Vanmarcke (1977), DeGroot and Baecher
(1993), and Baecher and Christian (2003, 2008). Therefore,
it is natural to expect that the accuracy of settlement
predictions can be improved by taking into account the
spatial correlation of the soil properties, by which the
observed settlement data from all the different observation
points can be rationally utilized. Furthermore, by introducing
the spatial correlation, it is possible to predict ground
settlements at any arbitrary point and at any time by
considering the spatial–temporal structure. This study is
actually an attempt to search for such an approach.
In order to include the spatial correlation in the settle-

ment prediction model, the Bayesian approach is chosen
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Notation

c1, c2 constant parameters
I total number of unknown parameters
In,n n� n identity matrix
K total number of observation time steps
k observation time steps
Mk coefficient matrix relating unknown parameters

to observation data at observation time step k

m0, m1 model parameters for secondary compression
model (S� log(t) method)

mn
1, mn

0 mean of m1 and m0 for simulation of model
parameters

mn
1;0ðxiÞ, mn

0;0ðxiÞ prior mean at observation point xi of
m1 and m0

Nsim total number of simulations
Nx total number of estimated values
n total number of observation points
S secondary compression settlement
S(o1,o2) spectral density function
Sk(xi) observed secondary compression settlement at

observation point xi at observation time step k

s spacing of observation points
t time of compression (S� log(t) method)
tk observation time at observation time step k

VC auto-covariance matrix
Ve covariance matrix of observation error
V
0

e matrix representing the relative error magni-
tude of each observation

Vy covariance matrix of unknown parameter

wi kriging weights attached to the data at each
observation point

Xest,i, Xtrue,i estimated value and true value
xi spatial vector coordinates at observation point

xi

Y set of all observation data
Yk observation vector at observation time step k

yk(xi) observation data at an observation point xi at
observation time step k

zni (xi) estimate of unknown parameter zi at observa-
tion point xj

d vector representing uncertainty of prior mean
of unknown parameters

e observation error vector
Z auto-correlation distance
y unknown parameter vector
yn Bayesian estimator of unknown parameter

vector
y0 prior mean of unknown parameter vector
m Lagrange multiplier
rð9xi�xj9Þ auto-correlation function
s2m1;s

2
m0 variance of m1 and m0 for simulation of model

parameters
s2m1;0, s

2
m0;0 prior variance of m1 and m0

s2zi prior variance of unknown parameters zi

s2e variance of observation error
fjk random phase angles, uniformly and indepen-

dently distributed in interval (0,2p)
o1, o2 frequency domain
0n,n n� n zero matrix
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for this research due to its ability to systematically
combine the subjective information, i.e., prior information,
including the spatial correlation, and objective informa-
tion, namely the observation data. A general formulation
is presented based on the Bayesian estimation concept to
identify the best estimator of a stochastic Gaussian field of
unknown parameters when the observation is made at
discrete spatial points and at a discrete time by considering
the spatial correlation. However, due to the fact that the
spatial correlation structure is controlled by the auto-
correlation distance, the estimation of this key parameter
is necessary. By considering this as a model selection
problem, it will be shown that, within the Bayesian
framework, the auto-correlation distance and the observa-
tion errors can be appropriately selected based on Akaike’s
Bayesian Information Criterion (ABIC) (Akaike, 1980;
Honjo and Kashiwagi, 1999).

Based on the estimated parameters at discrete observation
points and the estimated auto-correlation distance, the
kriging technique is adopted for estimating the values of
unknown parameters at any unobserved points. This method
provides an unbiased and least-error estimator built on the
data from a random field for which second-order stationary
is assumed (Krige, 1966; Matheron, 1973; Wackernagel,
1998). In fact, it can be proved that the kriging method
shares the same conceptual basis with the Bayesian estima-
tion (Hoshiya and Yoshida, 1996). This confirms the
conformity of the theory used in this research. The deriva-
tion of the ordinary kriging, using the Bayesian formulation,
is also presented in the Appendix of this paper.
The application of the proposed approach in spatial-

temporal predictions of secondary compression settlements
is presented in this paper. This type of settlement is
significant in highly organic soil such as peat. The linear
relationship between the logarithm of time and the settle-
ment, which is a common empirical relationship found in
secondary compression (Bjerrum, 1967; Garlanger, 1972;
Mesri et al., 1997, etc.), is adopted in this study for use as
an observation-based settlement prediction model.
In order to investigate the performance of the proposed

approach in spatial-temporal settlement predictions, both
simulated data and field observation data of the secondary
compression settlements are used as the input for calcula-
tions under several test conditions. For the case of the
simulated data, the settlement data are generated based on
the assigned spatial correlation structure of the model
parameters using the frequency domain technique
(Shinozuka, 1971; Shinozuka and Jan, 1972). As for the
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field observation data, the observed settlements of peat
from a ground improvement site in a suburb of Tokyo,
Japan, are used. The calculation results from both cases
will be presented and discussed later in this paper.

2. Spatial-temporal process

2.1. Bayesian estimation considering spatial correlation

structure

In order to improve the accuracy of the estimations and
to introduce local estimations, the utilization of the
Bayesian estimation, including spatial correlation, is pro-
posed. This approach uses prior information of the
unknown parameters (denoted as y in this paper), which
characterize the soil behavior, e.g., model parameters or
soil properties, and observation data (denoted as Y in this
paper), e.g., observed settlements or movements, from all
observation points, to search for the best estimates of the
unknown parameters. The formulation consists of two
statistical components, namely the observation model and
the prior information model. These two models will then
be combined by Bayes’ theorem to obtain the solution.

