The construction of P-expansive maps of regular continua: A geometric approach

Tatsuya Arai *, Naotsugu Chinen, Hisao Kato ${ }^{1}$, Katsuya Yokoi ${ }^{2}$
Institute of Mathematics, University of Tsukuba, Ibaraki 305-8571, Japan
Received 24 August 1998; received in revised form 18 September 1998

Abstract

In this paper, we prove the following: Let G be a graph, $f: G \rightarrow G$ a continuous map and P a finite subset of G such that $f(P) \subset P$. Then there exist a regular continuum Z, a continuous map $g: Z \rightarrow Z$ and a semi-conjugacy $\pi: G \rightarrow Z$ such that (1) g is $\pi(P)$-expansive, and (2) if $p, q \in P$ and Q is a subset of P with $A \cap Q \neq \emptyset$ for any arc A in G between p and q, then $A^{\prime} \cap \pi(Q) \neq \emptyset$ for any arc A^{\prime} in Z between $\pi(p)$ and $\pi(q)$.

In addition, f is point-wise P-expansive if and only if $\left.\pi\right|_{P}$ is one-to-one. In this paper we are especially interested in the geometrical structure of Z. Actually we can see the complicated construction of Z. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: P-expansive; Point-wise P-expansive; Regular continuum; Graph-separated continuum AMS classification: Primary 54H20, Secondary 54C70

1. Introduction and preliminaries

In recent years, there has been a growing interest in the study of the dynamical behavior of continuous maps of a graph. Especially, one of the central questions in the theory of dynamical systems is how to recognize "chaos". The theme of this paper is how to describe visually the chaoticity of continuous maps of a graph. To do this, for each graph G and continuous map f of G, we shall construct a new subspace Z of the Euclidean 3-dimensional space and a continuous map g of Z which (G, f) is semi-conjugate to. And we shall use the notion of P-expansiveness in order to investigate how complicated

[^0]the dynamical behavior of f is. The fractal and complicated structure of the new space Z implies the chaoticity of f.

In [2] and [1, Theorem 4.1] the following result has been shown. Let D be a dendrite, $f: D \rightarrow D$ a continuous map and P a finite subset of D such that $f(P) \subset P$. Then there exist a dendrite E, a map $g: E \rightarrow E$ and a semi-conjugacy $\pi: D \rightarrow E$ (i.e., $\pi \circ f=g \circ \pi$) such that
(1) g is $\pi(P)$-expansive, and
(2) if $x, y, z \in P$ and $y \in[x, z]$ then $\pi(y) \in[\pi(x), \pi(z)]$.

If, in addition, the Markov graph of P has no basic intervals of order 0 and no loops of order 1 , then $\left.\pi\right|_{P}$ is one-to-one.

In this paper we expand the above result to a graph. Our main theorem is as follows:

Theorem 3.4. Let G be a graph, $f: G \rightarrow G$ a continuous map and P a finite subset of G such that $f(P) \subset P$. Then there exist a regular continuum Z, a continuous map $g: Z \rightarrow Z$ and a semi-conjugacy $\pi: G \rightarrow Z$ such that
(1) g is $\pi(P)$-expansive, and
(2) if $p, q \in P$ and Q is a subset of P with $A \cap Q \neq \emptyset$ for any arc A in G between p and q, then $A^{\prime} \cap \pi(Q) \neq \emptyset$ for any arc A^{\prime} in Z between $\pi(p)$ and $\pi(q)$.
In addition, f is point-wise P-expansive if and only if $\left.\pi\right|_{P}$ is one-to-one.

We will show this by using a more geometrical method than that of Baldwin. Our interest is in what structure Z has. We can see visually that Z is a subset of a 3-dimensional space which has a fractal structure.

A continuum is a nonempty connected compact metric space. A graph is a continuum which can be written as the union of finitely many arcs any two of which are either disjoint or intersect only in one or both of their end points. A dendrite is a locally connected, uniquely arcwise connected continuum. A continuum X is said to be regular at $x \in X$ if for any neighborhood U of x, there exists a neighborhood V of x such that $V \subset U$ and the boundary of V has finite cardinality. And X is said to be regular provided that X is regular at each of its points.

Let X_{i} be a compact metric space and $f_{i}: X_{i} \rightarrow X_{i}$ a continuous map for $i=1,2$. We say that $\left(X_{1}, f_{1}\right)$ is semi-conjugate (or conjugate, respectively) to $\left(X_{2}, f_{2}\right)$ if there exists a continuous map (or homeomorphism) π from X_{1} onto X_{2} such that $\pi \circ f_{1}=f_{2} \circ \pi$. We call π a semi-conjugacy (or conjugacy).

Let G be a graph, $f: G \rightarrow G$ a continuous map and P a finite subset of G such that $f(P) \subset P$. Put

$$
S(G, P)=P \cup\{C \mid C \text { is a component of } G \backslash P\}
$$

Given $x \in G$, the itinerary of x with respect to P and f, written $I_{P, f}(x)$ (or just $I(x)$ if P and f are obvious from context), is defined to be the unique infinite sequence $\left(C_{n}\right)_{n} \geqslant 0$ from $S(G, P)$ given by the rule $f^{n}(x) \in C_{n}$ for all $n \geqslant 0$. If no two points of G have the
same itinerary, then f will be called P-expansive. And f is point-wise P-expansive if for each $p, q \in P$, there exists some non-negative integer m such that

$$
A \cap\left(P \backslash\left\{f^{m}(p), f^{m}(q)\right\}\right) \neq \emptyset
$$

for each arc A in G between $f^{m}(p)$ and $f^{m}(q)$.
Let K be a continuum and P a finite subset of K. Then we say that P graph-separates K if and only if there exists a finite set $S(K, P)$ of subsets of K such that
(1) the element of $S(K, P)$ partition K, i.e., every point of K is in exactly one member of $S(K, P)$,
(2) for each $p \in P,\{p\} \in S(K, P)$,
(3) for each $A \in S(K, P)$, the closure of A in K is arc-wise connected, and
(4) if $A, B \in S(K, P)$, then the closure of A and B either have empty intersection or intersect in only elements of P.
Note that we can also define P-expansive for a graph-separated continuum in a similar way.

