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Abstract

In this paper, we prove the following: LetG be a graph,f :G→G a continuous map andP a
finite subset ofG such thatf (P ) ⊂ P . Then there exist a regular continuumZ, a continuous map
g :Z→ Z and a semi-conjugacyπ :G→ Z such that

(1) g is π(P )-expansive, and
(2) if p,q ∈ P andQ is a subset ofP with A ∩Q 6= ∅ for any arcA in G betweenp andq, then

A′ ∩ π(Q) 6= ∅ for any arcA′ in Z betweenπ(p) andπ(q).
In addition,f is point-wiseP -expansive if and only ifπ |P is one-to-one.
In this paper we are especially interested in the geometrical structure ofZ. Actually we can see

the complicated construction ofZ.  2000 Elsevier Science B.V. All rights reserved.
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1. Introduction and preliminaries

In recent years, there has been a growing interest in the study of the dynamical behavior
of continuous maps of a graph. Especially, one of the central questions in the theory
of dynamical systems is how to recognize “chaos”. The theme of this paper is how to
describe visually the chaoticity of continuous maps of a graph. To do this, for each graphG

and continuous mapf of G, we shall construct a new subspaceZ of the Euclidean
3-dimensional space and a continuous mapg of Z which (G,f ) is semi-conjugate to.
And we shall use the notion ofP -expansiveness in order to investigate how complicated
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the dynamical behavior off is. The fractal and complicated structure of the new spaceZ

implies the chaoticity off .
In [2] and [1, Theorem 4.1] the following result has been shown. LetD be a dendrite,

f :D→D a continuous map andP a finite subset ofD such thatf (P ) ⊂ P . Then there
exist a dendriteE, a mapg :E→E and a semi-conjugacyπ :D→E (i.e.,π ◦ f = g ◦π )
such that

(1) g is π(P )-expansive, and
(2) if x, y, z ∈ P andy ∈ [x, z] thenπ(y) ∈ [π(x),π(z)].

If, in addition, the Markov graph ofP has no basic intervals of order 0 and no loops of
order 1, thenπ |P is one-to-one.

In this paper we expand the above result to a graph. Our main theorem is as follows:

Theorem 3.4. LetG be a graph,f :G→G a continuous map andP a finite subset ofG
such thatf (P )⊂ P . Then there exist a regular continuumZ, a continuous mapg :Z→Z

and a semi-conjugacyπ :G→ Z such that
(1) g is π(P )-expansive, and
(2) if p,q ∈ P andQ is a subset ofP with A ∩Q 6= ∅ for any arcA in G betweenp

andq , thenA′ ∩ π(Q) 6= ∅ for any arcA′ in Z betweenπ(p) andπ(q).
In addition,f is point-wiseP -expansive if and only ifπ |P is one-to-one.

We will show this by using a more geometrical method than that of Baldwin. Our interest
is in what structureZ has. We can see visually thatZ is a subset of a 3-dimensional space
which has a fractal structure.

A continuumis a nonempty connected compact metric space. Agraph is a continuum
which can be written as the union of finitely many arcs any two of which are either disjoint
or intersect only in one or both of their end points. Adendrite is a locally connected,
uniquely arcwise connected continuum. A continuumX is said to beregular atx ∈ X if
for any neighborhoodU of x, there exists a neighborhoodV of x such thatV ⊂U and the
boundary ofV has finite cardinality. AndX is said to beregularprovided thatX is regular
at each of its points.

Let Xi be a compact metric space andfi :Xi→Xi a continuous map fori = 1,2. We
say that(X1, f1) is semi-conjugate(or conjugate, respectively) to(X2, f2) if there exists
a continuous map (or homeomorphism)π fromX1 ontoX2 such thatπ ◦ f1= f2 ◦π . We
call π asemi-conjugacy(or conjugacy).

Let G be a graph,f :G→ G a continuous map andP a finite subset ofG such that
f (P )⊂ P . Put

S(G,P )= P ∪ {C | C is a component ofG \ P}.
Givenx ∈G, the itinerary of x with respect toP andf , written IP,f (x) (or just I (x) if
P andf are obvious from context), is defined to be the unique infinite sequence(Cn)n>0

from S(G,P ) given by the rulef n(x) ∈ Cn for all n> 0. If no two points ofG have the
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same itinerary, thenf will be calledP -expansive.And f is point-wiseP -expansiveif for
eachp,q ∈ P , there exists some non-negative integerm such that

A∩ (P \ {f m(p),f m(q)}) 6= ∅
for each arcA in G betweenf m(p) andfm(q).