2.1.1. Observation model

This model relates the observation data to the unknown
parameters. The unknown parameters (e.g., model para-
meters) are defined in a multivariate stochastic Gaussian
field y(X)=[z1(x), z2(x), y, zI(x)]

T where X is a spatial
vector coordinate and I is the total number of unknown
parameters. Let y denote the best estimator of y(X) for a
discrete spatial point field, x1, x2, y, xn, as follows:

y ¼ zn1 ; zn2 ; . . .; znI

h iT

ð1Þ

where

zi
n ¼ zni ðx1Þ; zni ðx2Þ; . . .; zni ðxnÞ

h iT

; i ¼ 1; 2; . . .; I ð2Þ

At a specific time step k, Yk is defined as the observation
data (e.g., observed settlement) at x1, x2, y , xn, where

Yk ¼ ykðx1Þ; ykðx2Þ; . . .; ykðxnÞ
� �T

ð3Þ

It is assumed here that observation Y is expressed as a
linear function of y with an observation error e as follows:

Yk ¼Mkyþe ð4Þ

where Mk is the n� (nI) coefficient matrix and e is the
Gaussian observation error vector, which is assumed to
follow N(0, Ve). Ve is defined as a covariance matrix of e,
where Ve ¼ s2eV

0

e. s2e is the variance of the observation
errors and V

0

e is an n� n matrix, the components of which
give the relative error magnitude of each observation.
However, V

0

e is assumed to be the identity matrix (In,n)
throughout this study, which implies that the observation
errors are assumed to be spatially independent.

Given y and s2e , the predicted settlement distribution at
any time tk can be represented by the following
multivariate normal distribution:

pðYk9y;s2e Þ ¼ ð2pÞ
�n=29Ve9

�1=2

exp �
1

2
ðYk�MkyÞ

T V�1e ðYk�MkyÞ
� �

ð5Þ

2.1.2. Prior information model

It is assumed that the prior information on the unknown
parameters has the following structure:

y ¼ y0þd ð6Þ

where y0 is the prior mean vector (nI dimension), a
deterministic vector, and d is the uncertainty of the prior
mean, which is assumed to follow N(0, Vy), where Vy is a
prior covariance matrix. By introducing the spatial corre-
lation structure in the formulation of Vy, we have

Vy ¼

s2z1VC 0

s2z2VC

&

0 s2zI VC

2
66664

3
77775 ð7Þ

where s2z1, s2z2, y, s2zI represent the prior variance of
unknown parameters z1, z2, y, zI, respectively. VC is the
auto-covariance matrix, which is defined as

VC ¼

rð9x
1
�x

1
9Þ � � � rð9x

1
�x

n
9Þ

^ & ^

rð9x
n
�x

1
9Þ � � � rð9x

n
�x

n
9Þ

2
664

3
775 ð8Þ

r(9xi�xj9) denotes the auto-correlation function where xi

and xj are the spatial vector coordinates. Several analytical
expressions for the auto-correlation function have been
proposed in past literature, but none of them can claim any
fundamental basis (Vanmarcke, 1977). An exponential type of
auto-correlation function is chosen for the current study
because it has been widely used in geotechnical applications
(e.g., Vanmarcke, 1977; Fenton and Griffiths, 2002; Griffiths
and Fenton, 2004, etc.). The function is given as

rð9x
i
�x

j
9Þ ¼ exp½�9x

i
�x

j
9=Z� ð9Þ

where Z is the auto-correlation distance.
It should be noted that, for the sake of simplification, there

are two important assumptions about the correlation structure
for formulating the above covariance matrix. Firstly, z1, z2,y,
zI are assumed to be independent of each other. Secondly, the
correlation structures of these parameters are identical, mean-
ing that they share the same auto-correlation distance.
Given Z, prior means, and prior variances of the unknown

parameters, the prior distribution of the model parameters is
also a multivariate normal distribution of the following form:

pðy9ZÞ ¼ ð2pÞ�n9Vy9
�1=2

exp �
1

2
ðy�y0Þ

T V�1y ðy�y0Þ
� �

ð10Þ

2.1.3. Bayesian estimation

Suppose that the set of observations Yk at the discrete
time step k=1, 2, y, K has already been obtained. By
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employing Bayes’ theorem, the posterior distribution of
state vector y can be formulated as

pðy9Y ;s2e ; ZÞppðy9ZÞ
YK
k¼1

pðYk9y;s2e Þ ð11Þ

where Y denotes the set of all observation data, i.e.,
Y=(Y1, Y2, y, YK). By incorporating Eqs. (5) and (10)
into the above equation, we have

pðy9ZÞ
YK
k¼1

pðYk9y; s2e Þ ¼ ð2pÞ
�ð2nþKnÞ=29Vy9

�1=29Ve9
�K=2

exp �
1

2
ðy�y0ÞT V�1y ðy�y0Þþ

XK

k¼1

ðYk�MkyÞ
T V�1e ðYk�MkyÞ

" #( )

ð12Þ

The Bayesian estimator of y, i.e., yn, is the one that
maximizes the above function. Therefore, it is equivalent
to minimizing objective function J as follows:

min½Jðy9s2e ; ZÞ� ¼ Jðyn9s2e ; ZÞ

¼ ðyn�y0Þ
T V�1y ðy

n
�y0Þþ

XK

k¼1

ðYk�Mky
n
Þ
T V�1e ðYk�Mky

n
Þ

ð13Þ

It should be noted that s2e and Z are assumed to be given
in this case. The Bayesian method, however, does not offer
a rational way to determine these values. In order to
choose the most appropriate values for s2e and Z, based on
the information on hand, the use of Akaike’s Bayesian
Information Criterion (ABIC) is proposed and presented
in the next section.
2.2. Akaike’s Bayesian Information Criterion

Choosing appropriate values for s2e and Z can be
considered as a model selection problem. Akaike’s Bayesian
Information Criterion (ABIC), which is used in this study, is
developed based on the same information theory principle
as Akaike’s Information Criterion (AIC), which is a specific
approach used for selecting the best model from several
alternative models (Akaike, 1980; Honjo and Kashiwagi,
1999). By considering s2e and Z as hyperparameters, the
Baysian likelihood for this formulation is given as

