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Abstract

In this paper, we prove the following: L&t be a graph,f:G — G a continuous map anél a
finite subset ofG such thatf (P) c P. Then there exist a regular continuuti a continuous map
g:Z — Z and a semi-conjugacy : G — Z such that

(1) g ism(P)-expansive, and

(2)if p,g € P andQ is a subset o with A N Q # ¢ for any arcA in G betweenp andg, then
A'Nw(Q) # ¢ forany arcA’ in Z betweenr (p) andn(q).

In addition, f is point-wise P-expansive if and only ifr | p is one-to-one.

In this paper we are especially interested in the geometrical structife Aftually we can see
the complicated construction @. 0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

In recent years, there has been a growing interest in the study of the dynamical behavior
of continuous maps of a graph. Especially, one of the central questions in the theory
of dynamical systems is how to recognize “chaos”. The theme of this paper is how to
describe visually the chaoticity of continuous maps of a graph. To do this, for each@raph
and continuous may of G, we shall construct a new subspageof the Euclidean
3-dimensional space and a continuous ngapf Z which (G, f) is semi-conjugate to.

And we shall use the notion a?-expansiveness in order to investigate how complicated
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the dynamical behavior of is. The fractal and complicated structure of the new space
implies the chaoticity off .

In [2] and [1, Theorem 4.1] the following result has been shown.Ddie a dendrite,
f:D — D acontinuous map an# a finite subset oD such thatf (P) C P. Then there
exist a dendritéZ, a mapg : E — E and a semi-conjugacy: D — E (i.e.,mo f =gom)
such that

(1) gism(P)-expansive, and

(2) if x,y,z€ P andy € [x, z] thenn (y) € [ (x), 7(2)].

If, in addition, the Markov graph of has no basic intervals of order 0 and no loops of
order 1, thent|p is one-to-one.

In this paper we expand the above result to a graph. Our main theorem is as follows:

Theorem 3.4. Let G be a graph,f : G — G a continuous map an# a finite subset of;
such thatf (P) c P. Then there exist a regular continuufi a continuous map: Z — Z
and a semi-conjugacy : G — Z such that
(1) gism(P)-expansive, and
(2) if p,g € PandQ is a subset o with AN Q # ¢ for any arcA in G betweerp
andg, thenA’ N (Q) # ¥ for any arcA’ in Z betweenrt(p) andx (q).
In addition, f is point-wiseP-expansive if and only if | p is one-to-one.

We will show this by using a more geometrical method than that of Baldwin. Our interest
is in what structureZ has. We can see visually thatis a subset of a 3-dimensional space
which has a fractal structure.

A continuumis a nonempty connected compact metric spacgraphis a continuum
which can be written as the union of finitely many arcs any two of which are either disjoint
or intersect only in one or both of their end points.d&ndriteis a locally connected,
uniquely arcwise connected continuum. A continulnis said to beregular atx € X if
for any neighborhood of x, there exists a neighborhoddof x such thatv c U and the
boundary ofV has finite cardinality. And is said to beegular provided thatX is regular
at each of its points.

Let X; be a compact metric space afid X; — X; a continuous map far=1, 2. We
say that(X1, f1) is semi-conjugatéor conjugate respectively) ta X2, f2) if there exists
a continuous map (or homeomorphismjrom X1 onto X» such thatr o f1 = foox. We
call = asemi-conjugacyor conjugacy.

Let G be a graph,f:G — G a continuous map angé a finite subset of; such that
f(P)C P.Put

S(G, P)=PU{C|Cisacomponentot \ P}.

Givenx € G, theitinerary of x with respect toP and f, written Ip_¢(x) (or just] (x) if
P and f are obvious from context), is defined to be the unique infinite sequ&nYe>o0
from S(G, P) given by the rulef" (x) € C,, for all n > 0. If no two points ofG have the
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same itinerary, therf will be called P-expansiveAnd f is point-wiseP-expansivef for
eachp, g € P, there exists some non-negative integesuch that

AN(P\{S™ (), f™(@)}) # 9

for each arcA in G betweenf™ (p) and /™ (q).
Let K be a continuum ané a finite subset oK. Then we say thatP graph-separates
K if and only if there exists a finite s8( K, P) of subsets oK such that
(1) the element of (K, P) partition K, i.e., every point oK is in exactly one member
of S(K, P),
(2) foreachp € P, {p} € S(K, P),
(3) foreachA € S(K, P), the closure ofd in K is arc-wise connected, and
(4) if A, B e S(K, P), then the closure ofA and B either have empty intersection or
intersect in only elements af.
Note that we can also define-expansive for a graph-separated continuum in a similar
way.