2. Constructions of X_{\rightarrow} and X_{\rightarrow}

Let G be a graph, $f: G \rightarrow G$ a continuous map and P a finite subset of G such that $f(P) \subset P$. We will construct new spaces X_{\rightarrow} and X_{\rightharpoonup} from P and f.

First we want to define an equivalence relation \sim_{1} on P. Let $p, q \in P$. If for any non-negative integer i, there exists an arc A_{i} in G between $f^{i}(p)$ and $f^{i}(q)$ such that $A_{i} \cap P=\left\{f^{i}(p), f^{i}(q)\right\}$, then we put $p \sim_{1}^{\prime} q$, where A_{i} may now consist of a single point. Now, if for $p, q \in P$, there exist some points $p_{1}, p_{2}, \ldots, p_{k}$ of P such that

$$
p \sim_{1}^{\prime} p_{1} \sim_{1}^{\prime} p_{2} \sim_{1}^{\prime} \ldots \sim_{1}^{\prime} p_{k} \sim_{1}^{\prime} q
$$

then we set $p \sim_{1} q$. This relation \sim_{1} is an equivalence relation on P. Let $[p]_{1}$ be the equivalence class of $p, P_{1}=\left\{[p]_{1} \mid p \in P\right\}$ and $G_{1}=G / \sim_{1}$ the space obtained from G by identifying each equivalence class of P. Then we define a continuous map $f_{1}: G_{1} \rightarrow G_{1}$ such that $\left.f_{1}\right|_{G_{1} \backslash P_{1}}=\left.f\right|_{G \backslash P}$ and $f_{1}\left([p]_{1}\right)=[f(p)]_{1}$ for $[p]_{1} \in P_{1}$. Similarly, if for any $p, q \in P_{1}$ and non-negative integer i, there exists an $\operatorname{arc} A_{i}$ in G_{1} between $f_{1}^{i}(p)$ and $f_{1}^{i}(q)$ such that $A_{i} \cap P_{1}=\left\{f_{1}^{i}(p), f_{1}^{i}(q)\right\}$, then we put $p \sim_{2}^{\prime} q$. And if there exist some points $p_{1}, p_{2}, \ldots, p_{k}$ of P_{1} such that $p \sim_{2}^{\prime} p_{1} \sim_{2}^{\prime} p_{2} \sim_{2}^{\prime} \cdots \sim_{2}^{\prime} p_{k} \sim_{2}^{\prime} q$, then we set $p \sim_{2} q$. This relation \sim_{2} is also an equivalence relation on P_{1}. Let $[p]_{2}=\left\{q \mid p \sim_{2} q\right.$ and $\left.p, q \in P_{1}\right\}, P_{2}=\left\{[p]_{2} \mid p \in P_{1}\right\}$ and $G_{2}=G_{1} / \sim_{2}$ the space obtained from G_{1} by identifying each equivalence class of P_{1}. Then we define a continuous map $f_{2}: G_{2} \rightarrow G_{2}$ such that $\left.f_{2}\right|_{G_{2} \backslash P_{2}}=\left.f_{1}\right|_{G_{1} \backslash P_{1}}=\left.f\right|_{G \backslash P}$ and $f_{2}\left([p]_{2}\right)=\left[f_{1}(p)\right]_{2}$ for $[p]_{2} \in P_{2}$. In the same way, we can obtain the space G_{ℓ} and a continuous map $f_{\ell}: G_{\ell} \rightarrow G_{\ell}$ for $\ell \geqslant 1$. Since P is finite, there is some natural number m such that $f_{m}: G_{m} \rightarrow G_{m}$ is point-wise P-expansive. There exists a semi-conjugacy π_{i} between $\left(G_{i-1}, f_{i-1}\right)$ and $\left(G_{i}, f_{i}\right)$ for $i=1,2, \ldots, m$, where $\left(G_{0}, f_{0}\right)=(G, f)$. We will construct Z and π^{\prime} in Theorem 3.4 by the use of the
point-wise P_{m}-expansiveness of f_{m}.

By the argument above, we may proceed with our construction, under the assumption that f is point-wise P-expansive, in the rest part of this section.

Let $S(G, P) \backslash P=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ and $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. We will express the relation of elements of $S(G, P)$ as follows: If $p, q \in P$ and $f(p)=q$, then $p \rightarrow q$. This arrow \rightarrow defines the Markov graph P_{\rightarrow} on P (see Section 4). If $C_{i}, C_{j} \in S(G, P) \backslash P$ and $C_{j} \subset f\left(C_{i}\right)$, then $C_{i} \rightarrow C_{j}$. If $f\left(C_{i}\right) \cap C_{j} \neq \emptyset$, then $C_{i} \rightharpoonup C_{j}$. These arrows \rightarrow and \rightarrow define the Markov graphs M_{\rightarrow} and M_{\rightarrow} of elements of $S(G, P) \backslash P$, respectively. Note that \rightarrow implies \rightarrow.

