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Abstract

The quantum theory of spin light (electromagnetic radiation emitted by a Dirac massive neutrino propagating in dens
due to the weak interaction of a neutrino with background fermions) is developed. In contrast to the Cherenkov radia
effect does not disappear even if the medium refractive index is assumed to be equal to unity. The formulas for the tran
and the total radiation power are obtained. It is found out that radiation of photons is possible only when the sign of the
helicity is opposite to that of the effective potential describing the interaction of a neutrino (antineutrino) with the back
medium. Due to the radiative self-polarization the radiating particle can change its helicity. As a result, the active left
polarized neutrino (right-handed polarized antineutrino) converting to the state with inverse helicity can become pr
“sterile”. Since the sign of the effective potential depends on the neutrino flavor and the matter structure, the spin
change a ratio of active neutrinos of different flavors. In the ultra relativistic approach, the radiated photons averaged
equal to one third of the initial neutrino energy, and two thirds of the energy are carried out by the final “sterile” neutrin
 2005 Elsevier B V. .

A Dirac massive neutrino has nontrivial electromagnetic properties. In particular, it possesses nonzero m
moment[1]. Therefore a Dirac massive neutrino propagating in dense matter can emit electromagnetic r
due to the weak interaction of a neutrino with background fermions[2,3]. As a result of the radiation, neutrino ca
change its helicity due to the radiative self-polarization. In contrast to the Cherenkov radiation, this effect d
disappear even if the refractive index of the medium is assumed to be equal to unity. This conclusion is v
any model of neutrino interactions breaking spatial parity. The phenomenon was called the neutrino spin
analogy with the effect, related with the synchrotron radiation power depending on the electron spin orie
(see[4]).

The properties of spin light were investigated basing upon the quasi-classical theory of radiation a
polarization of neutral particles[5,6] with the use of the Bargmann–Michel–Telegdi (BMT) equation[7] and its
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generalizations[8,9]. This theory is valid when the radiated photon energy is small as compared with the ne
energy, and this narrows the range of astrophysical applications of the obtained formulas.

In the present Letter, the properties of spin light are investigated basing upon the consistent quantum
and this allows the neutrino recoil in the act of radiation to be considered for. The above mentioned restr
eliminated in this way.

On the other hand, the detailed analysis of the results of our investigations shows that the features of t
depend on the neutrino flavor, helicity and the matter structure[10]. This fact leads to the conclusion that the s
light can initiate transformation of a neutrino from the active state to a practically “sterile” state, and the
process is also possible.

When the interaction of a neutrino with the background fermions is considered to be coherent, the prop
of a massive neutrino in the matter is described by the Dirac equation with the effective potential[11,12]. In what
follows, we restrict our consideration to the case of a homogeneous and isotropic medium. Then in the fram
of the minimally extended standard model, the form of this equation is uniquely determined by the assu
similar to those adopted in[13]

(1)

(
i∂̂ − 1

2
f̂

(
1+ γ 5) − mν

)
Ψν = 0.

The functionf µ is a linear combination of fermion currents and polarizations. The quantities with hats d
scalar products of Dirac matrices with 4-vectors, i.e.,â ≡ γ µaµ.

If the medium is at rest and unpolarized thenf = 0. The componentf 0 calculated in the first order of th
perturbation theory is as follows[14–16]

(2)f 0 = √
2GF

{∑
f

(
Ieν + T

(f )

3 − 2Q(f ) sin2 θW
)
(nf − nf̄ )

}
.

Here,nf ,nf̄ are the number densities of background fermions and antifermions,Q(f ) is the electric charge o

the fermion andT (f )

3 is the third component of the weak isospin for the left-chiral projection of it. The param
Ieν is equal to unity for the interaction of electron neutrino with electrons. In other casesIeν = 0. Summation is
performed over all fermionsf of the background.