Lðs2e ; Z9Y Þ ¼
Z

pðy9ZÞ
YK
k¼1

pðYk9y; s2e Þdy ð14Þ

Introducing Eq. (12) into Eq. (14), we obtain

Lðs2e ; Z9Y Þ ¼
Z 1
�1

ð2pÞ�ð2nþKnÞ=29Vy9
�1=29Ve9

�K=2

exp �
1

2
ðy�y0Þ

T V�1y ðy�y0Þþ
XK

k ¼ 1

ðYk�MkyÞ
T V�1e ðYk�MkyÞ

" #( )
dy

ð15Þ
By performing integration of the above equation, we
have

Lðs2e ; Z9Y Þ ¼ ð2pÞ
�Kn=29Vy9

�1=29Ve9
�K=2 XK

k

MT
k V�1e MkþV�1y

�����
�����
�1=2

exp �
1

2
ðyn�y0Þ

T V�1y ðy
n
�y0Þþ

XK

k ¼ 1

ðYk�Mky
n
Þ
T V�1e ðYk�Mky

n
Þ

" #( )

ð16Þ

Note that yn denotes the Bayesian estimator of y,
obtained by minimizing the objective function, as shown
in Eq. (13). The log Bayesian likelihood of (16) is given as

lðs2e ; Z9Y Þ ¼ �
1

2
ln9Vy9�

K

2
ln9Ve9�

1

2
ln
XK

k

MT
k V�1e Mk

�����
þV�1y

��� 1

2
Jðyn9s2e ; ZÞ
� �

þc1 ð17Þ

where c1 represents a constant term. The general defini-
tion of ABIC (Akaike, 1980) is given as ABIC¼ (�2) log
(maximum Bayesian likelihood)þ2 (number of hyperpara-
meters). In this case, the number of hyperparameters is
fixed at 2, i.e., s2e and Z. Thus, we have

ABIC ¼ ln9Vy9þK ln9Ve9þ ln
XK

k

MT
k V�1e MkþV�1y

�����
�����

þ½Jðyn9s2e ; ZÞ�þc2 ð18Þ

where c2 denotes a constant term. By trial and error, the
values for s2e , Z, and corresponding y*, which give the
minimum value of ABIC, can be obtained. This can be
considered as the optimized selection of these parameters.
2.3. Local estimation by the kriging method

Based on the calculated statistical inferences of the
model parameters at the observation points, i.e., yn, and
the estimated auto-correlation distance, the statistics of the
model parameters at any arbitrary location can be deter-
mined by the ordinary kriging method (Krige, 1966;
Matheron, 1973; Wackernagel, 1998). This method pro-
vides an unbiased and least-error estimator built on the
data from a random field for which a second-order
stationary is assumed. In fact, this method can also be
derived based on the aforementioned concept of the
Bayesian method. This emphasizes that all of the proposed
formulations for the spatial-temporal process are also
found in the basic concept of the Bayesian approach.
The derivation is summarized and presented in the
Appendix.
Based on the unknown parameters at the n observation

points, i.e., ½zni ¼ zni ðxiÞ; zni ðx2Þ; . . .; zni ðxnÞ�
T , the values of

the parameters, at an arbitrary point x0, i.e., zi
n(x0), can be
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estimated by the following equations:

zn1ðx0Þ

zn2ðx0Þ

^

znI ðx0Þ

2
66664

3
77775¼

znT
1

znT
2

^

znT
I

2
66664

3
77775

w1

w2

^

wn

2
6664

3
7775 ð19Þ

where

w1

^

wn

m

2
66664

3
77775¼

rð9x
1
�x

1
9Þ � � � rð9x

1
�x

n
9Þ �1

^ & ^ ^

rð9x
n
�x

1
9Þ � � � rð9x

n
�x

n
9Þ �1

1 � � � 1 0

2
66664

3
77775

�1
rð9x

1
�x

0
9Þ

^

rð9x
n
�x

0
9Þ

1

2
66664

3
77775
ð20Þ

wi (i¼1, y, n) are the weights attached to the data at each
of the observation points, m is the Lagrange multiplier used
for minimizing the kriging error, and x0 denotes the spatial
vector coordinate at x0. r(9xi�xj9) represents the auto-
correlation function as defined in Eq. (9). It is emphasized
here that it is also possible to calculate the estimation error of
the interpolation by kriging, the details of which are
presented in several publications (e.g., Wackernagel, 1998).
2.4. Settlement prediction model

The application of the proposed approach for the
spatial-temporal prediction of ground settlements is pre-
sented in this paper. The basic model chosen in this study
is the linear relationship between the settlement (S) and the
logarithm of time (t), i.e., S� log(t) method. This model is
considered to be rational and practical for the prediction
of secondary compression (Bjerrum, 1967; Garlanger,
1972; Mesri et al., 1997, etc.). The equation is given as

S ¼ m0þm1 logðtÞ ð21Þ

where S is the secondary compression settlement, m0 and
m1 are model parameters, and t is the compression time.

Suppose that the secondary compression settlements at n

observation points x1, x2, y, xn, have been sequentially
observed at discrete time tk for k=1, 2, y, K. In this case,
the components of the observation model equations given
in Section 2.1.1 can be defined based on the above
settlement prediction model as follows:

y¼ ½mn

1ðx1Þ; mn

1ðx2Þ; . . .; mn

1ðxnÞ; mn

0ðx1Þ;

mn

0ðx2Þ; . . .; mn

0ðxnÞ�
T ð22Þ

Yk ¼ Skðx1Þ; Skðx2 Þ
2; . . .;SkðxnÞ

n
� �T

ð23Þ

Mk ¼

logðtkÞ 0 ^

& ^ In;n

0 logðtkÞ ^

2
64

3
75 ð24Þ

where In,n denotes the n� n identity matrix. As stated
previously in Section 2.1.1, it is assumed that Ve ¼ s2e In;n. In
the same way, the components of the prior information model
equations, given in Section 2.1.2, can be defined as follows:

y0 ¼ ½mn

1;0ðx1Þ; mn

1;0ðx2Þ; . . .; mn

1;0ðxnÞ; mn

0;0ðx1Þ;

mn

0;0ðx2Þ; . . .; mn

0;0ðxnÞ�
T ð25Þ

Vy ¼
s2m1;0VC 0n;n

0n;n s2m0;0VC

" #
ð26Þ

where mn
1;0ðxiÞ, mn

0;0ðxiÞ denote the prior mean at observation
point xi of m1 and m0, respectively; s2m1;0 and s2m0;0 represent
the prior variance of m1 and m0, respectively; 0n,n denotes an
n� n zero matrix.
From the above definitions, it is clear that the spatial

correlation of soil properties is included in the form of the
spatial correlation of m1 and m0 instead of that of
settlements. The authors believe that this is the most
suitable way to introduce the spatial correlation structure
into the settlement prediction model due to the fact
that the physical correlation of the ground settlement
actually results from the spatial correlation of the soil
properties.
3. Simulation experiments

