THE CHARACTERISTIC MAPPING OF A FOLIATED BUNDLE

J. L. ARRAUT and N. M. DOS SANTOS

(Received 28 March 1990; in revised form 15 March 1991)

To the memory of C. Godbillon

INTRODUCTION

Let \mathcal{F} denote a p-dimensional smooth foliation of a closed, orientable, connected mmanifold M and $H^1(\mathcal{F})$ the first cohomology group of the foliated manifold (M, \mathcal{F}) . To the pair (M, \mathcal{F}) we associate a symmetric (q + 1)-linear mapping α of $H^1(\mathcal{F})$ into the real cohomology group $H^{2q+1}(M)$, q = m - p, called the *characteristic mapping* of the foliated manifold. In 1.3 we discuss the relation between the characteristic mapping and previous work on the Godbillon-Vey class, and especially the Godbillon operators and measures. In 1.5 we associate to each locally free smooth action A of a Lie group G on M a (q + 1)-linear symmetric mapping α_A of the first cohomology group $H^1(\mathcal{G})$ of the Lie algebra \mathcal{G} of G into the real cohomology group $H^{2q+1}(M)$. The mapping α_A is called the *characteristic mapping* of A. In this paper we study α when M is the total space of a fiber bundle $F \to M \xrightarrow{t} T^p$ and \mathcal{F} is a foliation of M transverse to the fibers of τ . \mathcal{F} is therefore a suspension foliation of an action $\varphi: \mathbb{Z}^p \to \text{diff}(F)$. In Section 3 we identify ergodic properties of φ that imply the vanishing of α . The action φ is said to be an *E*-action if it leaves invariant a Borel probability measure μ on F and for every continuous function $h: F \to R$ the Birkhoff sums $B_n(\varphi) \cdot h$ converge pointwise to $\mu(h)$ for m-almost all $x \in F$ where m is a Lebesgue measure on F. We give some important examples of E-actions. The main theorem of the paper is

3.8. THEOREM. Let $F \to (M, \mathscr{F}) \xrightarrow{\tau} T^p$ be the suspension foliated bundle of an action φ of Z^p on a closed connected q-manifold F. If φ is an E-action then the characteristic mapping α of (M, \mathscr{F}) vanishes.

We obtain in particular the following generalization of a theorem of M. Herman, [14].

3.9 COROLLARY. The characteristic mapping of a C^2 foliation by planes of T^3 vanishes.

As an application of 3.8 and a previous theorem of the authors in [1] we obtain

4.1 THEOREM. Let A be a C^2 locally free action of R^2 on a closed connected orientable 3-manifold M. If the characteristic mapping

$$\alpha_A \colon R^2 \times R^2 \to H^3(M) = R$$

of A is non-degenerate, then

- (i) A has a compact orbit;
- (ii) there is a neighbourhood V of A in the C^1 topology such that every action in V has a compact orbit.

In case $M = T^3$ the hypothesis is in fact weaker, namely: (i) and (ii) hold if $\alpha_A \neq 0$.

1. THE CHARACTERISTIC MAPPING OF A FOLIATION

In [1] we associate to each non-singular C^r , $r \ge 2$ action A of R^p on a closed orientable connected *m*-manifold M a (q + 1)-linear symmetric mapping α_A of R^p into the real cohomology group $H^{2q+1}(M)$, q = m - p. We called α_A the characteristic mapping of A. The foliated cohomology introduced by B. L. Reinhart in [18] appears naturally in the study of actions [2]. Using this cohomology we present here a generalization to foliations of the characteristic mapping. This also directly genaralizes a construction of C. Benson and G. Ratcliff for actions of simply connected nilpotent Lie groups, [5]. Our construction is a natural generalization of the Godbillon-Vey invariant of a foliation and of Duminy's Godbillon operator. For a foliation \mathcal{F} of subexponential growth all residual secondary characteristic classes vanish whereas the characteristic mapping will in general not vanish. See 1.2 and [[1], 1.5] for more examples.

Let \mathscr{F} be a *p*-dimensional foliation of M and $\Lambda(M)$ the graded algebra of all C^{∞} differential forms on M. If $I(\mathscr{F}) \subset \Lambda(M)$ is the annihilating ideal of \mathscr{F} , then

$$I(\mathcal{F})^{q+1} = 0 \tag{1.1}$$

q = m - p being the codimension of \mathcal{F} . Thus $\Lambda(\mathcal{F}) = \Lambda(M)/I(\mathcal{F})$ is a graded algebra, called the algebra of differential forms along \mathcal{F} .

The elements of $\Lambda^{j}(\mathcal{F})$ may be thought of as sections of the *j*-th exterior power of the dual bundle of the tangent bundle $T\mathcal{F}$ of \mathcal{F} . Since $dI(\mathcal{F}) \subset I(F)$ the differential $d: \Lambda(M) \to \Lambda(M)$ induces the foliated differential $d_{f}: \Lambda(\mathcal{F}) \to \Lambda(\mathcal{F})$. The kernel $Z(\mathcal{F})$ of d_{f} is the set of d_{f} -closed forms and the image $B(\mathcal{F})$ of d_{f} is the set of d_{f} -exact forms. The cohomology $H^{*}(\mathcal{F})$ of the differential complex $(\Lambda(\mathcal{F}), d_{f})$ is the cohomology of the foliated manifold (M, \mathcal{F}) . This is a natural generalization to foliations of the de Rham cohomology. Let $\pi: \Lambda(M) \to \Lambda(\mathcal{F})$ be the canonical projection. We say that $\xi \in \Lambda^{j}(M)$ is d_{f} -closed if $d\xi \in I(\mathcal{F})$ which is equivalent to $\pi(\xi) \in Z^{j}(\mathcal{F})$ and we denote by ξ the cohomology class of $\pi(\xi)$ in $H^{j}(\mathcal{F})$. Z(M) and B(M) denote, as usual, the kernel and image of $d: \Lambda(M) \to \Lambda(M)$, respectively. $[\xi]$ denotes the de Rham class of $\xi \in Z(M)$.