Let us obtain a solution of Eq.(1). Since functionf µ = const, Eq.(1) commutes with operators of canonic
momentumi∂µ. However, the commonly adopted choice of eigenvalues of this operator as quantum num
this problem is not satisfactory. Kinetic momentum components of a particle, related to its group 4-velocityuµ by
the relationqµ = mνu

µ, q2 = m2
ν , are more suitable to play the role of its quantum numbers. This choice c

justified, since it is the particle kinetic momentum that can be really observed.
The explicit form of the kinetic momentum operator for the particle with spin is not known beforehand

hence, in order to find the appropriate solutions, we have to use the correspondence principle.
It was shown in[8] that when the effects of the neutrino weak interaction are taken into account, the L

invariant generalization of the BMT equation for spin vectorSµ is as follows:

(3)Ṡµ = 2µ0
{(

Fµν + Gµν
)
Sν − uµuν

(
Fνλ + Gνλ

)
Sλ

}
,

where

(4)Gµν = 1

2µ0
eµνρλfρuλ,

and a dot denotes the differentiation with respect to the proper timeτ .
Let us introduce the quasi-classical spin wave functions. Such wave functions can be constructed as

[6,9]. Suppose the Lorentz equation is solved, i.e., the dependence of particle coordinates on proper time
Then the BMT equation transforms to ordinary differential equation, whose resolvent determines a one-pa
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subgroup of the Lorentz group. The quasi-classical spin wave function is represented by a spin-tenso
evolution is determined by the same one-parametric subgroup.

In the case when the effect of an external electromagnetic field can be neglected as compared with t
of the neutrino interaction with the background matter, the equation for the neutrino quasi-classical wave
Ψ (τ) is

(5)Ψ̇ (τ ) = iµ0γ
5	GµνuνγµûΨ (τ),

where	Gµν = −1
2eµνρλGρλ is a tensor dual toGµν . Obviously, the quasi-classical density matrix of a polari

neutrino takes the form

(6)ρ(τ, τ ′) = 1

2
U(τ, τ0)

(
q̂(τ0) + m

)(
1− γ 5Ŝ(τ0)

)
U−1(τ ′, τ0),

whereU(τ, τ0) is the resolvent of Eq.(5), and the equation forU(τ, τ0) is

(7)U̇ (τ, τ0) = i

4
γ 5(f̂ û − ûf̂ )U(τ, τ0).

We note that the operatorU(τ, τ0) is defined up to a phase factore−iF (x), with the derivative of the exponent wit
respect to the proper time is equal to zero:

(8)Ḟ (x) = 0.

Let us choose the solution of Eq.(1) in the form[9]

(9)Ψ (x) = U
(
τ(x)

)
Ψ0(x),

whereΨ0 is a solution of the Dirac equation for a free particle

(10)Ψ0(x) = e−i(qx)(q̂ + mν)
(
1− γ 5Ŝ0

)
ψ0.

Hereψ0 is constant bispinor andΨ0(x) normalized by the condition

Ψ̄0(x)Ψ0(x) = 2mν.

Substitution of the expression(9) in Eq.(1) results in the relation

(11)

{
q̂ + (∂̂F ) − 1

2
f̂ + 1

2
γ 5f̂ + 1

4
γ 5N̂(f̂ û − ûf̂ ) − mν

}
e−iF (x)U

(
τ(x)

)
Ψ0 = 0,

whereNµ = ∂µτ . Since the commutator[q̂,U ] = 0, and the matrixU is nondegenerate, then for this relation
hold the following condition is required

(12)(∂̂F ) − 1

2
f̂ + 1

2
γ 5f̂ + 1

4
γ 5N̂(f̂ û − ûf̂ ) = 0.

It is easy to find out that Eq.(12) is valid only if

(13)∂λF = 1

2
f λ, eµνρλNµfνuρ = 0,

(
1− (Nu)

)
f λ + (Nf )uλ = 0.

