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INTRODUCTION 

LET 9 denote a p-dimensional smooth foliation of a closed, orientable, connected m- 
manifold M and H’(9) the first cohomology group of the foliated manifold (M, 9). To the 
pair (M, 9) we associate a symmetric (q + I)-linear mapping a of H’(9) into the real 
cohomology group H*“+‘(M), q = m - p, called the characteristic mapping of the foliated 
manifold. In 1.3 we discuss the relation between the characteristic mapping and previous 
work on the Godbillon-Vey class, and especially the Godbillon operators and measures. In 
1.5 we associate to each locally free smooth action A of a Lie group G on M a (q + l)-linear 
symmetric mapping aA of the first cohomology group H’(Y) of the Lie algebra Y of G into 
the real cohomology group H 2q+ l(M). The mapping a,, is called the characteristic mapping 
of A. In this paper we study a when M is the total space of a fiber bundle F -, M LTp and 
9 is a foliation of M transverse to the fibers of T. 9 is therefore a suspension foliation of an 
action cp: ZP -, diff(F). In Section 3 we identify ergodic properties of cp that imply the 
vanishing of a. The action cp is said to be an E-action if it leaves invariant a Bore1 probability 
measure I( on F and for every continuous function h: F + R the Birkhoff sums B,(cp)*h 
converge pointwise to p(h) for m-almost all x E F where m is a Lebesgue measure on F. We 
give some important examples of E-actions. The main theorem of the paper is 

3.8. THEOREM. Let F -+ (M, 9) LTp be the suspensionfoliated bundle of an action cp of 
ZPon a closed connected q-manifold F. If q~ is an E-action then the characteristic mapping a of 
(M, 9) oanishes. 

We obtain in particular the following generalization of a theorem of M. Herman, [14]. 

3.9 COROLLARY. The characteristic mapping of a C* foliation by planes of T3 vanishes. 

As an application of 3.8 and a previous theorem of the authors in Cl] we obtain 

4.1 THEOREM. Let A be a C* locally free action of R* on a closed connected orientable 
3-mani/old M. If the characteristic mapping 

a,,: R* x R* + H3(M) = R 
of A is non-degenerate, then 

(i) A has a compact orbit; 
(ii) there is u neighbourhood V of A in the C’ topology such that eoery action in V has 

a compact orbit. 

In case M = T3 the hypothesis is in fact weaker, namely: (i) and (ii) hold if aA # 0. 

545 
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1. THE CHARACI-ERISTIC MAPPING OF A FOLIATION 

In Cl] we associate to each non-singular C’, r 2 2 action A of RP on a closed orientable 
connected m-manifold M a (q + l)-linear symmetric mapping a,, of RP into the real 
cohomology group Hzq+ ’ (M), q = m - p. We called xA the characteristic mapping of A. The 
foliated cohomology introduced by B. L. Reinhart in [18] appears naturally in the study of 
actions [Z]. Using this cohomology we present here a generalization to foliations of the 
characteristic mapping. This also directly genaralizes a construction of C. Benson and G. 
Ratcliff for actions of simply connected nilpotent Lie groups, [S]. Our construction is 
a natural generalization of the Godbillon-Vey invariant of a foliation and of Duminy’s 
Godbillon operator. For a foliation 9 of subexponential growth all residual secondary 
characteristic classes vanish whereas the characteristic mapping will in general not vanish. 
See 1.2 and [Cl], 1.51 for more examples. 

Let 9 be a p-dimensional foliation of M and A(M) the graded algebra of all C” 
differential forms on M. If Z(9) c A(M) is the annihilating ideal of 9, then 

1(9p+’ = 0 (1.1) 

q = m - p being the codimension of 9. Thus A(S) = A(M)/1(9) is a graded algebra, 
called the algebra of diffrrential forms along 9. 

The elementsof A’(9) may be thought of as sections of the j-th exterior power of the dual 
bundle of the tangent bundle T.9 of 9. Since df (9) c I(F) the differential d: A(M) + A(M) 
induces the foliated differential d,: A(9) -+ A(S). The kernel Z(9) of d, is the set of 
d+losed forms and the image B(9) of d, is the set of d/-exact forms. The cohomology 
H*(9) of the differential complex (A(9), (I/) is the cohomology of the foliated mani/old 
(M, 9). This is a natural generalization to foliations of the de Rham cohomology. Let 
K: A(M) -+ A(S) be the canonical projection. We say that <E A’(M) is cl/-closed if dr E l(9) 
which is equivalent to rr({)oZ’(.P) and we denote by B the cohomology class of n(r) in 
H’(S). Z(M) and B(M) denote, as usual, the kernel and image of d: A(M)-rA(M), 
respectively. [<I denotes the de Rham class of <cZ(M). 