3.1. Random field generation by frequency-domain

technique

To investigate the performance of the proposed
approach, a two-dimensional random field of model para-
meters (m0, m1) is generated based on the assumed mean,
variance, and auto-correlation distance. The settlement
(S), which is now considered as observation data, is then
calculated by Eq. (21), using the generated parameters and
the assumed variance of the observation error, s2e (i.e.,
S¼m0þm1log(t)þe). Performing the spatial-temporal
updating procedure, previously stated in Section 2.1 and
based on the generated observation data, the statistical
inferences of the model parameters at each observation
point can be back-calculated. A comparison of these
inferences with the simulated ones, namely the true values,
reveals the efficiency of the procedure.
Various techniques have been proposed by several

authors for random field generation, e.g., the turning
bands method (Matheron, 1973), the frequency domain
technique (Shinozuka, 1971; Shinozuka and Jan, 1972),
and the local average subdivision method (Fenton and
Vanmarcke, 1990). The frequency domain technique is
chosen for this study in order to avoid the streaking
problem, which is found in the turning bands method,
and the difficulties of implementing the local average
subdivision method (Fenton, 1994). The frequency domain
technique concentrates on the spectral density function
(SDF) of the process, which is defined as the Fourier
transform of the auto-correlation function. For an expo-
nential type of auto-correlation function, with an auto-
correlation distance of Z, it can be proved that the SDF is
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defined as

Sðo1;o2Þ ¼
1

2pZðð1=Z2Þþðo2
1þo

2
2ÞÞ

3=2
ð27Þ

which is a function of the frequency domains, o1 and o2

Assuming that the power of the employed SDF is
negligible outside intervals [�o1,0,o1,0] and [�o2,0,o2,0],
the simulated stationary Gaussian random field at any
coordinates (x, y) can be expressed as the following series
of cosine functions:

X ðx; yÞ ¼
XM2

k ¼ 1

XM1

j ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Sðo1j ;o2kÞDo1Do2

p
cosðo1jxþo2kyþfjkÞ

ð28Þ

where Do1¼2o1,0/M1, Do2¼2o2,0/M2, o1j¼�o1,0þ(j�1/2)
Do1, o2k¼�o2,0þ (k�1/2)Do2, and fjk are random phase
angles, uniformly and independently distributed in the interval
(0,2p); M1 and M2 are the number of equally divided intervals
of ranges [�o1,0,o1,0] and [�o2,0,o2,0], respectively. Care
must be taken when selecting these ranges and discretization
intervals to ensure that the spectral density function is
adequately approximated. Based on the above equations,
the realization (rp) of a random parameter, with mean mp and
standard deviation sp, at any coordinates (x, y), is defined as
rp¼mpþspX(x, y).

3.2. Improvement of the estimation by considering spatial

correlation structure

A series of simulation experiments was performed based
on the aforementioned procedure. A decision was made to
limit the number of simulations for each experiment to 50
(Nsim¼50) and to choose the sample size of 36 (n¼36).
The observation points are arranged in a square grid
pattern with an even spacing of s and a total width of L,
as shown in Fig. 1. For the purpose of recognizing the
performance of the approach, these selections seem
sufficient.

For model parameter generation, it is assumed that the
mean and the standard deviation of the random field of
these parameters are mn

1 ¼ 100 mm, mn
0 ¼�100 mm, and

sm1¼sm0¼10 mm, implying that the coefficient of varia-
tion (COV)¼0.1. It is assumed that the settlement is
Fig. 1. Layout of observation plans.
observed 21 times (i.e., total observation time step
K¼21) from the 10th to the 1000th day. Note that, by
substituting mn

1and mn
0 into Eq. (21), the estimated settle-

ment on the 1000th day is 200 mm. For the current study,
the observation error (se) is assumed to be 10 mm. By
assigning the desired values to the auto-correlation dis-
tance (Z), the random values of the model parameters
together with the observed settlement at each observation
point can be generated, as described in Section 3.1. It
should be emphasized that the generated data actually
represents a set of the settlement data observed from an
area for which the true values of the settlement model
parameters and the underlying spatial correlation struc-
tures are known.
Based on the generated observation data, the procedure

proposed in Section 2.1 is performed to back-estimate the
model parameters. The prior mean of the model parameters,
mn

1;0ðxiÞ and mn
0;0ðxiÞ (see Eq. (25)), are assumed to be the

same at every observation point and equal to mn
1 and mn

0,
respectively. As for sm1,0 and sm0,0 (see Eq. (26)), COV is
assumed to be 0.4, i.e., sm1,0¼sm0,0¼40 mm. This relatively
large value of COV is assumed in order to limit the influence
of the prior information, which commonly is not known in
practice. The auto-correlation distance and the observation
error are also assigned the same values as those used for
generating the simulated data, namely, the true values.
In order to examine the advantages of considering the

spatial correlation structure, the Bayesian estimation,
using the observed settlement of each observation point
to estimate the model parameters of that point itself, i.e.,
ignoring the spatial correlation structure, is also performed
based on the same conditions as those mentioned above.
This case can be represented by assuming a small value for
Z, i.e., Z/s¼0.001. The different model parameters are
randomly generated 50 times (Nsim¼50) and the estimation
errors, as a percent of the true values, are calculated. The
estimations based on these two different conditions are
compared and presented in Figs. 2 and 3.
The estimation errors are represented by the term ‘mean

absolute error’, which is defined as the mean of the
absolute percentage of the observation error taken from
all observation points and random simulations, as follows:

mean absolute errorð%Þ ¼

PNx

i¼1 9ððXest;i�Xtrue;iÞ=Xtrue;iÞ � 1009
Nx

ð29Þ

where Xest,i and Xtrue,i denote the estimated value and the
true value, respectively, of the parameter to be estimated at
each observation point for each simulation; Nx is the total
number of estimated values, i.e., Nx=n�Nsim. It is clear
that the true values of the model parameters are known.
However, those of the settlement have to be estimated.
Eq. (21) is used for calculating both the true values and the
estimated values of the settlement at any time t, using the
true values and the estimated values of the model para-
meters, respectively.