From two latter equations it follows that

(14)Nµ = f µ(f u) − uµf 2

(f u)2 − f 2u2
.

Sof µ = const, then

(15)τ = (Nx), F = 1
(f x),
2
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(16)U(x) = e−i(f x)/2
∑

ζ=±1

eiζϕΛζ .

Here

(17)Λζ = 1

2

[
1− ζγ 5Ŝtpq̂/mν

]
, ζ ± 1,

are spin projection operators with eigenvaluesζ ± 1 respectively, and

(18)ϕ = τ

2

√
(f q)2 − f 2m2

ν = (f q)(f x) − f 2(qx)

2
√

(f q)2 − f 2m2
ν

, S
µ
tp = qµ(f q)/mν − f µmν√

(f q)2 − f 2m2
ν

.

From the obtained formulas it follows that the eigenvalues of the operator of canonical momentumi∂µ are

(19)P µ = qµ

(
1+ ζf 2

2
√

(f q)2 − f 2m2
ν

)
+ f µ

2

(
1− ζ(f q)√

(f q)2 − f 2m2
ν

)
.

The dispersion law follows from Eq.(19) in the form

(20)P 2 = m2
ν + (Pf ) − f 2/2− ζ

√(
(Pf ) − f 2/2

)2 − f 2m2
ν .

If the medium is at rest and unpolarized then the neutrino total energy and canonical momentum are de
by the formulas

(21)ε = q0 + f 0/2, P = q∆qζ ,

where∆qζ = 1+ ζf 0/2|q|, and

(22)S
µ
tp = 1

mν

{|q|, q0q/|q|},
i.e., the eigenvaluesζ = ±1 determine the helicity of the particle. Consequently, the dispersion law is

(23)ε =
√(

∆|P| − ζf 0/2
)2 + m2

ν + f 0/2,

where∆ = sign(∆qζ ). Obviously

∂ε

∂P
= q

q0

is the particle group velocity.
The relation(23) differs those used in previous papers (see, for example,[18]) by the multiplier∆. This is due

to the fact that, in these papers the projection of the particle spin on the canonical momentumP and not the helicity
of the particle was used as the spin quantum numberζ . The helicity is the projection of the spin on the direction
its kinetic momentum[19–21], because the rest frame of the particle is determined by the condition that its
velocity is equal to zero. In our problem the directions of canonical and kinetic momenta, generally speak
different, and hence, the projection of particle spin on the canonical momentum does not coincide with its

From formulas(21), it is seen that if the energy is expressed in terms of the kinetic momentum, then it do
depend on the particle helicity, while the particle canonical momentum is a function of the helicity. Therefo
statement of the authors of[17], i.e., that the radiation of photons in the process of the spin light emission
place due to neutrino transitions from the “exited” helicity state to the low-lying helicity state in matter,
correct.
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Let us consider the process of emitting photons by a massive neutrino in unpolarized matter at rest. In t
the orthonormalized system of solutions for Eq.(1) is

(24)Ψ (x) = |∆qζ |√
2q0

e−i(q0+f 0/2)x0
eiqx∆qζ (q̂ + mν)

(
1− ζγ 5Ŝtp

)
ψ0.

The formula for the spontaneous radiation transition probability of a neutral fermion with anomalous ma
momentµ0 is1

P = − 1

2p0

∫
d4x d4y

∫
d4q d4k

(2π)6
δ
(
k2)δ(q2 − m2

ν

)
Sp

{
Γµ(x)�i(x, y;p, ζi)Γν(y)�f (y, x;q, ζf )

}
(25)× �

µν
ph(x, y; k).

Here,�i(x, y;p), �f (y, x;q) are density matrices of the initial(i) and final(f ) states of the fermion,�µν
ph(x, y; k)

is the radiated photon density matrix,Γ µ = −√
4πµ0σ

µνkν is the vertex function. The density matrix of longit
dinally polarized neutrino in the unpolarized matter at rest constructed with the use of the solutions of Eq.(1) has
the form

(26)�(x, y;p, ζ ) = 1

2
∆2

pζ (p̂ + mν)
(
1− ζγ 5Ŝp

)
e−i(x0−y0)(p0+f 0/2)+i(x−y)p∆pζ .