1.1 LEMMA. Let (1 be d/-closed l-forms, j = 1, . . . , q + I and o = {I A dt, A . . . A 

4 q+l. Then 

(i) w is a closed (2q + l)-form on M; 

(ii) w is exact if r l is closed; 
(iii) w is exact if some n(<J) is d/-exact. 

PrOOf: (i) Since dr,EI(F), j = 1, . , , , q + 1 the result follows from (1.1). 

(ii) note that w = - d(<, A & A dt3 A . . . A dr,+,). 

(iii) we may assume, after a permutation of indexes, that I = n(dh) for some C” 
function h: M -. R. Thus 5, - dh El(S) which by (1.1) implies that o = 
d(hd& A . . . A df,+ ,). proving the lemma. 

By the above lemma there exists a well defined (q + l)-linear symmetric mapping 

a: H’(S) x * * * x H’(S) + Hzq+‘(M) (1.2) 

given by a(c,, . . . , fq+,)= [f, A dt2 A . . . A d{,+ 1], called the characteristic mapping 
of the foliated manifold (M, 9). 

1.2. Example. Let T2 + T’ LT’, t(x,,x 2, x3) = x3, be the canonical fibration of T3 
over T’ and 9 be the foliation given by the fibers of r. Choose any two functionsfand g in 
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P(T’) such that j,,fdg # 0. The l-forms <r =(pr)dxr and SZ =(gor)dx2 are 
d/closed and 

Thus the characteristic mapping a of (T3, 9) does not vanish. 

1.3. We now describe the relation between the characteristic mapping and the Godbil- 
lon operator as defined in codimension 1 by G. Duminy in [9] and generalized by J. Heitsch 
and S. Hurder in [13]. 

Since d1(9)q c l(.F)l it follows that (1(9)q, d) is a differential complex whose cohomol- 
ogy is denoted by H*(M, 9). We denote by (0) the cohomology class in H’(M, 9) of 
a closed j-form in 1(9)q. For each j, q 15 j I; m - 1 there is a well defined pairing 

Xl 
H’(F)xH’(M,F)- H’+‘(M 9) 9 (1.3) 

given by x,(c)*(0) = [t A 01. To see that x1 is well-defined just observe that if ~(5) = Ic(d$, 

then t A 0 = d(q A 0) and if 8 = dw, CUE f(.Fy, then 5 A 0 = - d(t A co). Let R be an 
integrable C”q-form defining a foliation 9. Then there exists a C” l-form 1 on M such that 
dQ = L A R. Clearly I is d,-closed and defines the Reeb class XE H’(9) of F”. 

The class a& . . . , x) = [A A (dL)l] in H 2q+ ‘(M) is the Godbillon-Vey inoariunr of 9. 
The Godbillon operators are the linear mappings 

g: H’(M t 9) + H’+‘(M 9 9) (1.4) 

given by q((0)) = xJ(x)’ (o), q S j I; m - 1. For j = m - 1 we actually have for each Bore1 
saturated set B c M i.e., B is a union of leaves of 9 a well defined linear functional 

qB: H”-‘(M, 9) + R, g&O)) = 
s 

1 A 8. 
B 

The mapping B + gB is a vectorial measure on the a-algebra generated by the saturated 
Bore1 sets of (M, 9) and is called the Godbillon measure of 9. 

The characteristic mapping a is given by 

a(fr, . . . 9 fq+,) = xzq(&)*<dh A . . . A dt,+,). (1.5) 

1.4 Example. Let A: RP x M 4 M be a C” locally free action, 9 its underlying foliation 
and X = {X,, . . . , X,} the frame of infinitesimal generators of A. Let 5 = {<r, . . . , t,} 

be a coframe adapted to A, i.e., & are C” l-forms on M such that <,(XJ) = b,, 1 s i, 
j 5 p. Since the vector fields XI pairwise commute, the l-forms 5, are d/-closed, [l]. Thus 
they define p linearly independent classes z = {f,;, . . . , fp} in H’(F). This gives a repres- 
entation iA : RP -* H’(S) defined by iA(xl, . . . , xp) = x,tl + . . . + xpFp. 
The (q + l)-linear symmetric mapping aA: RP x . . . x RP + Hzq+‘(M) given by a,, = i;a 
was called in [l] the characteristic mapping of A. It was proved in [l] that aA does not 
depend on the choice of the adapted coframe c of A. 