LetK be a continuum andP a finite subset ofK. Then we say thatP graph-separates
K if and only if there exists a finite setS(K,P ) of subsets ofK such that

(1) the element ofS(K,P ) partitionK, i.e., every point ofK is in exactly one member
of S(K,P ),

(2) for eachp ∈ P, {p} ∈ S(K,P ),
(3) for eachA ∈ S(K,P ), the closure ofA in K is arc-wise connected, and
(4) if A,B ∈ S(K,P ), then the closure ofA andB either have empty intersection or

intersect in only elements ofP .
Note that we can also defineP -expansive for a graph-separated continuum in a similar

way.

2. Constructions ofX→ andX⇀

Let G be a graph,f :G→ G a continuous map andP a finite subset ofG such that
f (P )⊂ P . We will construct new spacesX→ andX⇀ from P andf .

First we want to define an equivalence relation∼1 on P . Let p,q ∈ P . If for any
non-negative integeri, there exists an arcAi in G betweenf i(p) andf i(q) such that
Ai ∩ P = {f i(p), f i(q)}, then we putp ∼′1 q , whereAi may now consist of a single
point. Now, if forp,q ∈ P , there exist some pointsp1,p2, . . . , pk of P such that

p ∼′1 p1∼′1 p2∼′1 · · · ∼′1 pk ∼′1 q,
then we setp ∼1 q . This relation∼1 is an equivalence relation onP . Let [p]1 be the
equivalence class ofp, P1= {[p]1 | p ∈ P } andG1=G/∼1 the space obtained fromG by
identifying each equivalence class ofP . Then we define a continuous mapf1 :G1→G1

such thatf1|G1\P1 = f |G\P andf1([p]1) = [f (p)]1 for [p]1 ∈ P1. Similarly, if for any
p,q ∈ P1 and non-negative integeri, there exists an arcAi in G1 betweenf i1(p) and
f i1(q) such thatAi ∩ P1 = {f i1(p), f i1(q)}, then we putp ∼′2 q . And if there exist some
pointsp1,p2, . . . , pk of P1 such thatp ∼′2 p1 ∼′2 p2 ∼′2 · · · ∼′2 pk ∼′2 q , then we set
p ∼2 q . This relation∼2 is also an equivalence relation onP1. Let [p]2 = {q | p ∼2 q

andp,q ∈ P1}, P2 = {[p]2 | p ∈ P1} andG2 = G1/∼2 the space obtained fromG1 by
identifying each equivalence class ofP1. Then we define a continuous mapf2 :G2→G2

such thatf2|G2\P2 = f1|G1\P1 = f |G\P andf2([p]2)= [f1(p)]2 for [p]2 ∈ P2. In the same
way, we can obtain the spaceG` and a continuous mapf` :G`→G` for `> 1. SinceP is
finite, there is some natural numberm such thatfm :Gm→Gm is point-wiseP -expansive.
There exists a semi-conjugacyπi between(Gi−1, fi−1) and(Gi, fi) for i = 1,2, . . . ,m,
where(G0, f0) = (G,f ). We will constructZ andπ ′ in Theorem 3.4 by the use of the
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point-wisePm-expansiveness offm.
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By the argument above, we may proceed with our construction, under the assumption
thatf is point-wiseP -expansive, in the rest part of this section.

Let S(G,P ) \ P = {C1,C2, . . . ,Cn} andP = {p1,p2, . . . , pk}. We will express the
relation of elements ofS(G,P ) as follows: Ifp,q ∈ P andf (p)= q , thenp→ q . This
arrow→ defines the Markov graphP→ onP (see Section 4). IfCi,Cj ∈ S(G,P ) \P and
Cj ⊂ f (Ci), thenCi → Cj . If f (Ci) ∩ Cj 6= ∅, thenCi ⇀ Cj . These arrows→ and⇀
define the Markov graphsM→ andM⇀ of elements ofS(G,P ) \ P , respectively. Note
that→ implies⇀.