After summing over photon polarizations2 and integrating with respect to coordinates we obtain the expre
for the transition rate under investigation:

(27)W = µ2
0

p0

∫
d4q d4k

(2π)
δ
(
k2)δ(q2 − m2

ν

)
δ
(
p0 − q0 − k0)δ3(p∆pζi

− q∆qζf
− k)T (p, q),

where

(28)T (p,q) = 4∆2
pζi

∆2
qζf

{
(pk)(qk) − ζiζf

[
k0|p| − p0(pk)/|p|][k0|q| − q0(qk)/|q|]}.

After integrating overk, k0, |q| we obtain the spectral-angular distribution of the final neutrino

W = −ζiζf

µ2
0

πp0|p|

p0∫
mν

dq0∆pζi
∆qζf

∫
dOδ

((
p0 − q0)2 + 2|p||q|∆pζi

∆qζf
cosϑν − |p|2∆2

pζi
− |q|2∆2

qζf

)

(29)× {(
f 0/2

)2[
ζf |p||q| + ζi

(
m2

ν − p0q0)]2 + [(
f 0/2

)(
ζiq

0|p| − ζf p0|q|) + m2
ν

(
p0 − q0)]2}

,

where

|q| =
√(

q0
)2 − m2

ν .

It is convenient to express the results of integrating over angular variables using dimensionless quantitie
ducing the notations

(30)x = q0/mν, γ = p0/mν, d = ∣∣f 0
∣∣/2mν, ζ̄i,f = ζi,f sign

(
f 0)

1 In the expression for the radiation energyE , the additional factork, i.e., the energy of radiated photon, appears in the integrand.
2 We do not consider the polarization of spin light photons here. In the quasi-classical approximation, this problem was investigate[17].
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we have

Wζ̄f
= µ2

0m
3
ν

γ (γ 2 − 1)

∫
dx√

x2 − 1

{
d2[ζ̄f

√
γ 2 − 1

√
x2 − 1− ζ̄i (γ x − 1)

]2

(31)+ [
γ − x + d

(
ζ̄ix

√
γ 2 − 1− ζ̄f γ

√
x2 − 1

)]2}
.

The integration bounds in the formula(31)are

(32)x ∈ ∅, γ ∈ [1,∞),

if ζ̄i = 1,

x ∈ ∅, γ ∈ [1, γ0),

x ∈ [ω1,ω2], γ ∈ [γ0, γ1),

x ∈ [1,ω2], γ ∈ [γ1, γ2),

(33)x ∈ ∅, γ ∈ [γ2,∞),

if ζ̄i = −1, ζ̄f = −1, and

x ∈ ∅, γ ∈ [1, γ1),

x ∈ [1,ω1], γ ∈ [γ1, γ2),

(34)x ∈ [ω2,ω1], γ ∈ [γ2,∞),

if ζ̄i = −1, ζ̄f = 1.
Here

(35)ω1 = 1

2

(
z1 + z−1

1

)
, ω2 = 1

2

(
z2 + z−1

2

)
,

where

(36)z1 = γ +
√

γ 2 − 1− 2d, z2 = γ −
√

γ 2 − 1+ 2d,

and

γ0 =
√

1+ d2,

γ1 = 1

2

{
(1+ 2d) + (1+ 2d)−1},

γ2 = 1

2

{
(1− 2d) + (1− 2d)−1}, d < 1/2,

(37)γ2 = ∞, d � 1/2.