1.5 Example. More generally, let A: G x M + M be a locally free smooth action of a Lie 
group G on M. Associated to A we have.a natural injection E -. J? of the Lie algebra 3 of 
G into the Lie algebra of all smooth tangent vector fields of the underlying foliation 9 of A. 
This injection is given by f?(x) = DA,(O) * E, XE M where as usual A,: G + M, 
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A,(g) = A(g, x). Dually, we have a natural injection w -, o’ of the Lie algebra AR@‘) of the 
invariant forms on G into the algebra A(9) of smooth forms along 9. To see this, choose 
a normal bundle Y to the tangent bundle T.9 of 9. Consider the linear mapping 
Y*+Al(M), w--,0” where o” is the l-form defined by o”(I?) = o(E) if EEY and 
v c kerw’. If r is another normal bundle, then w” - w’ belongs to I(9). Thus we have 
a well defined injective linear mapping w + o’ = n(o”) of Q* into A’(S). This mapping 
extends to an injective homomorphism 

A;(S*) + A*(S) (1.6) 

which commutes with the differentials i.e. d,-u’ = (dw)’ and depends only on the action 
A and induces an injective representation 

i,: H*(Y) + H*(9) (1.7) 

of the cohomology of the Lie algebra 9 of G into the cohomology of the foliated manifold 
(M, 9). The (q + I)-linear symmetric mapping 

aA: H’(9) x * * * x H’(9)-+ Zfz4+l(M) (1.8) 

given by a,, = i:a is called the characreristic mapping of A. 

2. ON THE COHOMOLOGY OF FOLIATED BUNDLES 

Let B and F be closed orientable connected C’ manifolds, r 2 2 and 

q: rrr(B) + Dig”(F) (2.1) 

be an action. 

The filiated bundle F + (M, 9) L B suspension of ~0 is constructed as follows: Let 

p:B + B be the universal covering of B and x0 E B. Associated to cp there is an action 

Q x1 (I?, x0) -P Diff@x F) (2.2) 

given by @tYl (a, y) = ([y] * 2, (~6: (y)) where [y] * .? denotes the image of 2 by the deck 
transformation of B’corresponding to the homotopy class [y] of nl(B, x0). The orbit space 

M of Q, is a manifold and actually we have a fiber bundle F + M -!+ B. Every object of B x F 

which is invariant under 0 induces a corresponding object on M. To the natural foliation 
defined by the projection Bx F -+ F, which is invariant under CD, corresponds the foliation 
9 on M which is transverse to the fibers of T. We think of A(S) as the set of differential 
forms along the natural foliation B x y, y E F which are invariant under 0,. The image of r* : 
A(B) + A(M) is called the space of basicforms. 

To each probability measure p on F which is invariant under cp: IL~(B, x0) -, Diff(F) we 
associate an epimorphism of differential complexes 

P,: A(9) + A(B) (2.3) 

called the aoeraging operator i.e., P, is a continuous surjective linear mapping which 
commutes with the differentials: P, 0 d, = d 0 P,. If h E A’(S), then the function 

is basic since it is invariant under all the deck transformations of p. If r*o is a basic form, we 

let P,(r*w) = w. Let {(a’.; a)}.SA be an atlas of B and (da,,. . ., da,) be the coframe 
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associated to the chart a. Let {A,} be a C” partition of unit subordinate to the cover {%#I. If 
5 EA’(~), then 5 = z (‘& (Ir=oT)fP5*dai) where, as usual, I = (it < - * - < ik), 1 5 i, I p 
anddz,=dli, A . . . A daa. We define P,(t) by 

> 

. (2.5) 

A routine verification shows that P, is well defined i.e., does not depend on the choice of 
the atlas and the partition of unit, and commutes with the differentials. 

The split short exact sequence of differential complexes 

O+ker+A*(9) 2 A*(B)-+0 

gives the split short exact cohomology sequences 

0 s 1 S p. Thus 

0 + H’(ker) + H’(9) + H’(B) -, 0 

(2.6) 

(2.7) 

2.1: H’(9) = H’(B)$H’(ker) for 0 5 j s p. 