2. Constructions of X_, and X_.

Let G be a graphf:G — G a continuous map an# a finite subset oG such that
f(P) C P. We will construct new spaceé_, andX_. from P and f.

First we want to define an equivalence relatisn on P. Let p,q € P. If for any
non-negative integei, there exists an ard; in G betweenf’(p) and f(¢) such that
Ai NP ={f'(p), fi(¢)}, then we putp ~| ¢, where A; may now consist of a single
point. Now, if for p, g € P, there exist some poingsi, p», ..., pr of P such that

pP~1P1L™~1 P21 1 Pk™1 4,

then we setp ~1 ¢. This relation~1 is an equivalence relation oR. Let [p]1 be the
equivalence class of, P1 = {[pl1 | p € P} andG1 = G /~1 the space obtained frof by
identifying each equivalence class Bf Then we define a continuous mgp: G1 — G1
such thatfi|g,\p = flo\p and fa([ply) = [f(p)11 for [p]1 € P1. Similarly, if for any
p.q € P1 and non-negative integér there exists an ard; in G, betweenf;(p) and
fi(g) such thatd; N Py = {f{(p). f{ ()}, then we putp ~, g. And if there exist some
points p1, p2, ..., px of Py such thatp ~, p1 ~, p2 ~5 --- ~, p; ~, g, then we set
p ~2 q. This relation~2 is also an equivalence relation di. Let [pla={q¢ | p ~2¢
andp,q € P1}, P2={[pl2| p € P1} and G2 = G1/~> the space obtained frorfi; by
identifying each equivalence class Bf. Then we define a continuous mép: G2 — G2
suchthatfz|g,\ p, = file\p, = fle\p @andf2([pl2) = [ fi(p)l2for [pl2 € P2. Inthe same
way, we can obtain the spack and a continuous mafy : G, — Gy for £ > 1. SinceP is
finite, there is some natural numbeisuch thatf,, : G, — G, is point-wiseP-expansive.
There exists a semi-conjugagy between(G;_1, fi—1) and(G;, f;) fori =1,2,...,m,
where(Go, fo) = (G, f). We will constructZ andxz’ in Theorem 3.4 by the use of the
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point-wise P,,-expansiveness of;,, .
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By the argument above, we may proceed with our construction, under the assumption
that f is point-wiseP -expansivein the rest part of this section.

Let S(G,P)\ P ={C1,C2,...,Cy} and P = {p1, p2, ..., pr}- We will express the
relation of elements of (G, P) as follows: If p,q € P and f(p) = ¢q, thenp — ¢. This
arrow— defines the Markov grapA_, on P (see Section 4). I€;,C; € S(G, P) \ P and
Cj C f(Cp), thenC; — C;. If f(C;)NC;#0,thenC; — C;. These arrows> and—
define the Markov graph&f/_, and M_. of elements ofS(G, P) \ P, respectively. Note
that— implies—.

Now we will construct a new spacé_. by using the Markov graph®_. and P_, . First
we will construct a subspace which is the union of 3-dimensional balBy, B>, ..., B,
in the Euclidean 3-dimensional spa@ by regarding element€, Co,...,C, of
S(G, P) \ P as 3-dimensional ball®1, B>, ..., B, of E3. That is to sayX = Ui_1 Bi,
where the relationship oB; and B; is decided as follows: If ¢C;) N cl(C;) =@ for
Ci,Cj € S(G,P)\ P, thenB; N B; = . And if cI(C;) N cl(C}) ={q1,92,....q¢} C P,
thenB; N B; = Bd(B;) N Bd(B,) = {q}. 45, - - -, q,}, where BdB) is the boundary oB.
Without confusion, we can express elements o€l N cl(C;) and B; N B; in a similar
way. And for eacty € (P N cl(C;)) \ U{cl(Cj) Ncl(Cj) | j # j" and 1< j, j' < n}, we
take a corresponding point’ € BA(B;) \ J{B; N Bj/ | j # j" and 1< j, j’ < n}. For
simplicity, we setp’ = p € P (see Fig. 1).