1.1 LEMMA. Let ξ_j be d_f -closed 1-forms, $j = 1, \ldots, q + 1$ and $\omega = \xi_1 \wedge d\xi_2 \wedge \ldots \wedge d\xi_{q+1}$. Then

- (i) ω is a closed (2q + 1)-form on M;
- (ii) ω is exact if ξ_1 is closed;
- (iii) ω is exact if some $\pi(\xi_1)$ is d_f -exact.

Proof. (i) Since $d\xi_j \in I(\mathcal{F})$, j = 1, ..., q + 1 the result follows from (1.1).

(ii) note that $\omega = -d(\xi_1 \wedge \xi_2 \wedge d\xi_3 \wedge \ldots \wedge d\xi_{q+1})$.

(iii) we may assume, after a permutation of indexes, that $\pi(\xi_1) = \pi(dh)$ for some C^{∞} function h: $M \to R$. Thus $\xi_1 - dh \in I(\mathcal{F})$ which by (1.1) implies that $\omega = d(hd\xi_2 \wedge \ldots \wedge d\xi_{q+1})$, proving the lemma.

By the above lemma there exists a well defined (q + 1)-linear symmetric mapping

$$\alpha: H^1(\mathscr{F}) \times \cdots \times H^1(\mathscr{F}) \to H^{2q+1}(M)$$
(1.2)

given by $\alpha(\overline{\xi}_1, \ldots, \overline{\xi}_{q+1}) = [\xi_1 \wedge d\xi_2 \wedge \ldots \wedge d\xi_{q+1}]$, called the *characteristic mapping* of the foliated manifold (M, \mathcal{F}) .

1.2. Example. Let $T^2 \to T^3 \xrightarrow{\tau} T^1$, $\tau(x_1, x_2, x_3) = x_3$, be the canonical fibration of T^3 over T^1 and \mathscr{F} be the foliation given by the fibers of τ . Choose any two functions f and g in

 $C^{\infty}(T^1)$ such that $\int_{T^1} f dg \neq 0$. The 1-forms $\xi_1 = (f \circ \tau) dx_1$ and $\xi_2 = (g \circ \tau) dx_2$ are d_f -closed and

$$\alpha(\bar{\xi},\,\bar{\xi}_2)=\int_{T^3}\xi_1\,\wedge\,d\xi_2=4\pi^2\int_{T^1}fdg.$$

Thus the characteristic mapping α of (T^3, \mathcal{F}) does not vanish.

1.3. We now describe the relation between the characteristic mapping and the Godbillon operator as defined in codimension 1 by G. Duminy in [9] and generalized by J. Heitsch and S. Hurder in [13].

Since $dI(\mathcal{F})^q \subset I(\mathcal{F})^q$ it follows that $(I(\mathcal{F})^q, d)$ is a differential complex whose cohomology is denoted by $H^*(M, \mathcal{F})$. We denote by $\langle \theta \rangle$ the cohomology class in $H^j(M, \mathcal{F})$ of a closed *j*-form in $I(\mathcal{F})^q$. For each *j*, $q \leq j \leq m - 1$ there is a well defined pairing

$$H^{1}(\mathcal{F}) \times H^{j}(M, \mathcal{F}) \xrightarrow{\chi_{j}} H^{j+1}(M, \mathcal{F})$$
 (1.3)

given by $\chi_j(\bar{\xi}) \cdot \langle \theta \rangle = [\xi \wedge \theta]$. To see that χ_j is well-defined just observe that if $\pi(\xi) = \pi(d\eta)$, then $\xi \wedge \theta = d(\eta \wedge \theta)$ and if $\theta = d\omega$, $\omega \in I(\mathcal{F})^q$, then $\xi \wedge \theta = -d(\xi \wedge \omega)$. Let Ω be an integrable $C^{\infty}q$ -form defining a foliation \mathcal{F} . Then there exists a C^{∞} 1-form λ on M such that $d\Omega = \lambda \wedge \Omega$. Clearly λ is d_f -closed and defines the *Reeb class* $\bar{\lambda} \in H^1(\mathcal{F})$ of \mathcal{F} .

The class $\alpha(\overline{\lambda}, \ldots, \overline{\lambda}) = [\lambda \wedge (d\lambda)^q]$ in $H^{2q+1}(M)$ is the Godbillon-Vey invariant of \mathscr{F} . The Godbillon operators are the linear mappings

$$g: H^{j}(M, \mathscr{F}) \to H^{j+1}(M, \mathscr{F})$$
(1.4)

given by $g(\langle \theta \rangle) = \chi_j(\bar{\lambda}) \cdot \langle \theta \rangle$, $q \leq j \leq m - 1$. For j = m - 1 we actually have for each Borel saturated set $B \subset M$ i.e., B is a union of leaves of \mathscr{F} a well defined linear functional

$$g_{\mathcal{B}}: H^{m-1}(M, \mathscr{F}) \to R, \quad g_{\mathcal{B}}(\langle \theta \rangle) = \int_{\mathcal{B}} \lambda \wedge \theta.$$

The mapping $B \to g_B$ is a vectorial measure on the σ -algebra generated by the saturated Borel sets of (M, \mathcal{F}) and is called the *Godbillon measure* of \mathcal{F} .