Now we will construct a new space X_{\rightarrow} by using the Markov graphs M_{\rightarrow} and P_{\rightarrow}. First we will construct a subspace X which is the union of 3 -dimensional balls $B_{1}, B_{2}, \ldots, B_{n}$ in the Euclidean 3-dimensional space \mathbb{E}^{3} by regarding elements $C_{1}, C_{2}, \ldots, C_{n}$ of $S(G, P) \backslash P$ as 3 -dimensional balls $B_{1}, B_{2}, \ldots, B_{n}$ of \mathbb{E}^{3}. That is to say, $X=\bigcup_{i=1}^{n} B_{i}$, where the relationship of B_{i} and B_{j} is decided as follows: If $\operatorname{cl}\left(C_{i}\right) \cap \mathrm{cl}\left(C_{j}\right)=\emptyset$ for $C_{i}, C_{j} \in S(G, P) \backslash P$, then $B_{i} \cap B_{j}=\emptyset$. And if $\operatorname{cl}\left(C_{i}\right) \cap \operatorname{cl}\left(C_{j}\right)=\left\{q_{1}, q_{2}, \ldots, q_{\ell}\right\} \subset P$, then $B_{i} \cap B_{j}=\operatorname{Bd}\left(B_{i}\right) \cap \operatorname{Bd}\left(B_{j}\right)=\left\{q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{\ell}^{\prime}\right\}$, where $\operatorname{Bd}(B)$ is the boundary of B. Without confusion, we can express elements of $\operatorname{cl}\left(C_{i}\right) \cap \operatorname{cl}\left(C_{j}\right)$ and $B_{i} \cap B_{j}$ in a similar way. And for each $p \in\left(P \cap \operatorname{cl}\left(C_{i}\right)\right) \backslash \bigcup\left\{\operatorname{cl}\left(C_{j}\right) \cap \operatorname{cl}\left(C_{j^{\prime}}\right) \mid j \neq j^{\prime}\right.$ and $\left.1 \leqslant j, j^{\prime} \leqslant n\right\}$, we take a corresponding point $p^{\prime} \in \operatorname{Bd}\left(B_{i}\right) \backslash \bigcup\left\{B_{j} \cap B_{j^{\prime}} \mid j \neq j^{\prime}\right.$ and $\left.1 \leqslant j, j^{\prime} \leqslant n\right\}$. For simplicity, we set $p^{\prime}=p \in P$ (see Fig. 1).

Put $X_{0}=X$. We will construct a subspace X_{1} contained in X_{0} by using the Markov graph M_{\rightarrow} and P_{\rightarrow}. For each $i=1,2, \ldots, n$, we have an embedding $h_{i}: X \hookrightarrow B_{i}$ such that
(1) $h_{i}(X) \cap \operatorname{Bd}\left(B_{i}\right) \subset P$, and
(2) for each $p, q \in P$ with $p \in \operatorname{Bd}\left(B_{i}\right)$ and $p \rightarrow q, h_{i}(q)=p \in \operatorname{Bd}\left(B_{i}\right)$.

If $C_{i} \rightharpoonup C_{j}\left(C_{i}, C_{j} \in S(G, P) \backslash P\right)$ in the Markov graph M_{\rightarrow}, then let $B_{i, j}=h_{i}\left(B_{j}\right)$ which is a copy of B_{j}. If $C_{i} \nrightarrow C_{j}$, then $B_{i, j}=\emptyset$. Let

Fig. 1.

Fig. 2.

$$
\begin{aligned}
& Y_{i}=\bigcup_{j=1}^{n} B_{i, j}, \quad \boldsymbol{B}_{i}=\left\{B_{j} \mid C_{i} \rightharpoonup C_{j}\right\} \quad \text { and } \\
& \left(\bigcup \boldsymbol{B}_{i}\right) \cap P=\left\{p_{t(i: 1)}, p_{t(i: 2)}, \ldots, p_{t(i: k(i))}\right\},
\end{aligned}
$$

where $t(i: \ell)$ and $k(i)$ are natural numbers with $1 \leqslant t(i: \ell), k(i) \leqslant k(1 \leqslant \ell \leqslant k(i))$. And put $h_{i}\left(p_{t(i: \ell)}\right)=p_{i, t(i: \ell)}$. Then we obtain a connected subset $X_{1}=Y_{1} \cup Y_{2} \cup \cdots \cup Y_{n}$ (see Fig. 2).