Put Xo = X. We will construct a subspac¥; contained inXg by using the Markov
graphM_. and P_,. For eachi = 1,2,...,n, we have an embedding : X < B; such
that

(1) h;(X)NBd(B;) C P, and

(2) foreachp, g € P with p e Bd(B;) andp — ¢, hi(q) = p € Bd(B;).

If C; = C; (Ci,Cj € S(G, P)\ P) inthe Markov graptM_., thenletB; ; = h; (B;) which
is acopy ofB;. If C; A~ C;, thenB; ; =0. Let
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Fig. 1.
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n
Y = U Bi;j, Bi={B;|C;i—C;} and
j=1

(UBi) NP ={pii:1)s Pr(i:2)> - - -+ Pk}

wheret (i : £) andk(i) are natural numbers with<7(i : £), k(i) <k (1 <€ <k()). And
put’; (p:i-e)) = pii-¢)- Then we obtain a connected subXgt=Y1 UY,U---UY, (see
Fig. 2).

Similarly, we will construct a subspac&, in Xi. Let hy; : X < Bi,;; be an
embedding such that

(1) hig,i;(X) NBA(Big.i;) C hip(P), and

(2) for eachp;, ; € Bd(B;y,i;) N hiy(P) andg € P with p; — q, hiy i, (q) = pig,j €

Bd(Biy,iy)-

If Ci; = C; in the Markov graphV_., then letB;, ;, ; = hjy i, (B;). And if C;; A~ C;,
then Bioyil»j ={. Let Yioyil = U;l'=l Biovilvj’ Bil = {Bj | Ci1 - Cj} and (U Bil) NnP=
{Pt(io.iz:1)s Prlig.in:2)s - - -+ Priigivk(io.inn} PUthig iy (Prii.in:j)) = Pig.intioivy (1< J <
t(ig, i1: k(io, i1))). Then we obtairXs = | J{Yi,.i;, | 1 <io, i1 < n} (See Fig. 3).

When this operation is repeated inductively, we obt&in> X1 D X2 D --- and a
subspace&X_. = (72, X; of E3. Note thatX_. is connected.
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Fig. 3.

Next let X}, X5, ... be subspaces constructed in a similar way on basis of the Markov
graphM_.. Then we obtain a subspa&e., = ();2; X/ of [E3. Note thatX_, is not always
connected.

By using the construction aX_., we show that lim,—  diam(B; ;,.....;,) = 0. Since
we have assumed thgtis point-wiseP-expansive, for any distinct poinjs ¢ of P there
exists a non-negative integaf, , such thatA N (P \ {fNra(p), fNra(q)}) # @ for any
arc A in G betweenfNra(p) and fNra(g). Let N =maxN, 4 | p,qg € P andp # g}.

Let m be a natural number ang;, ;.. ;, & 3-dimensional ball from the construction
of X,,. For any natural numberg,+1, jm+2, - s jm+N (L < jmt1s jm+2s -« s jm+N <

n), wheren = Card(S(G, P) \ P), the 3-dimensional balBiy i.....in.jmi1.jmi2eeesjmsn

from the constructing of{,,+y cannot contain two or more points 6f{Biy.is.....i,, N
Bio,tq,. b 1 1< L0, L1, ..., 8y <nand(fo, €1, ..., Ly) # (i0, i1, ..., in)}. SuppoOse that
there exist distinct points, y of (U{Big,i1....in, N Beot,ty | 1 < L0y l1, ... by <11

and (€o, L1, ..., €m) # (io,i1,...,im)} SUCh thatx, y € Big i1, . im.jmitsesjmen
Pioitseim—1.5 = Pigyit,im_1(Ps) @ANAY = pjg i1 i1 = Rig iy, i1 (P). ThENPS, Py €

P N B;,. By the construction, for each=0, 1, ..., N, there exists an ar4; in G between
fi(ps) and fi(p,) such thatd; N P = {f (ps), f/(p:)}. This contradicts the definition
of N. Thus any two points, y € ([{Biy.i1,....i, N Beg,eq,....0,, | 1 < €0, l1, ..., ¢y <n and
(o, 1, ...,4m) # (io,i1,...,i,)} are connected by the union of two or more 3-dimen-
sional ballsBiy is.....ip. jmstseesjmin (L Jmt1s -, jmen <n). HENCE we may assume that

Thus we can suppose that

lim diam(Biy;,...i,) =0

n—o0

(see Fig. 4).
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Fig. 4.