The characteristic mapping α is given by

$$\alpha(\bar{\xi}_1,\ldots,\bar{\xi}_{q+1})=\chi_{2q}(\bar{\xi}_1)\cdot\langle d\xi_2\wedge\ldots\wedge d\xi_{q+1}\rangle. \tag{1.5}$$

1.4 Example. Let $A: \mathbb{R}^p \times M \to M$ be a \mathbb{C}^∞ locally free action, \mathscr{F} its underlying foliation and $X = \{X_1, \ldots, X_p\}$ the frame of infinitesimal generators of A. Let $\xi = \{\xi_1, \ldots, \xi_p\}$ be a coframe adapted to A, i.e., ξ_i are \mathbb{C}^∞ 1-forms on M such that $\xi_i(X_j) = \delta_{ij}$, $1 \le i$, $j \le p$. Since the vector fields X_i pairwise commute, the 1-forms ξ_i are d_j -closed, [1]. Thus they define p linearly independent classes $\overline{\xi} = \{\overline{\xi}_1, \ldots, \overline{\xi}_p\}$ in $H^1(\mathscr{F})$. This gives a representation $i_A: \mathbb{R}^p \to H^1(\mathscr{F})$ defined by $i_A(x_1, \ldots, x_p) = x_1\overline{\xi}_1 + \ldots + x_p\overline{\xi}_p$. The (q + 1)-linear symmetric mapping $\alpha_A: \mathbb{R}^p \times \ldots \times \mathbb{R}^p \to H^{2q+1}(M)$ given by $\alpha_A = i_A^*\alpha$ was called in [1] the characteristic mapping of A. It was proved in [1] that α_A does not depend on the choice of the adapted coframe ξ of A.

1.5 Example. More generally, let $A: G \times M \to M$ be a locally free smooth action of a Lie group G on M. Associated to A we have a natural injection $E \to \overline{E}$ of the Lie algebra \mathscr{G} of G into the Lie algebra of all smooth tangent vector fields of the underlying foliation \mathscr{F} of A. This injection is given by $\overline{E}(x) = DA_x(0) \cdot E$, $x \in M$ where as usual $A_x: G \to M$, $A_x(g) = A(g, x)$. Dually, we have a natural injection $\omega \to \omega'$ of the Lie algebra $\Lambda^*_{\mathbb{R}}(\mathscr{G})$ of the invariant forms on G into the algebra $\Lambda(\mathscr{F})$ of smooth forms along \mathscr{F} . To see this, choose a normal bundle ν to the tangent bundle $T\mathscr{F}$ of \mathscr{F} . Consider the linear mapping $\mathscr{G}^* \to \Lambda^1(M)$, $\omega \to \omega^*$ where ω^* is the 1-form defined by $\omega^*(\overline{E}) = \omega(E)$ if $E \in \mathscr{G}$ and $\nu \subset \ker \omega^*$. If τ is another normal bundle, then $\omega^* - \omega^*$ belongs to $I(\mathscr{F})$. Thus we have a well defined injective linear mapping $\omega \to \omega' = \pi(\omega^*)$ of \mathscr{G}^* into $\Lambda^1(\mathscr{F})$. This mapping extends to an injective homomorphism

$$\Lambda_R^*(\mathscr{G}^*) \to \Lambda^*(\mathscr{F}) \tag{1.6}$$

which commutes with the differentials i.e. $d_f \omega' = (d\omega)'$ and depends only on the action A and induces an injective representation

$$i_{\mathcal{A}} \colon H^{*}(\mathscr{G}) \to H^{*}(\mathscr{F}) \tag{1.7}$$

of the cohomology of the Lie algebra \mathscr{G} of G into the cohomology of the foliated manifold (M, \mathscr{F}) . The (q + 1)-linear symmetric mapping

$$\alpha_A \colon H^1(\mathscr{G}) \times \cdots \times H^1(\mathscr{G}) \to H^{2q+1}(M)$$
(1.8)

given by $\alpha_A = i_A^* \alpha$ is called the characteristic mapping of A.

2. ON THE COHOMOLOGY OF FOLIATED BUNDLES

Let B and F be closed orientable connected C' manifolds, $r \ge 2$ and

$$\varphi: \pi_1(B) \to \operatorname{Diff}^r(F) \tag{2.1}$$

be an action.

The foliated bundle $F \to (M, \mathscr{F}) \xrightarrow{t} B$ suspension of φ is constructed as follows: Let $p:\tilde{B} \to B$ be the universal covering of B and $x_0 \in B$. Associated to φ there is an action

$$\Phi: \pi_1(B, x_0) \to \operatorname{Diff}^r(\tilde{B} \times F)$$
(2.2)

given by $\Phi_{[\gamma]}(\tilde{x}, y) = ([\gamma] \cdot \tilde{x}, \varphi_{[\gamma]}^{-1}(y))$ where $[\gamma] \cdot \tilde{x}$ denotes the image of \tilde{x} by the deck transformation of \tilde{B} corresponding to the homotopy class $[\gamma]$ of $\pi_1(B, x_0)$. The orbit space M of Φ is a manifold and actually we have a fiber bundle $F \to M \xrightarrow{\tau} B$. Every object of $\tilde{B} \times F$ which is invariant under Φ induces a corresponding object on M. To the natural foliation defined by the projection $\tilde{B} \times F \to F$, which is invariant under Φ , corresponds the foliation \mathscr{F} on M which is transverse to the fibers of τ . We think of $\Lambda(\mathscr{F})$ as the set of differential forms along the natural foliation $\tilde{B} \times y, y \in F$ which are invariant under Φ . The image of τ^* : $\Lambda(B) \to \Lambda(M)$ is called the space of *basic forms*.