Now we will construct a new spaceX⇀ by using the Markov graphsM⇀ andP→. First
we will construct a subspaceX which is the union of 3-dimensional ballsB1,B2, . . . ,Bn

in the Euclidean 3-dimensional spaceE3 by regarding elementsC1,C2, . . . ,Cn of
S(G,P ) \ P as 3-dimensional ballsB1,B2, . . . ,Bn of E3. That is to say,X =⋃n

i=1Bi ,
where the relationship ofBi andBj is decided as follows: If cl(Ci) ∩ cl(Cj ) = ∅ for
Ci,Cj ∈ S(G,P ) \ P , thenBi ∩ Bj = ∅. And if cl(Ci) ∩ cl(Cj ) = {q1, q2, . . . , q`} ⊂ P ,
thenBi ∩ Bj = Bd(Bi) ∩ Bd(Bj ) = {q ′1, q ′2, . . . , q ′̀ }, where Bd(B) is the boundary ofB.
Without confusion, we can express elements of cl(Ci) ∩ cl(Cj ) andBi ∩ Bj in a similar
way. And for eachp ∈ (P ∩ cl(Ci)) \⋃{cl(Cj ) ∩ cl(Cj ′) | j 6= j ′ and 16 j, j ′ 6 n}, we
take a corresponding pointp′ ∈ Bd(Bi) \⋃{Bj ∩ Bj ′ | j 6= j ′ and 16 j, j ′ 6 n}. For
simplicity, we setp′ = p ∈ P (see Fig. 1).

PutX0 = X. We will construct a subspaceX1 contained inX0 by using the Markov
graphM⇀ andP→. For eachi = 1,2, . . . , n, we have an embeddinghi :X ↪→ Bi such
that

(1) hi(X) ∩Bd(Bi)⊂ P , and
(2) for eachp,q ∈ P with p ∈ Bd(Bi) andp→ q , hi(q)= p ∈ Bd(Bi).

If Ci ⇀Cj (Ci,Cj ∈ S(G,P )\P ) in the Markov graphM⇀, then letBi,j = hi(Bj )which
is a copy ofBj . If Ci 6⇀Cj , thenBi,j = ∅. Let
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Fig. 1.

Fig. 2.

Yi =
n⋃
j=1

Bi,j , Bi = {Bj | Ci ⇀Cj } and

(⋃
B i

)
∩ P = {pt(i:1), pt(i:2), . . . , pt(i:k(i))},

wheret (i : `) andk(i) are natural numbers with 16 t (i : `), k(i)6 k (16 `6 k(i)). And
puthi(pt(i:`))= pi,t (i:`). Then we obtain a connected subsetX1= Y1 ∪ Y2 ∪ · · · ∪ Yn (see
Fig. 2).

Similarly, we will construct a subspaceX2 in X1. Let hi0,i1 :X ↪→ Bi0,i1 be an
embedding such that

(1) hi0,i1(X) ∩Bd(Bi0,i1)⊂ hi0(P ), and
(2) for eachpi0,j ∈ Bd(Bi0,i1) ∩ hi0(P ) andq ∈ P with pj → q , hi0,i1(q) = pi0,j ∈

Bd(Bi0,i1).
If Ci1 ⇀ Cj in the Markov graphM⇀, then letBi0,i1,j = hi0,i1(Bj ). And if Ci1 6⇀Cj ,
thenBi0,i1,j = ∅. Let Yi0,i1 =

⋃n
j=1Bi0,i1,j , Bi1 = {Bj | Ci1 ⇀Cj } and (

⋃
B i1) ∩ P =

{pt(i0,i1:1), pt(i0,i1:2), . . . , pt(i0,i1:k(i0,i1))}. Put hi0,i1(pt(i0,i1:j)) = pi0,i1,t (i0,i1:j) (1 6 j 6
t (i0, i1 : k(i0, i1))). Then we obtainX2=⋃{Yi0,i1 | 16 i0, i16 n} (see Fig. 3).

When this operation is repeated inductively, we obtainX0 ⊃ X1 ⊃ X2 ⊃ · · · and a
subspaceX⇀ =

⋂∞
i=0Xi of E3. Note thatX⇀ is connected.