3. Construction of Z

Let G be a graph,f:G — G a continuous mapP = {p1, p2, ..., px} a finite subset
of G such thatf(P) c P andS(G, P) \ P ={C1,Ca,...,C,}. We may also assume that
f is point-wise P-expansive in this section from the argument in Section 2. An& let
X_. be the above spaces constructed by the Markov graphs, P-,), (M_., P_.) on
S(G, P), respectively.

Theorem 3.1. The subspac&_. of E3 is a regular continuum.

Proof. Lete > 0 andx € X_.. As lim,,_, o diam(Bi, ;,,....i,,) = 0, for ane-neighborhood
U, (x) of x in X_. there exists a non-negative integesuch thatB;, ;, . ;, N X C Ue(x)
for any 3-dimensional baiB;, ;,, .. ;, containingx. Let

B =|J{Bioir...ie | X € Bign,...ix N X CUe(x)}.

Then B N X_. is a neighborhood oft in X_. such thatB N X_. C U.(x). By the
construction ofX_., the boundary ofB has finite cardinality. Thus(_. is a regular
continuum. O

We define a mapr: G — X_. as follows: Givenx € G, if ff(x) e cl(C;,) for any
£=0,1,2,..., thenz(x) = ﬂfz)io Big,i1in,....i- We will investigate the uniqueness of
m(x) for eachx € G. Let {i¢}r>0, {je}e>0 be sequences of natural numbers such that
{ie}e>0# {je}e>0s ftx) e cl(C;,) Ncl(Cj,) for eacht > 0 and 1< ig, je < n. We will
show that

o o
ﬂ Big.iy.....ip = ﬂ Bjo, j1.cje
=0

£=0
Let

m = mln{ﬂ | Ci( 75 le’,}’

then fm(x) € P We pLIt ‘x/ = pio,il,...,im,]_,l! Where piOvil ~~~~~ imfl»t € BiOsilmn»im—lsim N
BjOsjl ~~~~~ Jm—1,Jm and pr € P. Since f(p;) € Cl(Cim+1) N CI(ijH)» Pig,i1,..im_1.t €
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Biz()»ilwwim—lyim»ierl N Bjg,j1..... jm—1.jm.jms1 DY the construction o, 1. Similarly, since

fe(pt) € l(Ci ) NCHC,0)s Piguin,.im-1.t € Bigsitmsimsz N Bjg,jr.jmia- INAUCtively,
o0

for each¢ > 0, Pioitseim- 1.t € Bigsit,esimre 1 Blo, jroeeesjmre- As mz:o Big,ia,..rimye and

m?.;o B/IO’/19"’/I11+£ are degenerate’

[ee) [ee)
{Pig.it i1t} = m Big.is..imre = m B, jtes e
£=0 £=0

Thus we can define

o0 o0
/
{n(x)} = m Big.it,.imre = m Bjo,j1.ccijmie =X
(=0

(=0
(see Fig. 5).

Lemma 3.2. 7 : G — X_. is continuous.

Proof. Letx € G andV be a neighborhood of (x) in X_..

Casel. Assume tha.tf@(x) ¢ Pforany?¢=0,1,2,... and{r(x)} = ﬂ,?ozo Bigi1,...iy -
There exists a non-negative integesuch thatB;, ;; ., N X_. C V, whereB;, ;..
is a 3-dimensional ball containing(x). Since Ciyi;,..i, = {x € G | x € Cjo, f(x) €
Ci,. L ftx) e Ci,} is an open set containing and 7 (Ci jy,....i,) C Big.iy,...ip N X—,
7 is continuous at.