Now let G be a connected Lie group and T be a discrete cocompact subgroup of G i.e., 
the right coset space B = G/T is a compact manifold. Each right translation R,:G + G 
induces a diffeomorphism Rt : f3 + E. Let E E Q be a left invariant vector field on G and 

a: R x G -, G its flow. Thus Lx0 a, = aI0 L, and a,(x) = RattC, (x). The restriction of the right 
R 

action G x G -, G to the l-parameter subgroup u,(e) is the flow of E. The right action 

RO 

R induces a right action G x B + f? and the restriction to the subgroup u,(e) gives a flow on 

B. Let E. be the corresponding vector field on B. Thus we have an injective homomorphism 
of the Lie algebra S into the Lie algebra S(B) of all C” vector fields on B. Let 90 be its 

image. Associated to a left action r L DifT(F) we have a left action 

r 5 Di!T(G x F) (2.8) 

given by U$(x, y) = (yx. ‘p;’ b)), YE T. The orbit space M = G x F/r is a manifold and we 

have a foliated bundle F -+ (M, 9) : B. Each right translation R, gives an automorphism 

Hz of T i.e. Hz: (M, 9) 4 (M, 9) preserves the leaves of 9 and TO H, = Rzo T. 

Each vector field E ~99 may be thought as a vector field on G x F tangent to the first 
factor. Since it is invariant by the action 0 it induces a vector field E tangent to the leaves of 
FandinfactE=p*(E)andr,,!?= Eowherep:GxF + M is the projection. Thus we have 
an action 

H: G --* Aut(r) (2.9) 

of G as automorphisms of the foliated bundle T, called the canonical action of T. The 
restriction of H to r gives an action 

. 
I- 5 Aut(H*(9)) (2.10) 

of T on H*(9). 

The foliated cohomology H’(9) is not invariant by homotopy but it is invariant by 
integrable homotopy, a concept introduced by A. Haefliger in [12]. 
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2.2. Definition. Letfand g be two mappings of the foliated manifold (M, F) into the 
foliated manifold (M’, 9’) sending leaves of 9 into leaves of 9’; morphisms of foliated 
manifolds. They are integrably homotopic if there is a mapping 

p:(M x R, 9 x R) -+ (M’, 9’) 

sending the leaves of 9 x R into the leaves of 9’ and such that 

p(x, t) =f(x) for t 5 0 and p(x, t) = g(x) for r 2 1. 

The following is well-known and a proof may be found in [16]. 

2.3 PROPOSITION. Let f; g: (M, 9) + (M’, 9’) be two morphisms of foliated manifolds. If 
f is integrably homotopic to g then f* = g*:H*(9) + H*(9’). 

2.4. LEMMA. The action H*: r + Aut(H*(9)) is trioial i.e., Hf = id for all YE r. 

Proof: By 2.3 it suffices to show that each H, is integrably homotopic to the identity. 
Choose any smooth curve c: R --* G such that c(t) = y for r 5 0 and c(t) = e for t 2 1. The 
mapping 

p:(MxR,9xR)+(M,9) 

given by p(x, t) = H(c(t), x) is the desired homotopy. 

2.5 Remark. The representation i ,,: H*(9) -+ H*(9) associated to the canonical action 
H 

G + Aut(r) as in (1.7) is actually given by closed forms on M. In fact, each closed invariant 
form u on G induces a closed form w. on B and in sends the cohomology class of w, in 
H*(9) into the cohomology class of r+oo in H*(9) and r*oo is closed in M. Thus to each 
basis of (8* corresponds a closed coframe of (M, Y). 

2.6 PROPOSITION. Let F -+ (M, 9) : B be the suspension foliated bundle defined by the 
action of a discrete cocompact subgroup r of a connected Lie group G on a mantfuld F. Then 
the characteristic mapping vanishes on 

(in H*(9)) x H*(9) x . . . x H*(9). 

Here H: G + Aut(r) is the canonical action of r. 

Proof Follows from the above remark and Lemma 1.1, (ii). 
Roussarie’s example shows that in the above Propositon it is crucial to have the foliation 

transverse to a fibration over the group G modulo a cocompact lattice. We recall this 
example. 