314 T. Arai et al. / Topology and its Applications 103 (2000) 309–321

Fig. 3.

Next letX′1,X′2, . . . be subspaces constructed in a similar way on basis of the Markov
graphM→. Then we obtain a subspaceX→ =

⋂∞
i=1X

′
i of E3. Note thatX→ is not always

connected.
By using the construction ofX⇀, we show that limm→∞ diam(Bi0,i1,...,im) = 0. Since

we have assumed thatf is point-wiseP -expansive, for any distinct pointsp,q of P there
exists a non-negative integerNp,q such thatA ∩ (P \ {f Np,q (p), f Np,q (q)}) 6= ∅ for any
arcA in G betweenf Np,q (p) andf Np,q (q). Let N =max{Np,q | p,q ∈ P andp 6= q}.
Let m be a natural number andBi0,i1,...,im a 3-dimensional ball from the construction
of Xm. For any natural numbersjm+1, jm+2, . . . , jm+N (1 6 jm+1, jm+2, . . . , jm+N 6
n), wheren = Card(S(G,P ) \ P), the 3-dimensional ballBi0,i1,...,im,jm+1,jm+2,...,jm+N
from the constructing ofXm+N cannot contain two or more points of

⋃{Bi0,i1,...,im ∩
B`0,`1,...,`m | 16 `0, `1, . . . , `m 6 n and(`0, `1, . . . , `m) 6= (i0, i1, . . . , im)}. Suppose that
there exist distinct pointsx, y of

⋃{Bi0,i1,...,im ∩ B`0,`1,...,`m | 1 6 `0, `1, . . . , `m 6 n
and (`0, `1, . . . , `m) 6= (i0, i1, . . . , im)} such thatx, y ∈ Bi0,i1,...,im,jm+1,...,jm+N . Put x =
pi0,i1,...,im−1,s = hi0,i1,...,im−1(ps) andy = pi0,i1,...,im−1,t = hi0,i1,...,im−1(pt ). Thenps,pt ∈
P ∩Bim . By the construction, for eachi = 0,1, . . . ,N , there exists an arcAi inG between
f i(ps) andf i(pt ) such thatAi ∩ P = {f i(ps), f i(pt )}. This contradicts the definition
of N . Thus any two pointsx, y ∈⋃{Bi0,i1,...,im ∩ B`0,`1,...,`m | 16 `0, `1, . . . , `m 6 n and
(`0, `1, . . . , `m) 6= (i0, i1, . . . , im)} are connected by the union of two or more 3-dimen-
sional ballsBi0,i1,...,im,jm+1,...,jm+N (16 jm+1, . . . , jm+N 6 n). Hence we may assume that

diam(Bi0,i1,...,im,jm+N ,...,jm+N )6
1

2
diam(Bi0,i1,...,im).

Thus we can suppose that

lim
n→∞diam(Bi0,i1,...,in )= 0

(see Fig. 4).
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Fig. 4.

3. Construction ofZ

Let G be a graph,f :G→ G a continuous map,P = {p1,p2, . . . , pk} a finite subset
of G such thatf (P )⊂ P andS(G,P ) \ P = {C1,C2, . . . ,Cn}. We may also assume that
f is point-wiseP -expansive in this section from the argument in Section 2. And letX→,
X⇀ be the above spaces constructed by the Markov graphs(M→,P→), (M⇀,P⇀) on
S(G,P ), respectively.

Theorem 3.1. The subspaceX⇀ ofE3 is a regular continuum.

Proof. Let ε > 0 andx ∈X⇀. As limm→∞ diam(Bi0,i1,...,im)= 0, for anε-neighborhood
Uε(x) of x in X⇀ there exists a non-negative integer` such thatBi0,i1,...,i` ∩X⇀ ⊂Uε(x)
for any 3-dimensional ballBi0,i1,...,i` containingx. Let

B =
⋃{

Bi0,i1,...,i` | x ∈Bi0,i1,...,i` ∩X⇀ ⊂Uε(x)
}
.