Case2. Assume that there exisis= min{¢ | f%(x) € P} < oo. There existg > m such
that B, ,,....i, N X~ C V for eachB;, ;, .. ;, containingr(x). Let C¢ = {Cigy,....i, | 1 <
ig,i1,...,i¢ < Card(S(G, P))} andU = | J{C € C; | x € cl(C)}. Sincef is continuous,
U is a neighborhood of such thatr (U) C V. Thusx is continuous. O

Now we will putZ = 7 (G). ThenX_, C Z C X_.. In general it is difficult to recognize
the precise structure df, but by the above relatioN_, ¢ Z C X_., we can realize the
approximate structure of. SinceX_. is regular,Z is also regular.

Note that by the construction, if for any elemante S(G, P) \ P, there exist finitely
many element€y, Cz, ..., Cy, 0f S(G, P) such thatf(C) =J",Ci, thenX_, =Z =
X_..
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Define a mapg: X_. — X_. as follows: If {x} = ﬂz’io Big.iy,....ip» then {g(x)} =
g0 Big.ir,....it) = No=q Bir.iz.....i,- We can investigate the uniquenessgodis we did
that of 7. Note thatg(Z) C Z.

Lemma 3.3. ¢g: X_. — X_. is continuous.

Proof. Let x € X_. andV be a neighborhood of(x) in X_.. Then there exists a non-
negative integef such thatB;,;,; . ; N X C V for any 3-dimensional balB;, ;;,...;,
containingg (x). Let B = J{Bjo.j....jes1 | X € Bjg.js.....jes1}- ThenB is a neighborhood
of x andg(B N X_.) C V. Thusg is continuous. O

The following is the main theorem in this paper.

Theorem 3.4. Let G be a graph,f : G — G a continuous map an# a finite subset of;
such thatf (P) c P. Then there exist a regular continuufi a continuous map: Z — Z
and a semi-conjugacy : G — Z such that
(1) gism(P)-expansive, and
(2) if p,q € P andQ is a subset o with AN Q # ¥ for any arcA in G betweenp
andg, thenA’ Nz (Q) # ¥ for any arcA’ in Z betweenr (p) andx(q).
In addition, f is point-wiseP-expansive if and only if | p is one-to-one.

Proof. Letz andg be the above maps. Lete G with f¢(x) € cl(C;,) fore=0,1,2,....
Then

[r)} ﬁBlOll i and {gom(x)} ﬁB,l,z ={mo f0)}.

Thusr is a semi-conjugacy betweéd, f) and(Z, g).

We will show that(1) g is 7 (P)-expansive. Letyr, y be distinct points ofZ. There
exists a 3-dimensional ba;,;, . ; such thatx,y € Big,,...i, 1, X € Bigiy,....;;, and
Y ¢ Big,is,...i,- Theng" (x) € B, andg"(x) ¢ Bj,. ThUuSIy(p), ¢ (X) # Lr(p) ¢ ()

By the construction oK _., we can easily check (2).0

Proposition 3.5. Let G be a graph,f : G — G a continuous map ang the set of vertices
of G with f(P) C P. If f is point-wiseP-expansive andf |, 4] is one-to-one for each
edge[p, q] betweerp andg, thenZ is homeomorphic t@ .

Proof. Let p,q € P and|[p, q] be the edge betweem andg. Since f|;, 4] iS one-to-
one, f([p,q)) is an arc betweetf (p) and f(g). Let {Cn,, Cy, - .., Ci,} be the set of
elements oS (G, P) \ P whichis contained irf'([p, ¢]). As f is point-wiseP-expansive,
by the construction ofX the 3-dimensional ball®,,, By,. ..., B, corresponding to
Cmy, Ciiys - - ., Ciy, form a chain between (p) andz(g), i.e., By, N By, #0 if and only

if |i — j| < 1. Similarly, by the construction of 1, finitely many smaller balls form a chain
in each ballB,,, (i =1,2,...,¢), too. When we repeat this operatior([ p, ¢]) is an arc
betweenr (p) andn(¢). ThusZ is homeomorphictd@;. O
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Remark. In Theorem 3.4, we can obtain the same result by using a graph-separated
continuum instead of a graph.