Fig. 2. Estimation errors versus observation times for estimations at

observation points, assuming Z/s¼4. Case 1 refers to the case in which

spatial correlation is considered. Case 2 refers to the case in which spatial

correlation is ignored.

Fig. 3. Estimation errors versus Z/s ratios for estimations at observation

points, using data from the 10th to the 100th day. Case 1 refers to the case

in which spatial correlation is considered. Case 2 refers to the case in

which spatial correlation is ignored.
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Fig. 2 illustrates the plots of the mean absolute errors of
the model parameter estimation and the settlement predic-
tion on the 1000th day against the observation time. For
emphasis, the observation time mentioned here is defined
as the time span over which the data are used in the
calculation. It is assumed that the ratios of auto-correla-
tion distance to spacing, Z/s, equal 4. Clearly, the mean
absolute errors for the cases which consider the spatial
correlation structure (Case 1) are lower than those for
which the spatial correlation structure is ignored (Case 2),
regardless of the observation time. This confirms that
estimations can be improved by taking into account the
spatial correlation structure. The fact that the difference is
larger at the earlier stage of observation emphasizes the
advantage of using the proposed method for the estimation
at an early time. This trend is the same for both model
parameters and settlement estimations.
To investigate the sensitivity of this improvement to
changes in the spatial correlation structure, the same
calculations at different values for the Z/s ratio are
performed. Only 11 time steps of the observations from
the 10th to the 100th day are selected for use in the
calculations. The mean absolute error of the model para-
meter estimation and the settlement prediction on the
1000th day are determined as illustrated in Fig. 3.
It can be seen from Fig. 3 that the errors in the model

parameter and the settlement estimation decrease with the
increase in the Z/s ratio, when spatial correlation is
considered. This leads us to conclude that, by the proposed
method, a stronger spatial correlation gives a better
estimation. It should be noted that this improvement
becomes significant when the observation spacing is shorter
than half of the auto-correlation distance, i.e., Z/s42.0.

3.3. Estimation of settlement at an arbitrary location

As mentioned previously, one of the advantages of the
proposed method is its ability to estimate the settlement at
any arbitrary location. By applying the kriging method
(see Section 2.3), the model parameter at a selected point
can be approximated based on the estimated parameters at
the observation points. Then, the settlement at that point,
at any time, can be predicted using Eq. (21).
To investigate the level of error for this type of

estimation, similar calculations to those described in the
previous section are performed. However, for each calcu-
lation, one of the observation points is removed from
consideration. Then, the model parameters and the settle-
ment at the removed observation point will be estimated
using only the generated data of the remaining observation
points. Due to the fact that the true values of the model
parameters at each removed observation point are
unknown in this case, the estimation errors are determined
by comparing the estimated values with the parameter
values which are generated from the corresponding ran-
dom sampling with those of the other observation points,
the data of which are used for the estimation. Figs. 4 and 5
show the plots of these estimation errors against the
observation time and the Z/s ratio, respectively.
For comparison purposes, the calculations presented in

Figs. 4 and 5 are analogous with those shown in Figs. 2
and 3, while Z/s=4 is assumed in Fig. 4 and the data from
the 10th to the 100th day is used in Fig. 5. The number of
simulations for each trial is also 50 (Nsim¼50). The mean
absolute error is calculated according to Eq. (29), aver-
aging the estimation errors at all observation points and all
simulations. The values of the other parameters are also
the same as those assigned in Section 3.2.
It can be observed from Fig. 4 that, similar to Fig. 2, the

estimation error decreases with the observation time. In
other words, the more observation data we have, the better
estimation we can obtain. Fig. 5 clearly shows that the error
is significantly higher if a weaker spatial correlation struc-
ture is assumed, especially for the settlement estimation.



Fig. 4. Estimation errors versus observation times for estimations at

removed observation points, assuming Z/s¼4. Case 1 refers to the case in

which spatial correlation is considered. Case 2 refers to the case in which

spatial correlation is ignored.

Fig. 5. Estimation errors versus Z/s ratios for estimations at removed

observation points, using data from the 10th to the 100th day. Case 1

refers to the case in which spatial correlation is considered. Case 2 refers

to the case in which spatial correlation is ignored.

Fig. 6. Soil conditions.
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This emphasizes the advantage of the proposed approach
for cases in which a strong spatial correlation structure of
the parameters is found. Clearly, cases which consider the
spatial correlation structure provide better estimations than
cases which do not, namely they yield lower estimation
errors especially for the settlement estimations.

4. Case study

4.1. Description of the case

To investigate the performance of the proposed method
for practical applications, a case study using the actual
field observation data of secondary compression (Ueda
et al., 1986), has been performed. The site is a residential
land development project located in a suburb of Tokyo,
Japan. This area is covered by a thick alluvial deposit,
which can be classified as a surface layer of peat followed
by a very soft clay layer down to a thickness of about 17 m
(Fig. 6). Below these layers, layers of medium dense sand
and silt are found, respectively. In order to avoid a large
amount of settlement, due to the thick soft soil layer at the
surface, the soil conditions are improved by preloading
prior to the construction. As shown in Fig. 7, the
preloading surcharge was filled up to the maximum
thickness of about 6 m during the preloading period of
approximately 900 days.
The settlement observations were performed both during

the preloading period by the settlement plates and after the
removal of the surcharge by measuring the settlement of
the boundary stone around the housing lots. After the
removal of the surcharge, considered to be the secondary
compression and used in this study, the settlement was
observed about every 600 m2 with a total of 42 observation
points. The location plan for these observation points and



Fig. 7. Surcharge thickness and settlement versus time.