2.7 Example (Roussarie). Let G = SL(2; R) and T be any discrete cocompact subgroup 
of G. The Lie algebra 4e of G is the space of matrices of zero trace and is generated by the 
matrices 

X=(i _y), Y=(ii) and Z=(y i). 
Clearly 

[X, Y] =2Y, [Y,Z] =X and [X,Z] = -22. 
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Thus, the dual base {t. q. C} satisfies the relations d{ = - q A C, dq = - 25 A q and 
dc = 2< A C. Hence C is an integrable l-form on G. Let Ye be the corresponding Lie algebra 
on M = G/T. The isomorphism Y + YO gives an isomorphism Y* -+ ‘98 and we also denote 
by t. q and C the corresponding l-forms on M. The foliation 9 on M given by [ is the 
underlying foliation of the action of the solvable group T of triangular matrices in SL(2; R) 
acting by right translations on M. The cohomology group H’ (t) of the Lie algebra t of T is 
generated by the l-form 5 which is closed in T (t is generated by X and Y). As 
{Ad<= - 4< A q A C we see that [t A dc] # 0. So the characteristic mapping of 9 does 
not vanishes on (irrH*(t)) x H’(9). We also remark that 9 has no holonomy invariant 
transverse measures since T is not unimodular. This follows from a theorem of Bowen [7]. 

3. ERGODICITY AND THE VANISHING OF THE CHARACTERISTIC MAPPING 

In this section we prove a theorem that relates the vanishing of the characteristic 
mapping of a foliated bundle with ergodic properties of its holonomy action. 

Let, as before, G be a connected Lie group and r a discrete cocompact subgroup of G. 
To each left action cp: r + Diff(F) there corresponds the suspension foliated bundle 

F + (M, 9) L B with the homogeneous space B = G/T as base-space (see (2.9)). The 

canonical action H:G -+Aut(r) induces an action H+:T-Aut(H*(S)) as in (2.10). We 
restrict ourselves to the case G = RP and r = ZP.In this case, as G is abelian the action 
H leaves invariant the closed basic forms r*we, as remarked in 2.5. 

Now, we consider ergodic averages associated to forms ( in A’(S), 0 <j 5 p. Let 
J, = {0, 1, . . . , n} and U, = J.P, noZ+ be the standard summing sequences of Zp. We 
consider the Birkhoff sums 

Bn(H)-t = L 1 H:W 
(n + 1)P v.U” 

(3.1) 

and 

(3.2) 

heC’(F). 
Choose a basis B = {E, , . , . , EP} of Y and let {wi, . . . , co,} be the coframe of (M, 9) 

associated to the dual basis B* of 9* as in 2.5. As G is abelian the above coframe is invariant 
under the action H. For each k-tuple I = (il, . . . , ik) of integers 1 I, i, < * - * < ik 5 p we 
have the &-forms or = oi, A . . . A oik which give an invariant basis of the C”(M)-module 
A’(S). We consider the co-norm on A’(9) given by 

3.1. LEMMA, Let H: RP + AU(T) be the canonical action ofthe suspension foliated bundle 
of an acrion q~ of Zp into a closed orientable manifold F. Then the Birkhoff sums B,(H) are 
uniJormly bounded i.e., I B,(H) * <lo 5 I< lo fir every n E Z + and 5 E A’(F), 0 5 j 5 p. 

Prooj Since the of are invariant under H, then 

Now, IB.(H)*h,lo < lh,lo implies that IB,(W*CIO I; ~,Ihlo = Itlo. 

(3.3) 

TW 31:3-H 
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A Bore1 probability measure p on F is invariant under an action cp: r + Diff(F) if 
p(cp,(X)) = p(X) for every Bore1 set X c F. In this case we say that (F, cp, p) is a measured 
action. If r has polynomial growth then every action cp: r + Diff(F) has an invariant 
measure. The ergodic property of the holonomy action cp which enables us to show the 
vanishing of the characteristic mapping of a foliated bundle is the following. 

3.2 Definition. Let cp be an action of Zp on a Bore1 measure space (F, p). The action cp is 
an E-action if it has the following properties 

(i) p is invariant under cp 
(ii) for every continuous function h: F + R the Birkhoff sums B,(q) - h converge point- 

wise to p(h) for m-almost all XE F, m being a Lebesgue measure on F. 

We give some relevant examples of E-actions. 

Examples. 

3.3. An action 40 : Zp + Diff(F) is uniquely ergo&c if it has a unique invariant probability 
measure. Unique ergodicity is equivalent to the uniform convergence of the sums f?,,(cp)*h to 
p(h) for every ho Co(F), [l 1-J. Thus a uniquely ergodic action is an E-acrion. 