The integration is carried out elementary. The transition rate under investigation is defined as

Wζ̄f
= µ2

0m
3
ν

4

{
(1+ ζ̄f )

[
Z(z1,1)Θ(γ − γ1) + Z(z2,−1)Θ(γ − γ2)

]
(38)+ (1− ζ̄f )

[
Z(z1,1)Θ(γ1 − γ ) + Z(z2,−1)Θ(γ2 − γ )

]
Θ(γ − γ0)

}
(1− ζ̄i ).
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Here

Z(z, ζ̄f ) = 1

γ (γ 2 − 1)

{
ln z

[
γ 2 + d

√
γ 2 − 1+ d2 + 1/2

] + 1

4

(
z2 − z−2)[d2(2γ 2 − 1

) + d

√
γ 2 − 1+ 1/2

]
+ ζ̄f

4

(
z − z−1)2[2d

√
γ 2 − 1+ 1

]
dγ − (

z − z−1)[d2 + d

√
γ 2 − 1+ 1

]
γ

(39)− ζ̄f

(
z + z−1 − 2

)[
d

√
γ 2 − 1+ γ 2]d}

.

Therefore, the transition rate after summation over polarizations of the final neutrino becomes

(40)Wζ̄f =1 + Wζ̄f =−1 = µ2
0m

3
ν

2
(1− ζ̄i )

{
Z(z1,1) + Z(z2,−1)

}
Θ(γ − γ0).

If dγ � 1, then expression(38) leads to the formula

(41)Wζ̄f
= 16µ2

0m
3
νd

3

3γ

(
γ 2 − 1

)3/2
(1− ζ̄i )(1+ ζ̄f ),

obtained in the quasi-classical approximation in[3].
In the ultra-relativistic limit(γ � 1, dγ � 1), the transition rate is given by the expression

(42)Wζ̄f
= µ2

0m
3
νd

2γ (1− ζ̄i )(1+ ζ̄f ).

Let us consider now the radiation power. If we introduce the function

(43)Z̃(z, ζ̄f ) = γZ(z, ζ̄f ) − Y(z, ζ̄f ),

where

Y(z, ζ̄f ) = 1

γ (γ 2 − 1)

{
− ln z

[
d2 + d

√
γ 2 − 1+ 1

]
γ − 1

4

(
z2 − z−2)[d2 + d

√
γ 2 − 1+ 1

]
γ

+ 1

12

(
z − z−1)3[

d2(2γ 2 − 1
) + d

√
γ 2 − 1+ 1/2

]
+ 1

2

(
z − z−1)[2d2γ 2 + 2d

√
γ 2 − 1+ γ 2 + 1

]
(44)+ ζ̄f

12

((
z + z−1)3 − 8

)[
2d

√
γ 2 − 1+ 1

]
dγ − ζ̄f

12

(
z − z−1)2[

d

√
γ 2 − 1+ γ 2]d}

,

then the formula for the total radiation power can be obtained from(38), (40) by the substitutionZ(z, ζ̄f ) →
Z̃(z, ζ̄f ). It can be verified that ifdγ � 1 then the radiation power is

(45)Iζ̄f
= 32µ2

0m
4
νd

4

3

(
γ 2 − 1

)2
(1− ζ̄i )(1+ ζ̄f ).

This result was obtained in the quasi-classical approximation in[2]. In the ultra-relativistic limit, the radiation
power is equal to

(46)Iζ̄f
= 1

3
µ2

0m
4
νd

2γ 2(1− ζ̄i )(1+ ζ̄f ).

It can be seen from Eqs.(42) and (46)that in the ultra-relativistic limit the averaged energy of emitted photon
〈εγ 〉 = εν/3. It should be pointed out that the obtained formulas are valid both for a neutrino and for an antine
The charge conjugation operation leads to the change of the sign of the effective potential and the replac
the left-hand projector by the right-hand one in Eq.(1). Thus the sign in front of theγ 5 matrix remains invariant.
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Using Eq.(27), it is possible to find the dependence of the radiated photon energy on the angleϑγ between the
direction of the neutrino propagation and the photon wave vector

(47)
k0

mν

= 2d
βX − d/γ

(X + d/γ )(X − d/γ )
.