Fig. 8. Location plan of the observation points and the surcharge area.

Fig. 9. Observed settlement versus time (after surcharge removal) for all

observation points.

Fig. 10. Observed settlement versus time (after surcharge removal) with

trend line at point A (see Fig. 8).
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the surcharge area is presented in Fig. 8, while all of the
observation data are shown as semi-logarithmic plots of
settlement and time in Fig. 9. For emphasis, the observa-
tion time in Fig. 9 represents the time after the surcharge
removal. This should not be confused with the observation
time in Fig. 7, which refers to the time measured from the
beginning of preloading.

Various techniques have been proposed by several
authors for predicting future settlements with the observed
settlements, for example, the hyperbola method (Sridharan
et. al., 1987; Tan, 1994), the S� log(t) method (Bjerrum,
1967; Garlanger, 1972; Mesri et al., 1997), and Asaoka’s
(1978) method. In this study, the S � log(t) method is
considered to be the most suitable approach due to the fact
that the primary consolidation is expected to be completed
before the surcharge removal. Thus, the settlement occur-
ring afterward should result from the secondary compres-
sion process. Fig. 10 shows an example of the S � log(t)
plot at an observation point. It can be seen that by
excluding a part of the data in the early period of
observation, within which the secondary compression is
considered to be influenced by the rebound effect due to
the surcharge removal, this semi-logarithmic relationship
fits the observation data quite well. By investigating the
settlement data for all the observation points, the data
before the 103rd day are excluded from the calculation by
judgment.
Choosing the appropriate prior statistics for the
unknown parameters (m1 and m0) is also an important
issue. What has been done in the current research is that
the prior means of m1 and m0, i.e., mn

1;0ðxiÞ and mn
0;0ðxiÞ, were

assumed to be equal to the values of the slope and the
intercept of the trend line resulting from the linear regression
analysis of the plots between the settlement and the logarithm
of time, considering the data from all of observation points.
On the other hand, the prior variances, i.e., s2m1,0 and s2m0,0,
were selected by trying several values for prior coefficients
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of variation (COV) and choosing the one which gave the
results that were relatively insensitive to changes in the prior
means. Based on this approach, the prior means of m1 and
m0, which are assumed to be the same for every observation
point, are assigned as 109.7 and �204.1 mm, respectively,
while the prior COV of 0.4 is chosen for calculating the prior
variance of both parameters.

The above method of selecting prior statistics is barely
an example in cases where there is no other information
about the values of the unknown parameters of concern. In
practice, the ranges in values can be based on, for example,
past experiences, empirical relationships, or data collected
from past projects in the vicinity. One can then choose
values for the mean and the COV depending one’s level of
confidence regarding the source of the information. This is
actually one of the advantages of the proposed approach,
by which such subjective information can be systematically
included in any estimation.
4.2. Estimation of the auto-correlation distance and

observation error

In Section 2.2, it was proposed that the auto-correlation
distance (Z) and the standard deviation of the observation
error (se) can be appropriately selected based on Akaike’s
Bayesian Information Criterion (ABIC). Considering the
observation data, together with prior information on the
model parameters, the ABIC for each pair of Z and se can
be determined by Eq. (18). The values for Z and se that give
the minimum value for ABIC will serve as the optimized
selections of these parameters. We emphasize here that Z
represents only the horizontal correlation in this study.

Fig. 11 shows an example of the contours of ABIC in the
Z and se space for cases in which all of the settlement data,
until the last step of observation, i.e., the 1017th day, are
Fig. 11. An example of contour of ABIC for the case which considers the o
considered. In this case, the estimated Z and se are 30 m
and 7.0 mm, respectively. Obviously, the estimated values
for the observation errors are more likely to be insensitive
than those for the auto-correlation distance.
In practice, the observation data are collected stepwise

for a period of time. Therefore, it is natural to sequentially
update the estimation once new sets of observations are
provided. Fig. 12 illustrates the plots of the estimated
values of Z and se versus the observation time, which again
refers to the time span over which the observation data are
used. It can be observed that the estimated values for the
auto-correlation distance tend to decrease with the obser-
vation time, while those for the observation error tend to
increase, depending on the characteristics of the observa-
tion data. Both of these estimations seem unstable at the
early stage of the observation, indicating insufficiency in
the observation data for the calculations. However, they
become more stable as the observation data accumulates.
Auto-correlation distance Z is known to be a pamameter

which is difficult to determine with high certainty. There-
fore, concern regarding accurary in the selection of Z by
means of the proposed formulation is required. The
discussion about this, however, has been presented in the
authors’ previous paper (Rungbanaphan et al., 2010). It is
found that even though errors in the selection of Z may
seem significant, the effect of these errors on settlement
predictions with spatial interpolation is relatively small.
Therefore, it is concluded that the proposed method for
selecting Z yields results that are accurate enough for
spatial-temporal estimations by the proposed approach.
4.3. Settlement estimation and prediction

Based on the procedure proposed in Section 3.2, the
settlement estimation at observation points with
bservation data until the last step of the observation (the 1017th day).



Fig. 12. Estimated values of the auto-correlation distance (Z) and the

standard deviation of the observation error (se) at different observation
times: for (a) auto-correlation distance and (b) standard deviation of

observation error.

Fig. 13. Estimation error versus observation times of settlement predic-

tion at the last step of the observation (the 1017th day). Case 1 refers to

the case in which spatial correlation is considered. Case 2 refers to the case

in which spatial correlation is ignored.
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consideration given to spatial correlation can be per-
formed. To represent the estimation error, the term ‘mean
absolute error’, previously defined in Eq. (29), is also used.
However, in the current case, the estimated value is the
estimated settlement, while the true value is the observed
one. Nx is the total number of observation points, i.e.,
Nx¼n.

Fig. 13 shows the plots of the mean absolute errors for
the prediction of settlements at the last observation time
step (1017th day) versus the observation time. For com-
parison purposes, both cases, namely the one in which the
spatial correlation is considered (Case 1) and the one in
which it is ignored (Case 2), are also presented. It should
be noted that, for the case which considers spatial correla-
tion, the estimated values for the auto-correlation distance,
shown in Fig. 12, are used in the calculations.