3.4. A measured action (F, cp, p) is ergodic if every invariant Bore1 set have either p- 
measure 0 or 1. The measure p is absolutely continuous wirhjidl supporr if p = hm where m is 
a Lebesgue measure on F and h is a non-vanishing m-a.e. El-function. If the action cp: 
Zp + DifT(F) is ergodic and ~1 is absolutely continous with full support then by the 
Pointwise Ergodic Theorem [IO] the Birkhoff sums B,(cp)* h, h E L,’ (F) converge in L’ and 
pointwise to p(h) for m-almost all XE F. Thus cp is an E-action. 

3.5. The ergodic theory of Anosov diffeomorphisms [6] gives important examples of 
E-actions. In fact, if cp: Zp + Diff(F) is generated by iterates of a transitive C2 Anosov 
diffeomorphism then by a theorem of Y. Sinai [21], cp is an E-action. Among the C* Anosov 
diffeomorphism the ones that do not admit an invariant absolutely continuous measure 
p form a dense open subset, see [6]. We also observe that there is a dense open subset of 
Anosov diffeomorphisms of the torus Tq with trivial centralizer i.e., diffeomorphisms 
commuting only with integer powers of themselves. This is a result of J. Palis and J. Yoccoz 
in [17]. 

3.6. An E-action may have a singular invariant measure. If cp is a C’ diffeomorphisms of 
the circle S’ with only one fixed point and no periodic points then cp is uniquely ergodic and 
the invariant probability measure is concentrated at the fixed point. Now if cp: 5’ -+ 5’ has 
two fixed points, a sink and a source, and p is the invariant probability measure concen- 
trated at the sink, then the action of Z generated by p is an E-action. Observe that this 
action is ergodic but not uniquely ergodic. 

3.7. LEMMA. Let cp: Zp + Diff(F) be an E-acrion and H: RP + Aur(r) the canonical acrion 
of rhe suspension foliated bundle r of cp. Then for every 5 E A(Y)), the Birkhoffsums B,(H) * c 

converge both L’ and pointwise to the averaged basic form P,,(t) for v-almost all x in M where 
v is a Lebesgue measure in M. 

Proof Consider the invariant measure dx x p an RPx F where dx is the Lebesgue 
measure of RP and let 1 be the quotient measure on M. Thus i. is invariant under the action 
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H: Zp + Auf(r). As the canonical coframc of (M, F) induced by the canonical coframc 

{dx,, . . . , dx,} of RP is invariant under H then by (3.3) it is sufficient to consider the case 
hi A’(.%). By the Pointwise Ergodic Theorem, [lo] the averages B,(H)-L converge both 
L’ and pointwise It-a.e to an H-invariant L’-function /I*. Now since cp is an E-action, it 
follows that (B,(H)h)(x, y) = (B,(cp)h,)(y), h,(y) = h(x, y) for the suspended function on 
RPxF and B,(cp)h,-,~(h,)m-a.c on F for every XE Rp, thus h* = P,(h) and B,(H)*h 
converge pointwise to P,(h)v-a.e. on M. 

Now we prove the main theorem of this paper. 

3.8 THEOREM. Let F + (M, 9) L TP be the suspensioti foliated bundle of an adion Q of 

Zp on a closed connected q-manifold F. If Q: Zp + DiflF) is an E-action, then the character- 
istic mapping 

a:H’(9) x . . . x H’(F) + Hzq+‘(M) 
vanishes. 

The idea of the proof is to show that for any leafwise l-class t the averaging operator 
B,(H) does not change the leafwise cohomology class of e, Lemma 2.4, so does not change 
the characteristic pairing x: H’ (9) x H’(M; .%) 4 HJ+ l (M) i.e., the cohomology classes of 
< and B,(H)*< give the same operator HJ(M;9)-, HJ+‘(M, 9). This is similar to 
Duminy’s ideas for Godbillon-Vey class, [9]. 

The cohomology calculation 2.1 shows that the averaged form P,(C) is a closed basic 
form, so by the general vanishing property of the characteristic pairing, Lemma 1.1, ii, the 
leafwise class of P,,(e) yields a zero pairing. Since the averages B,(H)*t converge pointwise 
v-a.e. to P,(e), v a Lebesgue measure on M, and the sequence B,(H) is uniformly bounded 
(Lemmas 3.1 and 3.7). the Dominated Convergence Theorem applies giving the vanishing of 
a. This is similar to the method of Hurder in [IS]. 