Similarly, we will construct a subspace X_{2} in X_{1}. Let $h_{i_{0}, i_{1}}: X \hookrightarrow B_{i_{0}, i_{1}}$ be an embedding such that
(1) $h_{i_{0}, i_{1}}(X) \cap \operatorname{Bd}\left(B_{i_{0}, i_{1}}\right) \subset h_{i_{0}}(P)$, and
(2) for each $p_{i_{0}, j} \in \operatorname{Bd}\left(B_{i_{0}, i_{1}}\right) \cap h_{i_{0}}(P)$ and $q \in P$ with $p_{j} \rightarrow q$, $h_{i_{0}, i_{1}}(q)=p_{i_{0}, j} \in$ $\operatorname{Bd}\left(B_{i_{0}, i_{1}}\right)$.
If $C_{i_{1}} \rightharpoonup C_{j}$ in the Markov graph M_{\rightharpoonup}, then let $B_{i_{0}, i_{1}, j}=h_{i_{0}, i_{1}}\left(B_{j}\right)$. And if $C_{i_{1}} \not \perp C_{j}$, then $B_{i_{0}, i_{1}, j}=\emptyset$. Let $Y_{i_{0}, i_{1}}=\bigcup_{j=1}^{n} B_{i_{0}, i_{1}, j}, \boldsymbol{B}_{i_{1}}=\left\{B_{j} \mid C_{i_{1}} \rightharpoonup C_{j}\right\}$ and $\left(\bigcup \boldsymbol{B}_{i_{1}}\right) \cap P=$ $\left\{p_{t\left(i_{0}, i_{1}: 1\right)}, p_{t\left(i_{0}, i_{1}: 2\right)}, \ldots, p_{t\left(i_{0}, i_{1}: k\left(i_{0}, i_{1}\right)\right)}\right.$. Put $h_{i_{0}, i_{1}}\left(p_{t\left(i_{0}, i_{1}: j\right)}\right)=p_{i_{0}, i_{1}, t\left(i_{0}, i_{1}: j\right)}(1 \leqslant j \leqslant$ $t\left(i_{0}, i_{1}: k\left(i_{0}, i_{1}\right)\right)$). Then we obtain $X_{2}=\bigcup\left\{Y_{i_{0}, i_{1}} \mid 1 \leqslant i_{0}, i_{1} \leqslant n\right\}$ (see Fig. 3).

When this operation is repeated inductively, we obtain $X_{0} \supset X_{1} \supset X_{2} \supset \cdots$ and a subspace $X_{\rightarrow}=\bigcap_{i=0}^{\infty} X_{i}$ of \mathbb{E}^{3}. Note that X_{Δ} is connected.

Fig. 3.
Next let $X_{1}^{\prime}, X_{2}^{\prime}, \ldots$ be subspaces constructed in a similar way on basis of the Markov graph M_{\rightarrow}. Then we obtain a subspace $X_{\rightarrow}=\bigcap_{i=1}^{\infty} X_{i}^{\prime}$ of \mathbb{E}^{3}. Note that X_{\rightarrow} is not always connected.

By using the construction of X_{-}, we show that $\lim _{m \rightarrow \infty} \operatorname{diam}\left(B_{i_{0}, i_{1}, \ldots, i_{m}}\right)=0$. Since we have assumed that f is point-wise P-expansive, for any distinct points p, q of P there exists a non-negative integer $N_{p, q}$ such that $A \cap\left(P \backslash\left\{f^{N_{p, q}}(p), f^{N_{p, q}}(q)\right\}\right) \neq \emptyset$ for any $\operatorname{arc} A$ in G between $f^{N_{p, q}}(p)$ and $f^{N_{p, q}}(q)$. Let $N=\max \left\{N_{p, q} \mid p, q \in P\right.$ and $\left.p \neq q\right\}$. Let m be a natural number and $B_{i_{0}, i_{1}, \ldots, i_{m}}$ a 3 -dimensional ball from the construction of X_{m}. For any natural numbers $j_{m+1}, j_{m+2}, \ldots, j_{m+N}\left(1 \leqslant j_{m+1}, j_{m+2}, \ldots, j_{m+N} \leqslant\right.$ n), where $n=\operatorname{Card}(S(G, P) \backslash P)$, the 3 -dimensional ball $B_{i_{0}, i_{1}, \ldots, i_{m}, j_{m+1}, j_{m+2}, \ldots, j_{m+N}}$ from the constructing of X_{m+N} cannot contain two or more points of $\bigcup\left\{B_{i_{0}, i_{1}, \ldots, i_{m}} \cap\right.$ $B_{\ell_{0}, \ell_{1}, \ldots, \ell_{m}} \mid 1 \leqslant \ell_{0}, \ell_{1}, \ldots, \ell_{m} \leqslant n$ and $\left.\left(\ell_{0}, \ell_{1}, \ldots, \ell_{m}\right) \neq\left(i_{0}, i_{1}, \ldots, i_{m}\right)\right\}$. Suppose that there exist distinct points x, y of $\bigcup\left\{B_{i_{0}, i_{1}, \ldots, i_{m}} \cap B_{\ell_{0}, \ell_{1}, \ldots, \ell_{m}} \mid 1 \leqslant \ell_{0}, \ell_{1}, \ldots, \ell_{m} \leqslant n\right.$ and $\left.\left(\ell_{0}, \ell_{1}, \ldots, \ell_{m}\right) \neq\left(i_{0}, i_{1}, \ldots, i_{m}\right)\right\}$ such that $x, y \in B_{i_{0}, i_{1}, \ldots, i_{m}, j_{m+1}, \ldots, j_{m+N}}$. Put $x=$ $p_{i_{0}, i_{1}, \ldots, i_{m-1}, s}=h_{i_{0}, i_{1}, \ldots, i_{m-1}}\left(p_{s}\right)$ and $y=p_{i_{0}, i_{1}, \ldots, i_{m-1}, t}=h_{i_{0}, i_{1}, \ldots, i_{m-1}}\left(p_{t}\right)$. Then $p_{s}, p_{t} \in$ $P \cap B_{i_{m}}$. By the construction, for each $i=0,1, \ldots, N$, there exists an arc A_{i} in G between $f^{i}\left(p_{s}\right)$ and $f^{i}\left(p_{t}\right)$ such that $A_{i} \cap P=\left\{f^{i}\left(p_{s}\right), f^{i}\left(p_{t}\right)\right\}$. This contradicts the definition of N. Thus any two points $x, y \in \bigcup\left\{B_{i_{0}, i_{1}, \ldots, i_{m}} \cap B_{\ell_{0}, \ell_{1}, \ldots, \ell_{m}} \mid 1 \leqslant \ell_{0}, \ell_{1}, \ldots, \ell_{m} \leqslant n\right.$ and $\left.\left(\ell_{0}, \ell_{1}, \ldots, \ell_{m}\right) \neq\left(i_{0}, i_{1}, \ldots, i_{m}\right)\right\}$ are connected by the union of two or more 3-dimensional balls $B_{i_{0}, i_{1}, \ldots, i_{m}, j_{m+1}, \ldots, j_{m+N}}\left(1 \leqslant j_{m+1}, \ldots, j_{m+N} \leqslant n\right)$. Hence we may assume that