4. Examples

In this section, a few concrete examples will be given to clarify the explanation given so
far.

Example 4.1.Let G = [0,1] be the unit interval and? = {2, 4, 5}. We will de-
fine a continuous mapf of G such thatf(x) = 2x (if 0 < x < %) and f(x) =
—2x 4+ 2 (if % < x < 1). This map f is point-wise P-expansive. ThenS(G, P) =
{10, 9,131, G. D19, (5, 9. (81, (8, 11}, where putC1 =10, 35), C2=(3,9), Cs=
4.5, ca= (5.1, p1=2, p2=3% andpz = S. The Markov graph of§(G, P) \ P
andP is as in Fig. 6.

1

..........

AN

M_ =M, P,

o

~inNg

[ PO SN ceeaas
et NG
<o)

—

Fig. 6.

The above Markov graph@/_., P_,) will give information useful in constructing the
spaceZ. Let X = B1 U B2 U B3 U Bg andh; : X — B; (i =1,2,3,4) be an embedding
such that1) »; (X) NBd(B;) C P, and(2) for eachp, g € P with p € Bd(B;) andp — g¢,
hi(q) = p € Bd(B;). Then we describe the unidf of finitely many balls in each ba;.
For example, wheri = 2, Yo = B23 U By 4 C ha(X), p1 = ha(p2) and p2 = ha(p3),
sinceCy — C3, C2 — C4, p1 — p2 and p2 — p3. In this way, we obtain a subspace
X1=Y1UY>UY3U Y, of E3 (see Fig. 7).

By B, B3 B,
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Next we describe finitely many 3-dimensional ballsXa. Let #; ;: X < B; ; be an
embedding such that (1); ;(X) N Bd(B;,;) C h;(P), and (2) for eachp,g € P with
hi(p) € Bd(B; ;) and f2(p) =q, hi j(q) = hi(p). Then we describe the unian ; of
finitely many balls inB; ;. For example, when=2 andj = 3,h23(X) = B232UB233=
Y23, ha(p2) = h2,3(p1) andha(ps) = ha3(p2), sinceCz — Cz, C3 — C3, f2(p2) = p1
and f%(pa) = pa. Put

i,j=1
(see Fig. 8).

Fig. 8.

Similarly, we can describe(; (i =3,4,...). Finally the spaceZ = (12, X; is the
universal dendrite (see Fig. 9).

e

o

|||§F|I| LIIQVIII:Z:II\}'I]I |||J“|lu

Fig. 9.

Example 4.2. Let G = [0, 1] be the unitintervalP = {0, % 1} and f the same continuous
map ofG as in Example 4.1. Theki_, = Z = X_. andZ is homeomorphic t@ = [0, 1].
This implies that the structure &f depends on the way of selecting the pointsPofsee

Proposition 3.5).

Example 4.3.Let G = [0, 1] be the unit interval and® = {1, 2, 1}. We will define a
continuous magy of G as follows: f (x) =4x(0< x < 3), f(x) =—2x + 3(3 <x < D),
f=2r—id <x<dHandf)=—2r+3E <x<1).Then

$@G. Py ={[0.3).{3}. (3. D). 13} (3. ). (W},
where putC1 = [0, 1), C2 = (3, 2), C3= (3. 1), p1 = 3, p2 = 3 andps = 1. The Markov
graph ofS(G, P) \ P andP is as in Fig. 10.
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From the above Markov graph f(G, P) \ P, we know thatBy 1 =¥ and Bz 1 = ¢.
Furthermore, the Markov graph @ suggests the way of connection of each l#ll;,

wherei, j =1, 2, 3 (see Fig. 11).

%?d@‘rw

Finally, Z is the following dendrite (see Fig. 12).

TSN

Fig. 12.

Example 4.4. Let G be the following graphP = {p1, p2, p3, pa, ps, pe} @ finite subset
of G and f:G — G a continuous map. And assume thatcl(C)) = G for any C C
S(G, P)\ P, f(p1) =p1= f(pa), f(p3) = p2= f(pe) and f (p2) = p3 = f(ps). Note
that f is point-wiseP-expansive (see Fig. 13).

ThenZ is the triangular Sierpinski curve (see Fig. 14).
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