To each probability measure μ on F which is invariant under $\varphi: \pi_1(B, x_0) \rightarrow \text{Diff}(F)$ we associate an epimorphism of differential complexes

$$P_{\mu}: \Lambda(\mathscr{F}) \to \Lambda(B) \tag{2.3}$$

called the averaging operator i.e., P_{μ} is a continuous surjective linear mapping which commutes with the differentials: $P_{\mu} \circ d_f = d \circ P_{\mu}$. If $h \in \Lambda^0(\mathscr{F})$, then the function

$$P_{\mu}(h) = \int_{F} h(\tilde{x}, y) d\mu(y) = \bar{h}(\tilde{x})$$
(2.4)

is basic since it is invariant under all the deck transformations of p. If $\tau^* \omega$ is a basic form, we let $P_{\mu}(\tau^*\omega) = \omega$. Let $\{(\mathscr{U}_{\alpha}; \alpha)\}_{x \in A}$ be an atlas of B and $(d\alpha_1, \ldots, d\alpha_p)$ be the coframe

associated to the chart α . Let $\{\lambda_{\alpha}\}$ be a C^{∞} partition of unit subordinate to the cover $\{\mathscr{U}_{\alpha}\}$. If $\xi \in \Lambda^{k}(\mathscr{F})$, then $\xi = \sum_{\alpha} (\sum_{I} (\lambda_{\alpha} \circ \tau) f_{I}^{\alpha} \tau^{*} d\alpha_{i})$ where, as usual, $I = (i_{1} < \cdots < i_{k}), 1 \leq i_{j} \leq p$ and $d\alpha_{I} = d\alpha_{i_{1}} \wedge \ldots \wedge d\alpha_{i_{k}}$. We define $P_{\mu}(\xi)$ by

$$P_{\mu}(\xi) = \sum_{\alpha} \lambda_{\alpha} \left(\sum_{I} P_{\mu}(f_{I}^{\alpha}) d\alpha_{I} \right).$$
 (2.5)

A routine verification shows that P_{μ} is well defined i.e., does not depend on the choice of the atlas and the partition of unit, and commutes with the differentials.

The split short exact sequence of differential complexes

$$0 \to \ker \to \Lambda^{*}(\mathscr{F}) \xrightarrow{P_{\mu}} \Lambda^{*}(B) \to 0$$
(2.6)

gives the split short exact cohomology sequences

$$0 \to H^{j}(\ker) \to H^{j}(\mathscr{F}) \to H^{j}(B) \to 0$$
(2.7)

 $0 \le j \le p$. Thus

2.1:
$$H^{j}(\mathcal{F}) = H^{j}(B) \oplus H^{j}(\ker)$$
 for $0 \le j \le p$.

Now let G be a connected Lie group and Γ be a discrete cocompact subgroup of G i.e., the right coset space $B = G/\Gamma$ is a compact manifold. Each right translation $R_z: G \to G$ induces a diffeomorphism $R_z^0: B \to B$. Let $E \in \mathscr{G}$ be a left invariant vector field on G and $a: R \times G \to G$ its flow. Thus $L_x \circ a_t = a_t \circ L_x$ and $a_t(x) = R_{a_t(e)}(x)$. The restriction of the right action $G \times G \xrightarrow{R} G$ to the 1-parameter subgroup $a_t(e)$ is the flow of E. The right action R induces a right action $G \times B \xrightarrow{R^0} B$ and the restriction to the subgroup $a_t(e)$ gives a flow on B. Let E_0 be the corresponding vector field on B. Thus we have an injective homomorphism of the Lie algebra \mathscr{G} into the Lie algebra $\mathscr{X}(B)$ of all C^{∞} vector fields on B. Let \mathscr{G}_0 be its image. Associated to a left action $\Gamma \xrightarrow{\varphi}$ Diff(F) we have a left action

$$\Gamma \xrightarrow{\Phi} \operatorname{Diff}(G \times F) \tag{2.8}$$

given by $\Phi_{\gamma}(x, y) = (\gamma x, \varphi_{\gamma}^{-1}(y)), \gamma \in \Gamma$. The orbit space $M = G \times F/\Gamma$ is a manifold and we have a foliated bundle $F \to (M, \mathcal{F}) \xrightarrow{\tau} B$. Each right translation R_z gives an automorphism H_z of τ i.e. $H_z: (M, \mathcal{F}) \to (M, \mathcal{F})$ preserves the leaves of \mathcal{F} and $\tau \circ H_z = R_z^0 \circ \tau$.

Each vector field $E \in \mathscr{G}$ may be thought as a vector field on $G \times F$ tangent to the first factor. Since it is invariant by the action Φ it induces a vector field \overline{E} tangent to the leaves of \mathscr{F} and in fact $\overline{E} = p * (E)$ and $\tau_* \overline{E} = E_0$ where $p: G \times F \to M$ is the projection. Thus we have an action

$$H: G \to \operatorname{Aut}(\tau) \tag{2.9}$$

of G as automorphisms of the foliated bundle τ , called the *canonical action* of τ . The restriction of H to Γ gives an action

$$\Gamma \xrightarrow{H^*} \operatorname{Aut}(H^*(\mathscr{F})) \tag{2.10}$$

of Γ on $H^*(\mathcal{F})$.

The foliated cohomology $H^*(\mathcal{F})$ is not invariant by homotopy but it is invariant by *integrable homotopy*, a concept introduced by A. Haefliger in [12].

2.2. Definition. Let f and g be two mappings of the foliated manifold (M, \mathcal{F}) into the foliated manifold (M', \mathcal{F}') sending leaves of \mathcal{F} into leaves of \mathcal{F}' ; morphisms of foliated manifolds. They are *integrably homotopic* if there is a mapping

$$\rho:(M \times R, \mathscr{F} \times R) \to (M', \mathscr{F}')$$

sending the leaves of $\mathcal{F} \times R$ into the leaves of \mathcal{F}' and such that

$$\rho(x, t) = f(x)$$
 for $t \le 0$ and $\rho(x, t) = g(x)$ for $t \ge 1$.

The following is well-known and a proof may be found in [16].