Then B ∩ X⇀ is a neighborhood ofx in X⇀ such thatB ∩ X⇀ ⊂ Uε(x). By the
construction ofX⇀, the boundary ofB has finite cardinality. ThusX⇀ is a regular
continuum. 2

We define a mapπ :G→ X⇀ as follows: Givenx ∈ G, if f `(x) ∈ cl(Ci`) for any
` = 0,1,2, . . . , then π(x) = ⋂∞`=0Bi0,i1,i2,...,i` . We will investigate the uniqueness of
π(x) for eachx ∈ G. Let {i`}`>0, {j`}`>0 be sequences of natural numbers such that
{i`}`>0 6= {j`}`>0, f `(x) ∈ cl(Ci`) ∩ cl(Cj`) for each` > 0 and 16 i`, j` 6 n. We will
show that

∞⋂
`=0

Bi0,i1,...,i` =
∞⋂
`=0

Bj0,j1,...,j` .

Let

m=min{` | Ci` 6= Cj`},
then fm(x) ∈ P . We put x ′ = pi0,i1,...,im−1,t , where pi0,i1,...,im−1,t ∈ Bi0,i1,...,im−1,im ∩
Bj0,j1,...,jm−1,jm and pt ∈ P . Since f (pt ) ∈ cl(Cim+1) ∩ cl(Cjm+1), pi0,i1,...,im−1,t ∈
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Fig. 5.

Bi0,i1,...,im−1,im,im+1 ∩ Bj0,j1,...,jm−1,jm,jm+1 by the construction ofXm+1. Similarly, since
f 2(pt ) ∈ cl(Cim+2) ∩ cl(Cjm+2), pi0,i1,...,im−1,t ∈ Bi0,i1,...,im+2 ∩ Bj0,j1,...,jm+2. Inductively,
for each` > 0, pi0,i1,...,im−1,t ∈ Bi0,i1,...,im+` ∩ Bj0,j1,...,jm+` . As

⋂∞
`=0Bi0,i1,...,im+` and⋂∞

`=0Bj0,j1,...,jm+` are degenerate,

{pi0,i1,...,im−1,t } =
∞⋂
`=0

Bi0,i1,...,im+` =
∞⋂
`=0

Bj0,j1,...,jm+` .

Thus we can define{
π(x)

}= ∞⋂
`=0

Bi0,i1,...,im+` =
∞⋂
`=0

Bj0,j1,...,jm+` = x ′

(see Fig. 5).

Lemma 3.2. π :G→X⇀ is continuous.

Proof. Let x ∈G andV be a neighborhood ofπ(x) in X⇀.
Case1. Assume thatf `(x) /∈ P for any ` = 0,1,2, . . . and{π(x)} =⋂∞`=0Bi0,i1,...,i` .

There exists a non-negative integer` such thatBi0,i1,...,i` ∩ X⇀ ⊂ V , whereBi0,i1,...,i`
is a 3-dimensional ball containingπ(x). SinceCi0,i1,...,i` = {x ∈ G | x ∈ Ci0, f (x) ∈
Ci1, . . . , f

`(x) ∈ Ci`} is an open set containingx andπ(Ci0,i1,...,i` ) ⊂ Bi0,i1,...,i` ∩ X⇀,
π is continuous atx.

Case2. Assume that there existsm=min{` | f `(x) ∈ P }<∞. There exists̀ >m such
thatBi0,i1,...,i` ∩X⇀ ⊂ V for eachBi0,i1,...,i` containingπ(x). Let C` = {Ci0,i1,...,i` | 16
i0, i1, . . . , i` 6 Card(S(G,P ))} andU =⋃{C ∈ C` | x ∈ cl(C)}. Sincef is continuous,
U is a neighborhood ofx such thatπ(U)⊂ V . Thusπ is continuous. 2

Now we will putZ = π(G). ThenX→ ⊂Z ⊂X⇀. In general it is difficult to recognize
the precise structure ofZ, but by the above relationX→ ⊂ Z ⊂ X⇀, we can realize the
approximate structure ofZ. SinceX⇀ is regular,Z is also regular.

Note that by the construction, if for any elementC ∈ S(G,P ) \ P , there exist finitely
many elementsC1,C2, . . . ,Cm of S(G,P ) such thatf (C) =⋃m

i=1Ci , thenX→ = Z =
X⇀.
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Define a mapg :X⇀ → X⇀ as follows: If {x} = ⋂∞`=0Bi0,i1,...,i` , then {g(x)} =
g(
⋂∞
`=0Bi0,i1,...,i` ) =

⋂∞
`=1Bi1,i2,...,i` . We can investigate the uniqueness ofg as we did

that ofπ . Note thatg(Z)⊂Z.