$$
\operatorname{diam}\left(B_{i_{0}, i_{1}, \ldots, i_{m}, j_{m+N}, \ldots, j_{m+N}}\right) \leqslant \frac{1}{2} \operatorname{diam}\left(B_{i_{0}, i_{1}, \ldots, i_{m}}\right) .
$$

Thus we can suppose that

$$
\lim _{n \rightarrow \infty} \operatorname{diam}\left(B_{i_{0}, i_{1}, \ldots, i_{n}}\right)=0
$$

(see Fig. 4).

Fig. 4.

3. Construction of Z

Let G be a graph, $f: G \rightarrow G$ a continuous map, $P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$ a finite subset of G such that $f(P) \subset P$ and $S(G, P) \backslash P=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$. We may also assume that f is point-wise P-expansive in this section from the argument in Section 2. And let X_{\rightarrow}, X_{\rightharpoonup} be the above spaces constructed by the Markov graphs $\left(M_{\rightarrow}, P_{\rightarrow}\right),\left(M_{\rightharpoonup}, P_{\rightharpoonup}\right)$ on $S(G, P)$, respectively.

Theorem 3.1. The subspace X_{\rightarrow} of \mathbb{E}^{3} is a regular continuum.
Proof. Let $\varepsilon>0$ and $x \in X_{-}$. As $\lim _{m \rightarrow \infty} \operatorname{diam}\left(B_{i_{0}, i_{1}, \ldots, i_{m}}\right)=0$, for an ε-neighborhood $U_{\varepsilon}(x)$ of x in X_{\rightharpoonup} there exists a non-negative integer ℓ such that $B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\rightharpoonup} \subset U_{\varepsilon}(x)$ for any 3-dimensional ball $B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ containing x. Let

$$
B=\bigcup\left\{B_{i_{0}, i_{1}, \ldots, i_{\ell}} \mid x \in B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\rightharpoonup} \subset U_{\varepsilon}(x)\right\}
$$

Then $B \cap X_{\rightharpoonup}$ is a neighborhood of x in X_{\rightharpoonup} such that $B \cap X_{\rightharpoonup} \subset U_{\varepsilon}(x)$. By the construction of X_{-}, the boundary of B has finite cardinality. Thus X_{-}is a regular continuum.

We define a map $\pi: G \rightarrow X_{\rightharpoonup}$ as follows: Given $x \in G$, if $f^{\ell}(x) \in \operatorname{cl}\left(C_{i_{\ell}}\right)$ for any $\ell=0,1,2, \ldots$, then $\pi(x)=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, i_{2}, \ldots, i_{\ell}}$. We will investigate the uniqueness of $\pi(x)$ for each $x \in G$. Let $\left\{i_{\ell}\right\}_{\ell \geqslant 0},\left\{j_{\ell}\right\}_{\ell \geqslant 0}$ be sequences of natural numbers such that $\left\{i_{\ell}\right\}_{\ell \geqslant 0} \neq\left\{j_{\ell}\right\}_{\ell \geqslant 0}, f^{\ell}(x) \in \operatorname{cl}\left(C_{i_{\ell}}\right) \cap \operatorname{cl}\left(C_{j_{\ell}}\right)$ for each $\ell \geqslant 0$ and $1 \leqslant i_{\ell}, j_{\ell} \leqslant n$. We will show that

$$
\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{\ell}}=\bigcap_{\ell=0}^{\infty} B_{j_{0}, j_{1}, \ldots, j_{\ell}}
$$

Let

$$
m=\min \left\{\ell \mid C_{i_{\ell}} \neq C_{j_{\ell}}\right\}
$$

then $f^{m}(x) \in P$. We put $x^{\prime}=p_{i_{0}, i_{1}, \ldots, i_{m-1}, t}$, where $p_{i_{0}, i_{1}, \ldots, i_{m-1}, t} \in B_{i_{0}, i_{1}, \ldots, i_{m-1}, i_{m}} \cap$ $B_{j_{0}, j_{1}, \ldots, j_{m-1}, j_{m}}$ and $p_{t} \in P$. Since $f\left(p_{t}\right) \in \operatorname{cl}\left(C_{i_{m+1}}\right) \cap \operatorname{cl}\left(C_{j_{m+1}}\right), p_{i_{0}, i_{1}, \ldots, i_{m-1}, t} \in$