2.3 PROPOSITION. Let $f, g: (M, \mathcal{F}) \to (M', \mathcal{F}')$ be two morphisms of foliated manifolds. If f is integrably homotopic to g then $f^* = g^*: H^*(\mathcal{F}) \to H^*(\mathcal{F}')$.

2.4. LEMMA. The action H^* : $\Gamma \to Aut(H^*(\mathcal{F}))$ is trivial i.e., $H^*_{\gamma} = id$ for all $\gamma \in \Gamma$.

Proof. By 2.3 it suffices to show that each H_{γ} is integrably homotopic to the identity. Choose any smooth curve $c: R \to G$ such that $c(t) = \gamma$ for $t \le 0$ and c(t) = e for $t \ge 1$. The mapping

$$\rho: (M \times R, \mathscr{F} \times R) \to (M, \mathscr{F})$$

given by $\rho(x, t) = H(c(t), x)$ is the desired homotopy.

2.5 Remark. The representation $i_H: H^*(\mathscr{G}) \to H^*(\mathscr{F})$ associated to the canonical action $\overset{H}{\to} \operatorname{Aut}(\tau)$ as in (1.7) is actually given by closed forms on M. In fact, each closed invariant form ω on G induces a closed form ω_0 on B and i_H sends the cohomology class of ω , in $H^*(\mathscr{G})$ into the cohomology class of $\tau^*\omega_0$ in $H^*(\mathscr{F})$ and $\tau^*\omega_0$ is closed in M. Thus to each basis of \mathscr{G}^* corresponds a closed coframe of (M, \mathscr{F}) .

2.6 PROPOSITION. Let $F \to (M, \mathscr{F}) \xrightarrow{\tau} B$ be the suspension foliated bundle defined by the action of a discrete cocompact subgroup Γ of a connected Lie group G on a manifold F. Then the characteristic mapping vanishes on

$$(i_H H^*(\mathscr{G})) \times H^*(\mathscr{F}) \times \ldots \times H^*(\mathscr{F}).$$

Here H: $G \rightarrow Aut(\tau)$ is the canonical action of τ .

Proof. Follows from the above remark and Lemma 1.1, (ii).

Roussarie's example shows that in the above Propositon it is crucial to have the foliation transverse to a fibration over the group G modulo a cocompact lattice. We recall this example.

2.7 Example (Roussarie). Let G = SL(2; R) and Γ be any discrete cocompact subgroup of G. The Lie algebra \mathcal{G} of G is the space of matrices of zero trace and is generated by the matrices

$$X = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \text{ and } Z = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Clearly

$$[X, Y] = 2Y, [Y, Z] = X \text{ and } [X, Z] = -2Z.$$

Thus, the dual base $\{\xi, \eta, \zeta\}$ satisfies the relations $d\xi = -\eta \wedge \zeta$, $d\eta = -2\xi \wedge \eta$ and $d\zeta = 2\xi \wedge \zeta$. Hence ζ is an integrable 1-form on G. Let \mathscr{G}_0 be the corresponding Lie algebra on $M = G/\Gamma$. The isomorphism $\mathscr{G} \to \mathscr{G}_0$ gives an isomorphism $\mathscr{G}^* \to \mathscr{G}_0^*$ and we also denote by ξ, η and ζ the corresponding 1-forms on M. The foliation \mathscr{F} on M given by ζ is the underlying foliation of the action of the solvable group T of triangular matrices in SL(2; R) acting by right translations on M. The cohomology group $H^1(t)$ of the Lie algebra t of T is generated by the 1-form ξ which is closed in T (t is generated by X and Y). As $\xi \wedge d\xi = -4\xi \wedge \eta \wedge \zeta$ we see that $[\xi \wedge d\xi] \neq 0$. So the characteristic mapping of \mathscr{F} does not vanishes on $(i_H H^*(t)) \times H^1(\mathscr{F})$. We also remark that \mathscr{F} has no holonomy invariant transverse measures since T is not unimodular. This follows from a theorem of Bowen [7].

3. ERGODICITY AND THE VANISHING OF THE CHARACTERISTIC MAPPING

In this section we prove a theorem that relates the vanishing of the characteristic mapping of a foliated bundle with ergodic properties of its holonomy action.

Let, as before, G be a connected Lie group and Γ a discrete cocompact subgroup of G. To each left action $\varphi: \Gamma \to \text{Diff}(F)$ there corresponds the suspension foliated bundle $F \to (M, \mathcal{F}) \xrightarrow{\tau} B$ with the homogeneous space $B = G/\Gamma$ as base-space (see (2.9)). The canonical action $H: G \to \text{Aut}(\tau)$ induces an action $H^*: \Gamma \to \text{Aut}(H^*(\mathcal{F}))$ as in (2.10). We restrict ourselves to the case $G = R^p$ and $\Gamma = Z^p$. In this case, as G is abelian the action H leaves invariant the closed basic forms $\tau^*\omega_0$, as remarked in 2.5.

Now, we consider ergodic averages associated to forms ξ in $\Lambda^j(\mathcal{F}), 0 \le j \le p$. Let $J_n = \{0, 1, \ldots, n\}$ and $U_n = J_n^p, n \in \mathbb{Z}_+$ be the standard summing sequences of \mathbb{Z}^p . We consider the Birkhoff sums

$$B_n(H) \cdot \xi = \frac{1}{(n+1)^p} \sum_{\gamma \in U_n} H^*_{\gamma}(\xi)$$
(3.1)

and

$$B_n(\varphi) \cdot h = \frac{1}{(n+1)^p} \sum_{\gamma \in U_n} h \circ \varphi_{\gamma}$$
(3.2)

 $h \in C^0(F)$.