Lemma 3.3. g :X⇀→X⇀ is continuous.

Proof. Let x ∈ X⇀ andV be a neighborhood ofg(x) in X⇀. Then there exists a non-
negative integer̀ such thatBi0,i1,...,i` ∩ X⇀ ⊂ V for any 3-dimensional ballBi0,i1,...,i`
containingg(x). Let B =⋃{Bj0,j1,...,j`+1 | x ∈ Bj0,j1,...,j`+1}. ThenB is a neighborhood
of x andg(B ∩X⇀)⊂ V . Thusg is continuous. 2

The following is the main theorem in this paper.

Theorem 3.4. LetG be a graph,f :G→G a continuous map andP a finite subset ofG
such thatf (P )⊂ P . Then there exist a regular continuumZ, a continuous mapg :Z→Z

and a semi-conjugacyπ :G→ Z such that
(1) g is π(P )-expansive, and
(2) if p,q ∈ P andQ is a subset ofP with A ∩Q 6= ∅ for any arcA in G betweenp

andq , thenA′ ∩ π(Q) 6= ∅ for any arcA′ in Z betweenπ(p) andπ(q).
In addition,f is point-wiseP -expansive if and only ifπ |P is one-to-one.

Proof. Letπ andg be the above maps. Letx ∈G with f `(x) ∈ cl(Ci` ) for `= 0,1,2, . . . .
Then{

π(x)
}= ∞⋂

`=0

Bi0,i1,...,i` and
{
g ◦ π(x)}= ∞⋂

`=1

Bi1,i2,...,i` =
{
π ◦ f (x)}.

Thusπ is a semi-conjugacy between(G,f ) and(Z,g).
We will show that(1) g is π(P )-expansive. Letx, y be distinct points ofZ. There

exists a 3-dimensional ballBi0,i1,...,i` such thatx, y ∈ Bi0,i1,...,i`−1, x ∈ Bi0,i1,...,i` and
y /∈ Bi0,i1,...,i` . Theng`(x) ∈Bi` andg`(x) /∈Bi` . ThusIπ(P ),g(x) 6= Iπ(P ),g(y).

By the construction ofX⇀, we can easily check (2).2
Proposition 3.5. LetG be a graph,f :G→G a continuous map andP the set of vertices
of G with f (P ) ⊂ P . If f is point-wiseP -expansive andf |[p,q] is one-to-one for each
edge[p,q] betweenp andq , thenZ is homeomorphic toG.

Proof. Let p,q ∈ P and [p,q] be the edge betweenp andq . Sincef |[p,q] is one-to-
one,f ([p,q]) is an arc betweenf (p) andf (q). Let {Cm1,Cm2, . . . ,Cm`} be the set of
elements ofS(G,P ) \P which is contained inf ([p,q]). Asf is point-wiseP -expansive,
by the construction ofX the 3-dimensional ballsBm1,Bm2, . . . ,Bm` corresponding to
Cm1,Cm2, . . . ,Cm` form a chain betweenπ(p) andπ(q), i.e.,Bmi ∩ Bmj 6= ∅ if and only
if |i− j |6 1. Similarly, by the construction ofX1, finitely many smaller balls form a chain
in each ballBmi (i = 1,2, . . . , `), too. When we repeat this operation,π([p,q]) is an arc
betweenπ(p) andπ(q). ThusZ is homeomorphic toG. 2
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Remark. In Theorem 3.4, we can obtain the same result by using a graph-separated
continuum instead of a graph.

4. Examples

In this section, a few concrete examples will be given to clarify the explanation given so
far.

Example 4.1. Let G = [0,1] be the unit interval andP = {27, 4
7,

6
7}. We will de-

fine a continuous mapf of G such thatf (x) = 2x (if 0 6 x 6 1
2) and f (x) =

−2x + 2 (if 1
2 6 x 6 1). This mapf is point-wiseP -expansive. ThenS(G,P ) =

{[0, 2
7), {27}, (2

7,
4
7), {47}, (4

7,
6
7), {67}, (6

7,1]}, where putC1 = [0, 2
7), C2 = (2

7,
4
7), C3 =

(4
7,

6
7), C4 = (6

7,1], p1 = 2
7, p2 = 4

7 andp3 = 6
7. The Markov graph ofS(G,P ) \ P

andP is as in Fig. 6.