Fig. 5.
$B_{i_{0}, i_{1}, \ldots, i_{m-1}, i_{m}, i_{m+1}} \cap B_{j_{0}, j_{1}, \ldots, j_{m-1}, j_{m}, j_{m+1}}$ by the construction of X_{m+1}. Similarly, since $f^{2}\left(p_{t}\right) \in \operatorname{cl}\left(C_{i_{m+2}}\right) \cap \operatorname{cl}\left(C_{j_{m+2}}\right), p_{i_{0}, i_{1}, \ldots, i_{m-1}, t} \in B_{i_{0}, i_{1}, \ldots, i_{m+2}} \cap B_{j_{0}, j_{1}, \ldots, j_{m+2}}$. Inductively, for each $\ell \geqslant 0, p_{i_{0}, i_{1}, \ldots, i_{m-1}, t} \in B_{i_{0}, i_{1}, \ldots, i_{m+\ell}} \cap B_{j_{0}, j_{1}, \ldots, j_{m+\ell}}$. As $\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{m+\ell}}$ and $\bigcap_{\ell=0}^{\infty} B_{j_{0}, j_{1}, \ldots, j_{m+\ell}}$ are degenerate,

$$
\left\{p_{i_{0}, i_{1}, \ldots, i_{m-1}, t}\right\}=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{m+\ell}}=\bigcap_{\ell=0}^{\infty} B_{j_{0}, j_{1}, \ldots, j_{m+\ell}} .
$$

Thus we can define

$$
\{\pi(x)\}=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{m+\ell}}=\bigcap_{\ell=0}^{\infty} B_{j_{0}, j_{1}, \ldots, j_{m+\ell}}=x^{\prime}
$$

(see Fig. 5).
Lemma 3.2. $\pi: G \rightarrow X_{\rightarrow}$ is continuous.
Proof. Let $x \in G$ and V be a neighborhood of $\pi(x)$ in X_{-}.
Case 1. Assume that $f^{\ell}(x) \notin P$ for any $\ell=0,1,2, \ldots$ and $\{\pi(x)\}=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{\ell}}$. There exists a non-negative integer ℓ such that $B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\rightarrow} \subset V$, where $B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ is a 3 -dimensional ball containing $\pi(x)$. Since $C_{i_{0}, i_{1}, \ldots, i_{\ell}}=\left\{x \in G \mid x \in C_{i_{0}}, f(x) \in\right.$ $\left.C_{i_{1}}, \ldots, f^{\ell}(x) \in C_{i_{\ell}}\right\}$ is an open set containing x and $\pi\left(C_{i_{0}, i_{1}, \ldots, i_{\ell}}\right) \subset B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\rightarrow}$, π is continuous at x.

Case 2. Assume that there exists $m=\min \left\{\ell \mid f^{\ell}(x) \in P\right\}<\infty$. There exists $\ell>m$ such that $B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\rightarrow} \subset V$ for each $B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ containing $\pi(x)$. Let $\boldsymbol{C}_{\ell}=\left\{C_{i_{0}, i_{1}, \ldots, i_{\ell}} \mid 1 \leqslant\right.$ $\left.i_{0}, i_{1}, \ldots, i_{\ell} \leqslant \operatorname{Card}(S(G, P))\right\}$ and $U=\bigcup\left\{C \in \boldsymbol{C}_{\ell} \mid x \in \operatorname{cl}(C)\right\}$. Since f is continuous, U is a neighborhood of x such that $\pi(U) \subset V$. Thus π is continuous.

Now we will put $Z=\pi(G)$. Then $X_{\rightarrow} \subset Z \subset X_{\rightarrow}$. In general it is difficult to recognize the precise structure of Z, but by the above relation $X_{\rightarrow} \subset Z \subset X_{\rightarrow}$, we can realize the approximate structure of Z. Since X_{\rightarrow} is regular, Z is also regular.

Note that by the construction, if for any element $C \in S(G, P) \backslash P$, there exist finitely many elements $C_{1}, C_{2}, \ldots, C_{m}$ of $S(G, P)$ such that $f(C)=\bigcup_{i=1}^{m} C_{i}$, then $X_{\rightarrow}=Z=$ X_{\rightarrow}.

Define a map $g: X_{\rightarrow} \rightarrow X_{\rightarrow}$ as follows: If $\{x\}=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{\ell}}$, then $\{g(x)\}=$ $g\left(\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{\ell}}\right)=\bigcap_{\ell=1}^{\infty} B_{i_{1}, i_{2}, \ldots, i_{\ell}}$. We can investigate the uniqueness of g as we did that of π. Note that $g(Z) \subset Z$.

Lemma 3.3. $g: X_{\rightarrow} \rightarrow X_{\rightharpoonup}$ is continuous.
Proof. Let $x \in X_{\rightarrow}$ and V be a neighborhood of $g(x)$ in X_{-}. Then there exists a nonnegative integer ℓ such that $B_{i_{0}, i_{1}, \ldots, i_{\ell}} \cap X_{\lrcorner} \subset V$ for any 3-dimensional ball $B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ containing $g(x)$. Let $B=\bigcup\left\{B_{j_{0}, j_{1}, \ldots, j_{\ell+1}} \mid x \in B_{j_{0}, j_{1}, \ldots, j_{\ell+1}}\right\}$. Then B is a neighborhood of x and $g\left(B \cap X_{-}\right) \subset V$. Thus g is continuous.