We now give a formal proof. 

Proof of 3.8. Let t,, . . . , <,+, be d,-closed l-forms on (M, 9) and q = <, A d& 
A ,.. A d<,+ , . Thus dq is a closed Zq-form whose cohomology class (dq) in Hzq(M, 9) is 
not necessarily trivial. As we observed in (1.5) the characteristic mapping is given by 

a([,. . . . ,~q+1)=X*q(F~).(d~)=Ce,^dsl. (3.4) 

Now, as in Lemma 2.4, the action H*: Zp -+ Aut(H’(f)) is trivial, so the averaging 
operators B,(H) do not change the leafwise class of e, and therefore 

a(fI, . . . ,rq+d = C&W-t, A d’d (3.5) 

for every positive integer n. To apply the Poincari duality theorem to conclude that tI A dq 
is zero in the de Rham cohomology we observe that (3.4) and (3.5) give 

s 5, AdqhO= 
I 

&(H)*C, A d(rl A 0) 
M M 

(3.6) 

for every closed (p - q - I)-form o on M and every positive integer n. As Q: ZP -, D%(F) is 
an E-action, then, by Lemma 3.7, the sequence B.(H)*el converges both L’ and pointwise 
v-a.e. to the averaged closed form P,,(t). Now, by Lemma 3.1 the convergence is dominated, 
hence the Lebesgue dominated convergence theorem applies to (3.6), showing that 
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The last integral is zero since Pp(tl ) is a closed form. This shows that the characteristic 
mapping z vanishes. 

As a consequence of Theorem 3.8 we obtain the following generalization of a theorem of 
M. Herman [14]. 

3.9 COROLLARY. The characteristic mapping of a C2-foliation by planes of .TJ vanishes. 

Proof: If (r-l, 9) is a C2-foliation by planes then by a theorem of H. Rosenberg and R. 
Roussarie in Cl93 it is suspension of a uniquely ergodic action cp: Z2 + Diff(S’). Thus by 
Theorem 3.8 the characteristic mapping x: H’(9) x H’(9) + H’(M) = R vanishes. 

3.10. There is an analogue of Theorem 3.8 for actions of finitely generated nilpotent 
groups [20]. 

3.11. We observe that the operators B,(H) do not change the leafwise cohomology class 
of a dl-closed form { but that the class of the averaged form P,,(t) may change even if 
B,(H)* 5 converge to P,,(t) in the C” topology. In fact, for Liouville linear foliations of T”, 
the kernel of P, is non trivial in leafwise cohomology, see [4]. 

4. THE COMPACT ORBIT THEOREM 

In this section, as an application of Theorem 3.8 and a previous theorem of the authors 
in [I J we prove a theorem that relates the non-degeneracy of the characteristic mapping of 
a non-singular action of R2 on a 3-manifold M with the existence and stability of compact 
orbits. Let A’(R’, M) be the space of all C’ non-singular actions of R2 on M, r 2 2. 

4.1. THEOREM. Let M be a closed orientable connected 3-maniJold and AE A’(R’, M). if 
the characteristic mapping 

a,:R2 x R2 -+ H3(M) = R 

of A is non-degenerate, then 

(i) A has a compact orbit; 
(ii) There exists a neighborhood V c A’(R’, M) of A in the C’ topology such that every 

action in V has a compact orbit. 

Actually, if M = T3 then (i) and (ii) hold if aA # 0. 

Prooj Assume A has no compact orbit. Then by Theorem 2 in [S] all the orbits are 
either planes or cylinders but there is no mixture of the two and every orbit is dense. If all 
the orbits are planes then M is diffcomorphic to T’ and by Corollary 3.9 aA vanishes. 
Assume every orbit is a dense cylinder. Fix an orbit L and a point x in L. Let X1 and X2 be 
the infinitesimal generators of A. There exist constains cr and c2 such that the orbit of the 
vector field E = cl XI + c2 X2 through x will be closed with minimal period 1, and so will be 
the orbit of any point of L, and therefore the orbit or every point of M, since L is dense. Thus 
E defines a free action of Si on M and clearly A is a linear reparameterization of an action of 
the cylinder S’ x R on M. Now by Corollary 2.2, of [3] aA is degenerate. Actually if M = T3, 
then aA = 0. Therefore A has a compact orbit. Part (ii) follows from (i) and the continuity of 
the characteristic mapping A + aA in the C’ topology, [[I], 1.111. 
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