Fig. 6.

The above Markov graphs(M⇀,P→) will give information useful in constructing the
spaceZ. Let X = B1 ∪ B2 ∪ B3 ∪ B4 andhi :X ↪→ Bi (i = 1,2,3,4) be an embedding
such that(1) hi(X)∩Bd(Bi)⊂ P , and(2) for eachp,q ∈ P with p ∈ Bd(Bi) andp→ q ,
hi(q)= p ∈ Bd(Bi). Then we describe the unionYi of finitely many balls in each ballBi .
For example, wheni = 2, Y2 = B2,3 ∪ B2,4 ⊂ h2(X), p1 = h2(p2) and p2 = h2(p3),
sinceC2→ C3, C2→ C4, p1→ p2 andp2→ p3. In this way, we obtain a subspace
X1= Y1 ∪ Y2 ∪ Y3 ∪ Y4 of E3 (see Fig. 7).

Fig. 7.
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Next we describe finitely many 3-dimensional balls inX1. Let hi,j :X ↪→ Bi,j be an
embedding such that (1)hi,j (X) ∩ Bd(Bi,j ) ⊂ hi(P ), and (2) for eachp,q ∈ P with
hi(p) ∈ Bd(Bi,j ) andf 2(p) = q , hi,j (q) = hi(p). Then we describe the unionYi,j of
finitely many balls inBi,j . For example, wheni = 2 andj = 3,h2,3(X)= B2,3,2∪B2,3,3=
Y2,3, h2(p2)= h2,3(p1) andh2(p3)= h2,3(p2), sinceC3→ C2, C3→ C3, f 2(p2)= p1

andf 2(p3)= p2. Put

X2=
4⋃

i,j=1

Yi,j

(see Fig. 8).

Fig. 8.

Similarly, we can describeXi (i = 3,4, . . .). Finally the spaceZ = ⋂∞i=1Xi is the
universal dendrite (see Fig. 9).

Fig. 9.

Example 4.2. LetG= [0,1] be the unit interval,P = {0, 1
2,1} andf the same continuous

map ofG as in Example 4.1. ThenX→ =Z =X⇀ andZ is homeomorphic toG= [0,1].
This implies that the structure ofZ depends on the way of selecting the points ofP (see
Proposition 3.5).

Example 4.3. Let G = [0,1] be the unit interval andP = {12, 3
4,1}. We will define a

continuous mapf of G as follows:f (x)= 4x(06 x 6 1
4), f (x)=−2x + 3

2(
1
4 6 x 6

1
2),

f (x)= 2x − 1
2(

1
2 6 x 6

3
4) andf (x)=−2x + 5

2(
3
4 6 x 6 1). Then

S(G,P )= {[0, 1
2

)
,
{1

2

}
,
( 1

2,
3
4

)
,
{3

4

}
,
( 3

4,1
)
, {1}},

where putC1= [0, 1
2),C2= (1

2,
3
4), C3= (3

4,1), p1= 1
2, p2= 3

4 andp3= 1. The Markov
graph ofS(G,P ) \ P andP is as in Fig. 10.
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Fig. 10.

From the above Markov graph ofS(G,P ) \ P , we know thatB2,1 = ∅ andB3,1 = ∅.
Furthermore, the Markov graph ofP suggests the way of connection of each ballBi,j ,
wherei, j = 1,2,3 (see Fig. 11).

Fig. 11.

Finally,Z is the following dendrite (see Fig. 12).

Fig. 12.

Example 4.4. Let G be the following graph,P = {p1,p2,p3,p4,p5,p6} a finite subset
of G and f :G→ G a continuous map. And assume thatf (cl(C)) = G for any C ⊂
S(G,P ) \ P , f (p1)= p1= f (p4), f (p3)= p2= f (p6) andf (p2)= p3= f (p5). Note
thatf is point-wiseP -expansive (see Fig. 13).

ThenZ is the triangular Sierpinski curve (see Fig. 14).
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Fig.13. Fig. 14.
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