The following is the main theorem in this paper.
Theorem 3.4. Let G be a graph, $f: G \rightarrow G$ a continuous map and P a finite subset of G such that $f(P) \subset P$. Then there exist a regular continuum Z, a continuous map $g: Z \rightarrow Z$ and a semi-conjugacy $\pi: G \rightarrow Z$ such that
(1) g is $\pi(P)$-expansive, and
(2) if $p, q \in P$ and Q is a subset of P with $A \cap Q \neq \emptyset$ for any arc A in G between p and q, then $A^{\prime} \cap \pi(Q) \neq \emptyset$ for any arc A^{\prime} in Z between $\pi(p)$ and $\pi(q)$.
In addition, f is point-wise P-expansive if and only if $\left.\pi\right|_{P}$ is one-to-one.
Proof. Let π and g be the above maps. Let $x \in G$ with $f^{\ell}(x) \in \operatorname{cl}\left(C_{i_{\ell}}\right)$ for $\ell=0,1,2, \ldots$. Then

$$
\{\pi(x)\}=\bigcap_{\ell=0}^{\infty} B_{i_{0}, i_{1}, \ldots, i_{\ell}} \quad \text { and } \quad\{g \circ \pi(x)\}=\bigcap_{\ell=1}^{\infty} B_{i_{1}, i_{2}, \ldots, i_{\ell}}=\{\pi \circ f(x)\} .
$$

Thus π is a semi-conjugacy between (G, f) and (Z, g).
We will show that (1) g is $\pi(P)$-expansive. Let x, y be distinct points of Z. There exists a 3 -dimensional ball $B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ such that $x, y \in B_{i_{0}, i_{1}, \ldots, i_{\ell-1}}, x \in B_{i_{0}, i_{1}, \ldots, i_{\ell}}$ and $y \notin B_{i_{0}, i_{1}, \ldots, i_{\ell}}$. Then $g^{\ell}(x) \in B_{i_{\ell}}$ and $g^{\ell}(x) \notin B_{i_{\ell}}$. Thus $I_{\pi(P), g}(x) \neq I_{\pi(P), g}(y)$.

By the construction of X_{\rightarrow}, we can easily check (2).
Proposition 3.5. Let G be a graph, $f: G \rightarrow G$ a continuous map and P the set of vertices of G with $f(P) \subset P$. If f is point-wise P-expansive and $\left.f\right|_{[p, q]}$ is one-to-one for each edge $[p, q]$ between p and q, then Z is homeomorphic to G.

Proof. Let $p, q \in P$ and $[p, q]$ be the edge between p and q. Since $\left.f\right|_{[p, q]}$ is one-toone, $f([p, q])$ is an arc between $f(p)$ and $f(q)$. Let $\left\{C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{\ell}}\right\}$ be the set of elements of $S(G, P) \backslash P$ which is contained in $f([p, q])$. As f is point-wise P-expansive, by the construction of X the 3 -dimensional balls $B_{m_{1}}, B_{m_{2}}, \ldots, B_{m_{\ell}}$ corresponding to $C_{m_{1}}, C_{m_{2}}, \ldots, C_{m_{\ell}}$ form a chain between $\pi(p)$ and $\pi(q)$, i.e., $B_{m_{i}} \cap B_{m_{j}} \neq \emptyset$ if and only if $|i-j| \leqslant 1$. Similarly, by the construction of X_{1}, finitely many smaller balls form a chain in each ball $B_{m_{i}}(i=1,2, \ldots, \ell)$, too. When we repeat this operation, $\pi([p, q])$ is an arc between $\pi(p)$ and $\pi(q)$. Thus Z is homeomorphic to G.

Remark. In Theorem 3.4, we can obtain the same result by using a graph-separated continuum instead of a graph.

4. Examples

In this section, a few concrete examples will be given to clarify the explanation given so far.

Example 4.1. Let $G=[0,1]$ be the unit interval and $P=\left\{\frac{2}{7}, \frac{4}{7}, \frac{6}{7}\right\}$. We will define a continuous map f of G such that $f(x)=2 x$ (if $0 \leqslant x \leqslant \frac{1}{2}$) and $f(x)=$ $-2 x+2$ (if $\frac{1}{2} \leqslant x \leqslant 1$). This map f is point-wise P-expansive. Then $S(G, P)=$ $\left\{\left[0, \frac{2}{7}\right),\left\{\frac{2}{7}\right\},\left(\frac{2}{7}, \frac{4}{7}\right),\left\{\frac{4}{7}\right\},\left(\frac{4}{7}, \frac{6}{7}\right),\left\{\frac{6}{7}\right\},\left(\frac{6}{7}, 1\right]\right\}$, where put $C_{1}=\left[0, \frac{2}{7}\right), C_{2}=\left(\frac{2}{7}, \frac{4}{7}\right), C_{3}=$ $\left(\frac{4}{7}, \frac{6}{7}\right), C_{4}=\left(\frac{6}{7}, 1\right], p_{1}=\frac{2}{7}, p_{2}=\frac{4}{7}$ and $p_{3}=\frac{6}{7}$. The Markov graph of $S(G, P) \backslash P$ and P is as in Fig. 6.

Fig. 6.
The above Markov graphs ($M_{\rightarrow}, P_{\rightarrow}$) will give information useful in constructing the space Z. Let $X=B_{1} \cup B_{2} \cup B_{3} \cup B_{4}$ and $h_{i}: X \hookrightarrow B_{i}(i=1,2,3,4)$ be an embedding such that (1) $h_{i}(X) \cap \operatorname{Bd}\left(B_{i}\right) \subset P$, and (2) for each $p, q \in P$ with $p \in \operatorname{Bd}\left(B_{i}\right)$ and $p \rightarrow q$, $h_{i}(q)=p \in \operatorname{Bd}\left(B_{i}\right)$. Then we describe the union Y_{i} of finitely many balls in each ball B_{i}. For example, when $i=2, Y_{2}=B_{2,3} \cup B_{2,4} \subset h_{2}(X), p_{1}=h_{2}\left(p_{2}\right)$ and $p_{2}=h_{2}\left(p_{3}\right)$, since $C_{2} \rightarrow C_{3}, C_{2} \rightarrow C_{4}, p_{1} \rightarrow p_{2}$ and $p_{2} \rightarrow p_{3}$. In this way, we obtain a subspace $X_{1}=Y_{1} \cup Y_{2} \cup Y_{3} \cup Y_{4}$ of \mathbb{E}^{3} (see Fig. 7).