Choose a basis $B = \{E_1, \ldots, E_p\}$ of \mathscr{G} and let $\{\omega_1, \ldots, \omega_p\}$ be the coframe of (M, \mathscr{F}) associated to the dual basis B^* of \mathscr{G}^* as in 2.5. As G is abelian the above coframe is invariant under the action H. For each k-tuple $I = (i_1, \ldots, i_k)$ of integers $1 \le i_1 < \cdots < i_k \le p$ we have the k-forms $\omega_I = \omega_{i_1} \land \ldots \land \omega_{i_k}$ which give an invariant basis of the $C^{\infty}(M)$ -module $\Lambda^k(\mathscr{F})$. We consider the c^0 -norm on $\Lambda^k(\mathscr{F})$ given by

$$|\xi|_0 = \sum_I |h_I|_0$$
 if $\xi = \sum_I h_I \omega_I$ and $|h_I|_0 = \sup_{x \in M} |h_I(x)|$.

3.1. LEMMA. Let $H: \mathbb{R}^p \to Aut(\tau)$ be the canonical action of the suspension foliated bundle of an action φ of \mathbb{Z}^p into a closed orientable manifold F. Then the Birkhoff sums $B_n(H)$ are uniformly bounded i.e., $|B_n(H) \cdot \xi|_0 \le |\xi|_0$ for every $n \in \mathbb{Z}_+$ and $\xi \in \Lambda^j(\mathcal{F}), 0 \le j \le p$.

Proof. Since the ω_I are invariant under H, then

$$B_n(H) \cdot \xi = \sum_I (B_n(H) \cdot h_I) \omega_I.$$
(3.3)

Now, $|B_n(H) \cdot h_I|_0 \le |h_I|_0$ implies that $|B_n(H) \cdot \xi|_0 \le \sum_I |h_I|_0 = |\xi|_0$.

A Borel probability measure μ on F is *invariant* under an action $\varphi: \Gamma \to \text{Diff}(F)$ if $\mu(\varphi_{\gamma}(X)) = \mu(X)$ for every Borel set $X \subset F$. In this case we say that (F, φ, μ) is a *measured* action. If Γ has polynomial growth then every action $\varphi: \Gamma \to \text{Diff}(F)$ has an invariant measure. The ergodic property of the holonomy action φ which enables us to show the vanishing of the characteristic mapping of a foliated bundle is the following.

3.2 Definition. Let φ be an action of Z^p on a Borel measure space (F, μ) . The action φ is an *E*-action if it has the following properties

- (i) μ is invariant under φ
- (ii) for every continuous function h: $F \to R$ the Birkhoff sums $B_n(\varphi) \cdot h$ converge pointwise to $\mu(h)$ for *m*-almost all $x \in F$, *m* being a Lebesgue measure on *F*.

We give some relevant examples of E-actions.

Examples.

3.3. An action $\varphi: \mathbb{Z}^p \to \text{Diff}(F)$ is uniquely ergodic if it has a unique invariant probability measure. Unique ergodicity is equivalent to the uniform convergence of the sums $B_n(\varphi) \cdot h$ to $\mu(h)$ for every $h \in C^0(F)$, [11]. Thus a uniquely ergodic action is an *E*-action.

3.4. A measured action (F, φ, μ) is ergodic if every invariant Borel set have either μ measure 0 or 1. The measure μ is absolutely continuous with full support if $\mu = hm$ where m is a Lebesgue measure on F and h is a non-vanishing m-a.e. L^1 -function. If the action φ : $Z^{p} \rightarrow \text{Diff}(F)$ is ergodic and μ is absolutely continous with full support then by the Pointwise Ergodic Theorem [10] the Birkhoff sums $B_n(\varphi) \cdot h, h \in L^1(F)$ converge in L^1 and pointwise to $\mu(h)$ for m-almost all $x \in F$. Thus φ is an E-action.

3.5. The ergodic theory of Anosov diffeomorphisms [6] gives important examples of *E*-actions. In fact, if $\varphi: \mathbb{Z}^p \to \text{Diff}(F)$ is generated by iterates of a transitive \mathbb{C}^2 Anosov diffeomorphism then by a theorem of Y. Sinai [21], φ is an *E*-action. Among the \mathbb{C}^2 Anosov diffeomorphism the ones that do not admit an invariant absolutely continuous measure μ form a dense open subset, see [6]. We also observe that there is a dense open subset of Anosov diffeomorphisms of the torus T^q with trivial centralizer i.e., diffeomorphisms commuting only with integer powers of themselves. This is a result of J. Palis and J. Yoccoz in [17].

3.6. An *E*-action may have a singular invariant measure. If φ is a C^1 diffeomorphisms of the circle S^1 with only one fixed point and no periodic points then φ is uniquely ergodic and the invariant probability measure is concentrated at the fixed point. Now if $\varphi: S^1 \to S^1$ has two fixed points, a sink and a source, and μ is the invariant probability measure concentrated at the sink, then the action of Z generated by φ is an *E*-action. Observe that this action is ergodic but not uniquely ergodic.

3.7. LEMMA. Let $\varphi: \mathbb{Z}^p \to \text{Diff}(F)$ be an E-action and $H: \mathbb{R}^p \to Aut(\tau)$ the canonical action of the suspension foliated bundle τ of φ . Then for every $\xi \in \Lambda(\mathcal{F})$, the Birkhoff sums $B_n(H) \cdot \xi$ converge both L^1 and pointwise to the averaged basic form $P_{\mu}(\xi)$ for v-almost all x in M where v is a Lebesgue measure in M.