Corresponding to the results of the simulation examples
shown in Fig. 2, the prediction error decreases with the
increase in the available observation data. However, for the
current set of observation data, considering the spatial
correlation does not significantly improve the estimation in
terms of the mean error. This may be due to the fact that the
auto-correlation distance (Z) is relatively short in comparison
to the spacing between the observation points (s) in this case.
For this set of the field observations, ZE30 and sE25 m,
therefore, the ratio Z/sE1.0. Fig. 13 clearly shows that
considering the spatial correlation does not bring about a
significant improvement at this level of the Z/s ratio.
To further investigate the performance of the proposed

method in dealing with the space-time problem, the observa-
tion data at each selected observation point is removed and
the settlement estimations, or predictions, at this point are
performed using the rest of the observations. A comparison
between the settlement estimated by these parameters and the
one actually observed reveals the estimation error. This
calculation is actually comparable to the previously presented
simulation examples shown in Section 3.3.
Fig. 14 shows a comparison between the observed and the

predicted settlements on the 1017th day. The observation
data from the 103rd to the 696th day are used in the
calculation. The predicted settlements are presented as
surfaces, while the observed settlements are plotted as points
with dotted lines showing the difference between them.
Obviously, for the case in which the spatial correlation is
not included in the calculation (Fig. 14a), represented by
choosing a small value for Z, i.e., Z¼0.025 m (Z/sE0.001),
the predicted settlements become uniform and cannot repre-
sent the variation in ground settlements. This is because the
estimated values for the model parameters at each removed
point, which need to be interpolated from the values at the
other observation points by the kriging technique (see Section
2.3), are actually the arithmetic means of all the values in this
case. On the other hand, for the case in which the estimated
value of the auto-correlation distance, Z¼32 m, is used
(Fig. 14b), the estimation produces a relatively more realistic
pattern for the settlement in the area.
Fig. 15 shows the plots of the mean absolute errors

(Eq. (28)) of the settlement estimations at the removed
observation points vs. the observation time. Two cases of
calculations are presented, namely, the settlement estimation at
the current observation day and the settlement prediction on
the 1017th day. The former is an attempt to avoid temporal
errors resulting from the prediction of future settlements;
therefore, the estimated settlement and the observed settlement



Fig. 14. Comparison between the estimated settlement, shown as surfaces,

and the observed settlement, shown as points, using data from the 103rd

to the 696th day for predicting the settlement on the 1017th day: for (a)

without consideration of spatial correlation and (b) with consideration of

spatial correlation.
Fig. 15. Estimation errors versus observation times for estimations at

removed observation points: for (a) settlement estimation on the observa-

tion day and (b) settlement prediction on the 1017th day. Case 1 refers to

the case in which spatial correlation is considered. Case 2 refers to the case

in which spatial correlation is ignored.
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are compared at that observation time (Fig. 15a). The latter is
the comparison between the predicted settlement at the last
observation time step (the 1017th day) and the observed
settlement at that time (Fig. 15b). It should be emphasized
that, to consider the case of spatial correlation (Case 1), the
estimated values for the auto-correlation distance and the
observation error, which vary with the observation time as
shown in Fig. 12, are used in the calculations, while it is
assumed that Z¼0.025 m (Z/sE0.001) for the case in which
the spatial correlation is ignored (Case 2).

It can be seen from Fig. 15(a) and (b) that giving
consideration to spatial correlation can improve the estima-
tions in terms of reducing estimation errors. Depending on
the characteristics of the observation data, this improvement
may not be significant at the early stages of the observation.
The estimation errors also decrease with the observation
time. In other words, estimations can be improved if more
observation data are given, which corresponds to the results
of the simulation examples shown in Fig. 4.
5. Conclusion

A systematic approach for the spatial-temporal predic-
tion of secondary compression settlements is proposed.
Both prior information of the settlement model parameters
and the observed settlements are used for the settlement
estimations based on a Bayesian approach. The spatial
correlation structure of the soil properties is introduced to
the settlement prediction model through the spatial corre-
lation of the model parameters. The estimation of the
auto-correlation distance of the parameters and the obser-
vation error by Akaike’s Bayesian Information Criterion
(ABIC) are also proposed. For determining the statistics of
the estimated model parameters at any arbitrary location,
the kriging method is employed.
By performing a series of simulation examples for the

prediction of secondary compression, the proposed spatial-
temporal formulation is considered to have the following
two main advantages:
(1)
 Settlement predictions can be improved by considering
the spatial correlation structure by which a stronger
spatial correlation structure yields a better estimation.
According to the simulation, the effect of the spatial
correlation on the prediction becomes more apparent
when the observation spacing is less than half of the
auto-correlation distance.
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(2)
 A rigorous settlement prediction at any arbitrary point
becomes possible through the interpolation of the soil
parameters based on knowledge of the spatial correla-
tion structure.
A case study on the field observation data for the
secondary compression of alluvial deposits by preloading
was carried out using the proposed approach. It was found
that the estimation of the auto-correlation distance is
relatively unstable at the early stage of observation, but
that it becomes more stable as the observation data
accumulates. However, even though it seems that the
auto-correlation distance of the soil parameters is rela-
tively short, in comparison to the observation point’s
spacing, the proposed method provides a rational estima-
tion of the settlement at any time and at any location with
quantified errors.

Appendix

This section shows the derivation of the ordinary kriging
(Krige, 1966; Matheron, 1973; Wackernagel, 1998) using
the Bayesian approach. Hoshiya and Yoshida (1996) have
proved that the simple kriging can be derived based on the
Bayesian formulation by maximizing the conditional prob-
ability. It was assumed that the observation vector (Y) and
the unknown parameter (y) are the same physical para-
meters, and that the observation error (e) is zero. From
these assumptions, we have zero covariance of the obser-
vation error

Ve ¼ 0n;n ðA1Þ

and a linear function between Y and y

Y ¼My¼ In;n 0n

h i yn

znðx0Þ

" #
ðA2Þ

where at n observation points x1, x2, y, xn, observation
vector Y¼ [y(x1), y(x2), y, y(xn)]

T, and unknown para-
meter yn¼ [z

n(x1), zn(x2),y, zn(xn)]
T. zn(x0) is the unknown

parameter at an arbitrary point x0 to be estimated. In,n

denotes the n� n identity matrix. 0n,n and 0n denote the
n� n and the n� 1 zero matrices, respectively.