Hereβ = √
γ 2 − 1/γ is the neutrino velocity andX = 1− (β − d/γ )cosϑγ . In the quasi-classical approximatio

this formula reduces to the relation

(48)
k0

mν

= 2dβ

1− β cosϑγ

,

which follows from the results of[3] after Lorentz transformation to the laboratory frame.
The following conclusions can be made from the obtained results. A neutrino (antineutrino) can emit p

due to coherent interaction with matter only when its helicity has the sign opposite to the sign of the e
potentialf 0. Otherwise, radiation transitions are impossible. In the case of low energies of the initial ne
only radiation without spin-flip is possible and the probability of the process is very low. At high energie
main contribution to radiation is given by the transitions with the spin-flip, the transitions without spin-flip are
absent or their probability is negligible. This leads to total self-polarization, i.e., the initially left-handed pol
neutrino (right-handed polarized antineutrino) is transformed to practically “sterile” right-handed polarize
trino (left-handed polarized antineutrino). For “sterile” particles, the situation is opposite. They can be co
to the active form in the medium “transparent” for the active neutrino.

With the use of the effective potential calculated in the first order of the perturbation theory(2), the following
conclusions can be made. If the matter consists only of electrons then, in the framework of the minimally e
standard model in the ultra-relativistic limit (here we use Gaussian units), we have for the transition rate

(49)Wζ̄f
= αεν

32h̄

(
µ0

µB

)2(
G̃Fne

mec2

)2

(1− ζ̄i )(1+ ζ̄f ),

and for the total radiation power

(50)Iζ̄f
= αε2

ν

96h̄

(
µ0

µB

)2(
G̃Fne

mec2

)2

(1− ζ̄i )(1+ ζ̄f ).

Hereεν is the neutrino energy,µB = e/2me is the Bohr magneton,α is the fine structure constant,me is the electron
mass and̃GF = GF(1+4 sin2 θW), whereGF, θW are the Fermi constant and the Weinberg angle respectively. T
after the radiative transition, two thirds of the initial active neutrino energy are carried away by the final “s
one.

At the same time, as it can be seen from Eq.(2), a muon neutrino in the electron medium does not emit
radiation. Moreover, a muon neutrino does not emit radiation in an electrically neutral medium, when the
density of protons is equal to the electron number density. And an electron neutrino can emit radiatio
electron number density is greater than the neutron number density. An example of such medium is pro
the Sun. Therefore the spin light can change the ratio of active neutrino of different flavors.

It is obviously that the above conclusions change to opposite if the matter consists of antiparticles. Th
the neutrino spin light can serve as a tool for determination of the type of astrophysical objects, since n
radiative transitions in dense matter can result in radiation of photons of super-high energies, even exce
GZK cutoff. Indeed, the neutron medium is “transparent” for all active neutrinos, but an active antineutrino
radiation in such a medium, the transition rate and the total radiation power can be obtained from Eqs.(49) and
(50)after substitutionG̃F → GF, ne → nn. If the density of the neutron star is assume to ben ≈ 1038, the transition
rate is estimated as

(51)W = 1022 εν

(
µ0

)2

,

εGZK µB
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in the

ce

schools
whereεGZK = 5× 1019 eV is GZK cutoff energy. Although the transition rate determined by Eq.(51) is extremely
low, this effect can still serve as one of a possible explanations of the cosmic ray paradox.

The spin light can also be important for the understanding of the “dark matter” formation mechanism
early stages of evolution of the Universe.

When the present Letter was already submitted for publication, we came across an article[22], where the spin
light theory was also considered. The formulas of[22] in the ultra-relativistic limit of physical interest reprodu
the results for the transition rate and the total power of spin light already obtained in our earlier publication[10].
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