Proof. Consider the invariant measure $dx \times \mu$ an $R^p \times F$ where dx is the Lebesgue measure of R^p and let λ be the quotient measure on M. Thus λ is invariant under the action

 $H: \mathbb{Z}^p \to \operatorname{Aut}(\tau)$. As the canonical coframe of (M, \mathscr{F}) induced by the canonical coframe $\{dx_1, \ldots, dx_p\}$ of \mathbb{R}^p is invariant under H then by (3.3) it is sufficient to consider the case $h \in \Lambda^0(\mathscr{F})$. By the Pointwise Ergodic Theorem, [10] the averages $B_n(H) \cdot h$ converge both L^1 and pointwise λ -a.e to an H-invariant L^1 -function h^* . Now since φ is an E-action, it follows that $(B_n(H)h)(x, y) = (B_n(\varphi)h_x)(y), h_x(y) = h(x, y)$ for the suspended function on $\mathbb{R}^p \times F$ and $B_n(\varphi)h_x \to \mu(h_x)m$ -a.c on F for every $x \in \mathbb{R}^p$, thus $h^* = P_{\mu}(h)$ and $B_n(H) \cdot h$ converge pointwise to $P_{\mu}(h) v$ -a.e. on M.

Now we prove the main theorem of this paper.

3.8 THEOREM. Let $F \to (M, \mathscr{F}) \xrightarrow{\tau} T^p$ be the suspension foliated bundle of an action φ of Z^p on a closed connected q-manifold F. If $\varphi: Z^p \to Diff(F)$ is an E-action, then the characteristic mapping

$$\alpha: H^1(\mathscr{F}) \times \ldots \times H^1(\mathscr{F}) \to H^{2q+1}(M)$$

vanishes.

The idea of the proof is to show that for any leafwise 1-class $\overline{\xi}$ the averaging operator $B_n(H)$ does not change the leafwise cohomology class of ξ , Lemma 2.4, so does not change the characteristic pairing $\chi: H^1(\mathscr{F}) \times H^j(M; \mathscr{F}) \to H^{j+1}(M)$ i.e., the cohomology classes of ξ and $B_n(H) \cdot \xi$ give the same operator $H^j(M; \mathscr{F}) \to H^{j+1}(M, \mathscr{F})$. This is similar to Duminy's ideas for Godbillon-Vey class, [9].

The cohomology calculation 2.1 shows that the averaged form $P_{\mu}(\xi)$ is a closed basic form, so by the general vanishing property of the characteristic pairing, Lemma 1.1, ii, the leafwise class of $P_{\mu}(\xi)$ yields a zero pairing. Since the averages $B_{n}(H) \cdot \xi$ converge pointwise v-a.e. to $P_{\mu}(\xi)$, v a Lebesgue measure on M, and the sequence $B_{n}(H)$ is uniformly bounded (Lemmas 3.1 and 3.7), the Dominated Convergence Theorem applies giving the vanishing of α . This is similar to the method of Hurder in [15].

We now give a formal proof.

Proof of 3.8. Let ξ_1, \ldots, ξ_{q+1} be d_f -closed 1-forms on (M, \mathcal{F}) and $\eta = \xi_2 \wedge d\xi_3 \wedge \ldots \wedge d\xi_{q+1}$. Thus $d\eta$ is a closed 2q-form whose cohomology class $\langle d\eta \rangle$ in $H^{2q}(M, \mathcal{F})$ is not necessarily trivial. As we observed in (1.5) the characteristic mapping is given by

$$\alpha(\overline{\xi}_1,\ldots,\overline{\xi}_{q+1}) = \chi_{2q}(\overline{\xi}_1) \cdot \langle d\eta \rangle = [\xi_1 \wedge d\eta].$$
(3.4)

Now, as in Lemma 2.4, the action $H^*: \mathbb{Z}^p \to \operatorname{Aut}(H^1(\mathscr{F}))$ is trivial, so the averaging operators $B_n(H)$ do not change the leafwise class of ξ_1 and therefore

$$\alpha(\overline{\xi}_1,\ldots,\overline{\xi}_{q+1}) = [B_n(H)\cdot\xi_1 \wedge d\eta]$$
(3.5)

for every positive integer *n*. To apply the Poincaré duality theorem to conclude that $\xi_1 \wedge d\eta$ is zero in the de Rham cohomology we observe that (3.4) and (3.5) give

$$\int_{\mathcal{M}} \xi_1 \wedge d\eta \wedge \omega = \int_{\mathcal{M}} B_n(H) \cdot \xi_1 \wedge d(\eta \wedge \omega)$$
(3.6)

for every closed (p - q - 1)-form ω on M and every positive integer n. As $\varphi: \mathbb{Z}^p \to \text{Diff}(F)$ is an *E-action*, then, by Lemma 3.7, the sequence $B_n(H) \cdot \xi_1$ converges both L^1 and pointwise v-a.e. to the averaged closed form $P_{\mu}(\xi)$. Now, by Lemma 3.1 the convergence is dominated, hence the Lebesgue dominated convergence theorem applies to (3.6), showing that

$$\int_{\mathcal{M}} \xi_1 \wedge d\eta \wedge \omega = \int_{\mathcal{M}} P_{\mu}(\xi_1) \wedge d\eta \wedge \omega.$$

The last integral is zero since $P_{\mu}(\xi_1)$ is a closed form. This shows that the characteristic mapping α vanishes.

As a consequence of Theorem 3.8 we obtain the following generalization of a theorem of M. Herman [14].

3.9 COROLLARY. The characteristic mapping of a C^2 -foliation by planes of T^3 vanishes.

Proof. If (T^3, \mathcal{F}) is a C^2 -foliation by planes then by a theorem of H. Rosenberg and \mathbb{R} . Roussarie in [19] it is suspension of a uniquely ergodic action $\varphi: \mathbb{Z}^2 \to \text{Diff}(S^1)$. Thus by Theorem 3.8 the characteristic mapping $\alpha: H^1(\mathcal{F}) \times H^1(\mathcal{F}) \to H^3(M) = \mathbb{R}$ vanishes.