The best estimator of the y conditional on Y, i.e., yn, can
be determined by maximizing the conditional probability,
p(y 9Y), which is expressed based on Bayes’ theorems, as
follows:

pðy9Y ÞppðyÞpðY 9yÞ ðA3Þ

where p(y) is a Gaussian density function with mean y0 and
covariance Vy; p(Y 9y) is a Gaussian density function with
mean My and covariance Ve Thus, we have

pðyÞ ¼ ð2pÞ�ðnþ1Þ=29Vy9
�1=2

exp �
1

2
ðy�y0Þ

T V�1y ðy�y0Þ
� �

ðA4Þ
pðY 9yÞ ¼ ð2pÞ�n=29Ve9
�1=2

exp �
1

2
ðY�MyÞT V�1e ðY�MyÞ

� �
ðA5Þ

From Eqs. (A3)–(A5), it is found that the maximization
of p(y9Y) is equivalent to the minimization of the following
objective function:

J ¼ ðy�y0Þ
T V�1y ðy�y0ÞþðY�MyÞT V�1e ðY�MyÞ ðA6Þ

It can be proved that yn, which gives the minimum
values of J, is expressed as

yn ¼ y0þVyMT ðVeþMVyM
T Þ
�1
ðY�MyÞ ðA7Þ

Based on the simple kriging assumption of the second-
order stationary, the mean of random variable zm is
assumed to be the same at any location, the value of
which is known. From this assumption, we have

y0 ¼ zmun ðA8Þ

where zm is the constant mean of random variable y;
un=[1, 1, y, 1]Tn� 1. Based on the assumptions previously
presented in Eqs. (A1), (A2), and (A8), it was proved that
the above equation can be rewritten in the form of ‘simple
kriging’ for the estimation of zn(x0) (Hoshiya and Yoshida,
1996), as follows:

znðx0Þ�zm ¼VT
y;x0V

�1
y;xnðyn�zmunÞ ¼ wsmðyn�zmunÞ ðA9Þ

where wsm is the weight factor for the simple kriging and

Vy;xn ¼

rð9x
1
�x

1
9Þ � � � rð9x

1
�x

n
9Þ

^ & ^

rð9xn�x
1
9Þ � � � rð9xn�x

n
9Þ

2
664

3
775 ðA10Þ

Vy;x0 ¼

rð9x
1
�x

0
9Þ

^

rð9xn�x
0
9Þ

2
664

3
775 ðA11Þ

r(9xi�xj9) denotes the auto-correlation function where
xi and xj are the spatial vector coordinates.
In this paper, the extension for the derivation of the

‘ordinary kriging’ will be presented. It is clear from
the above equations that the simple kriging actually gives
the estimation of the residual, i.e., zn(x0)�zm, assuming
constant mean zm, is known. On the other hand, the
ordinary kriging directly estimates the unknown value,
i.e., zn(x0), implying that the determination of zm is already
included in the ordinary kriging formulation. Therefore,
prior to deriving the ordinary kriging, a formulation to
estimate zm has to be derived. The term ‘kriging the mean’
is used to represent this calculation in some literature (e.g.,
Wackernagel, 1998).
In this case, zn(x0) will be excluded from the calculation,

while zm will be considered as an unknown parameter to be
estimated. Thus, Eq. (A2) becomes

Y ¼My¼ In;nyn ¼ yn ðA12Þ
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It is clear that, in this case, Vy¼Vy,xn. By introducing
this and Eqs. (A8) and (A12) into Eq. (A6), we have

J ¼ ðyn�zmunÞ
T V�1y;xnðyn�zmunÞ ðA13Þ

The best estimator of zm, znm can be determined by
minimizing J as follows:

@J

@zm

¼�2uT
n V�1y;xnðyn�znmunÞ ¼ 0 ðA14Þ

znm ¼ f½u
T
n V�1y;xnun�

�1uT
n V�1y;xngyn ¼ wmyn ðA15Þ

where wm is the weight factor for ‘kriging the mean’.
Substituting znm for zm in Eq. (A9), i.e., the simple kriging

equation, we have

znðx0Þ ¼ ðwmþwsm�wsmunwmÞyn ¼ woryn ðA16Þ

where wor is actually equivalent to the weight factor for
‘ordinary kriging’. As a result, the relationship between the
weights for simple, mean, and ordinary kriging is obtained.
In order to prove this, the common form of the ordinary
kriging equation will be shown and rearranged in corre-
sponding terms. Using the previously defined parameters,
the common form of the weight factor of the ordinary
kriging (Wackernagel, 1998) can be expressed as follows:

wT
or

m

" #
¼

Vy;xn �un

uT
n 0

" #�1
Vy;x0

1

� �
ðA17Þ

where m denotes the Lagrange multiplier. Based on the
technique of the matrix inversion by partitioning, it can be
proved that

Considering the right-hand side of Eq. (A17), let
A11 ^ A12
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3
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�1
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� � � ^ � � �

uT
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2
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3
75¼

A11 ^ A12

� � � ^ � � �
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2
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3
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From Eqs. (A17)–(A19), we have

wor ¼ ½u
T
n V�1y;xnun�

�1uT
n V�1y;xnþV T

y;x0V
�1
y;xn�V T

y;x0V�1y;xnun

�½uT
n V�1y;xnun�

�1uT
n V�1y;xn ðA20Þ

which is equivalent to

wor ¼ wmþwsm�wsmunwm ðA21Þ

The above equation is identical to the one shown in
Eq. (A16), which has been derived based on a Bayesian
formulation. Therefore, the derivation of the ordinary
kriging using a Bayesian approach has now been comple-
tely proved.
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