Fig. 7.

Next we describe finitely many 3-dimensional balls in X_{1}. Let $h_{i, j}: X \hookrightarrow B_{i, j}$ be an embedding such that (1) $h_{i, j}(X) \cap \operatorname{Bd}\left(B_{i, j}\right) \subset h_{i}(P)$, and (2) for each $p, q \in P$ with $h_{i}(p) \in \operatorname{Bd}\left(B_{i, j}\right)$ and $f^{2}(p)=q, h_{i, j}(q)=h_{i}(p)$. Then we describe the union $Y_{i, j}$ of finitely many balls in $B_{i, j}$. For example, when $i=2$ and $j=3, h_{2,3}(X)=B_{2,3,2} \cup B_{2,3,3}=$ $Y_{2,3}, h_{2}\left(p_{2}\right)=h_{2,3}\left(p_{1}\right)$ and $h_{2}\left(p_{3}\right)=h_{2,3}\left(p_{2}\right)$, since $C_{3} \rightarrow C_{2}, C_{3} \rightarrow C_{3}, f^{2}\left(p_{2}\right)=p_{1}$ and $f^{2}\left(p_{3}\right)=p_{2}$. Put

$$
X_{2}=\bigcup_{i, j=1}^{4} Y_{i, j}
$$

(see Fig. 8).

Fig. 8.
Similarly, we can describe $X_{i}(i=3,4, \ldots)$. Finally the space $Z=\bigcap_{i=1}^{\infty} X_{i}$ is the universal dendrite (see Fig. 9).

Fig. 9.
Example 4.2. Let $G=[0,1]$ be the unit interval, $P=\left\{0, \frac{1}{2}, 1\right\}$ and f the same continuous map of G as in Example 4.1. Then $X_{\rightarrow}=Z=X_{\Delta}$ and Z is homeomorphic to $G=[0,1]$. This implies that the structure of Z depends on the way of selecting the points of P (see Proposition 3.5).

Example 4.3. Let $G=[0,1]$ be the unit interval and $P=\left\{\frac{1}{2}, \frac{3}{4}, 1\right\}$. We will define a continuous map f of G as follows: $f(x)=4 x\left(0 \leqslant x \leqslant \frac{1}{4}\right), f(x)=-2 x+\frac{3}{2}\left(\frac{1}{4} \leqslant x \leqslant \frac{1}{2}\right)$, $f(x)=2 x-\frac{1}{2}\left(\frac{1}{2} \leqslant x \leqslant \frac{3}{4}\right)$ and $f(x)=-2 x+\frac{5}{2}\left(\frac{3}{4} \leqslant x \leqslant 1\right)$. Then

$$
S(G, P)=\left\{\left[0, \frac{1}{2}\right),\left\{\frac{1}{2}\right\},\left(\frac{1}{2}, \frac{3}{4}\right),\left\{\frac{3}{4}\right\},\left(\frac{3}{4}, 1\right),\{1\}\right\}
$$

where put $C_{1}=\left[0, \frac{1}{2}\right), C_{2}=\left(\frac{1}{2}, \frac{3}{4}\right), C_{3}=\left(\frac{3}{4}, 1\right), p_{1}=\frac{1}{2}, p_{2}=\frac{3}{4}$ and $p_{3}=1$. The Markov graph of $S(G, P) \backslash P$ and P is as in Fig. 10.

Fig. 10.

From the above Markov graph of $S(G, P) \backslash P$, we know that $B_{2,1}=\emptyset$ and $B_{3,1}=\emptyset$. Furthermore, the Markov graph of P suggests the way of connection of each ball $B_{i, j}$, where $i, j=1,2,3$ (see Fig. 11).

Fig. 11.

Finally, Z is the following dendrite (see Fig. 12).

Fig. 12.

Example 4.4. Let G be the following graph, $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right\}$ a finite subset of G and $f: G \rightarrow G$ a continuous map. And assume that $f(\mathrm{cl}(C))=G$ for any $C \subset$ $S(G, P) \backslash P, f\left(p_{1}\right)=p_{1}=f\left(p_{4}\right), f\left(p_{3}\right)=p_{2}=f\left(p_{6}\right)$ and $f\left(p_{2}\right)=p_{3}=f\left(p_{5}\right)$. Note that f is point-wise P-expansive (see Fig. 13).

Then Z is the triangular Sierpinski curve (see Fig. 14).

References

[1] L. Alseda, S. Baldwin, J. Llibre, M. Misiurewicz, Entropy of transitive tree maps, Topology 36 (1997) 519-532.
[2] S. Baldwin, Toward a theory of forcing on maps of trees, in: Proc. Thirty Years After Sharkovskii's Theorem: New Perspectives, Internat. J. Bifurcation Chaos 5 (1995) 45-56.
[3] L.S. Block, W.A. Coppel, Dynamics in One Dimension, Lecture Notes in Math., Vol. 1513, Springer, Berlin, 1992.

[^0]: * Corresponding author. Email: arai@math.tsukuba.ac.jp.
 ${ }^{1}$ Email: hisakato@sakura.cc.tsukuba.ac.jp.
 ${ }^{2}$ Email: yokoi@math.tsukuba.ac.jp.