3.10. There is an analogue of Theorem 3.8 for actions of finitely generated nilpotent groups [20].

3.11. We observe that the operators $B_n(H)$ do not change the leafwise cohomology class of a d_f -closed form ξ but that the class of the averaged form $P_{\mu}(\xi)$ may change even if $B_n(H) \cdot \xi$ converge to $P_{\mu}(\xi)$ in the C^{∞} topology. In fact, for Liouville linear foliations of T^m , the kernel of P_{μ} is non trivial in leafwise cohomology, see [4].

4. THE COMPACT ORBIT THEOREM

In this section, as an application of Theorem 3.8 and a previous theorem of the authors in [1] we prove a theorem that relates the non-degeneracy of the characteristic mapping of a non-singular action of R^2 on a 3-manifold M with the existence and stability of compact orbits. Let $A'(R^2, M)$ be the space of all C' non-singular actions of R^2 on $M, r \ge 2$.

4.1. THEOREM. Let M be a closed orientable connected 3-manifold and $A \in A^r(\mathbb{R}^2, M)$. If the characteristic mapping

$$\alpha_A \colon R^2 \times R^2 \to H^3(M) = R$$

of A is non-degenerate, then

- (i) A has a compact orbit;
- (ii) There exists a neighborhood $V \subset A^r(R^2, M)$ of A in the C¹ topology such that every action in V has a compact orbit.

Actually, if $M = T^3$ then (i) and (ii) hold if $\alpha_A \neq 0$.

Proof. Assume A has no compact orbit. Then by Theorem 2 in [8] all the orbits are either planes or cylinders but there is no mixture of the two and every orbit is dense. If all the orbits are planes then M is diffeomorphic to T^3 and by Corollary 3.9 α_A vanishes. Assume every orbit is a dense cylinder. Fix an orbit L and a point x in L. Let X_1 and X_2 be the infinitesimal generators of A. There exist constains c_1 and c_2 such that the orbit of the vector field $E = c_1 X_1 + c_2 X_2$ through x will be closed with minimal period 1, and so will be the orbit of any point of L, and therefore the orbit or every point of M, since L is dense. Thus E defines a free action of S¹ on M and clearly A is a linear reparameterization of an action of the cylinder S¹ × R on M. Now by Corollary 2.2, of [3] α_A is degenerate. Actually if $M = T^3$, then $\alpha_A = 0$. Therefore A has a compact orbit. Part (ii) follows from (i) and the continuity of the characteristic mapping $A \rightarrow \alpha_A$ in the C¹ topology, [[1], 1.11]. Acknowledgements—We thank the referee for detailed comments on an earlier version of this paper, which allowed us to make a number of improvements and to M. Craizer for useful conversations on ergodic theory.

REFERENCES

- 1. J. L. ARRAUT and N. M. DOS SANTOS: Actions of R^P on closed manifolds, Topology Appl. 29 (1988), 41-54.
- 2. J. L. ARRAUT and N. M. DOS SANTOS: Differentiable conjugation of actions of R^P, Bol. Soc. Brasil. Mat. 19 (1988), 1-19.
- 3. J. L. ARRAUT and N. M. DOS SANTOS: Actions of cylinders, Topology Appl. 36 (1990) 57-71.
- 4. J. L. ARRAUT and N. M. DOS SANTOS: Linear foliations of Tⁿ, Bol. Soc. Brasil. Mat. 21 (1991), 189-204.
- 5. C. BENSON and G. RATCLIFF: An invariant for unitary representations of nilpotent Lie groups, Michigan Math. Journal. 34 (1987), 23-30.
- 6. R. BOWEN: Equilibrium states and the ergodic theory of Anosov Diffeomorphisms, Springer Lect. Notes in Math. 470 (1975).
- 7. R. BOWEN: Weak mixing and unique ergodicity on homogeneous spaces, Israel J. Math. 23 (1979), 337-342.
- 8. G. CHATELET, H. ROSENBERG and D. WEIL: A classificaton of topological types of R²-actions on closed orientable 3-manifolds, *IHES* 43 (1973), 261-272.
- 9. G. DUMINY: L'invariant de Godbillon-Vey d'un feuilletage se localise sur les feuilles ressort, preprint Lille (1982).
- 10. W. EMERSON: The pointwise ergodic theorem for amenable groups, Am. J. Math. 96 (1974), 472-487.
- 11. H. FURSTENBERG: Strict ergodicity and transformations of the torus Am. J. Math. 83 (1961), 573-601.
- 12. A. HAEFLIGER: Homotopy and integrability, Springer Lect. Notes in Math. 197 (1971), 133-163.
- 13. J. HEITSCH and S. HURDER: Secondary classes, Weil measures and the geometry of foliations, J. Diff. Geom. 20
- (1984), 291-309.
 14. M. HERMAN: The Godbillon-Vey invariant of foliations by planes of T³, Springer Lect. Notes in Math. 597 (1977), 294-307.
- 15. S. HURDER: The Godbillon measure for amenable foliations, J. Diff. Geom. 23 (1986), 347-365.
- 16. A. El KACIMI-ALAOUI: Sur la cohomologie feuilletée, Compositio Math. 49 (1983), 195-215.
- 17. J. PALIS and J. C. YOCCOZ: Centralizers of Anosov diffeomorphisms on Tori, Ann. Scient. Ec. Norm. Sup. 22 (1989), 99-108.
- 18. B. L. REINHART: Harmonic integrals on almost product manifolds, Transactions of the Amer. Math. Soc., 88 (1958), 243-276..
- 19. H. ROSENBERG and R. ROUSSARIE: Topological equivalence of Reeb foliations, Topology 9 (1970), 231-242.
- 20. N. M. DOS SANTOS: Foliated cohomology and Characteristic classes, to appear.
- 21. YA SINAI: Markov partitions and C-diffeomorphisms, Func. Anal. and its Appl. 2 (1968), 64-89.

PUC-RIO, Mathematics, Rua Margues de Sao Vicente 225

Rio de Janeiro 22453 Brazil