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A b s t r a c t - - N e w  exact travelling wave solutions for the double sinh-Gordon equation and its gen- 
eralized form are formally derived by using the tanh method and the variable separated ODE method. 
The Painlev6 property v = e ~ is employed to support the tanh method in deriving exact solutions. 
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structures. @ 2005 Elsevier Ltd. All rights reserved. 
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The sinh-Gordon equation, 

1. I N T R O D U C T I O N  

u t t  - uxx + sinh u = 0, (1) 

appears in integrable quantum field theory, kink dynamics, and fluid dynamics [1-8]. The sinh- 

Gordon equat ion is completely integrable because it possesses similarity reductions to third 

Painlev~ equation. There is a growing interest in the study of the sinh-Gordon equation, the 

double sinh-Gordon, and the triple sinh-Gordon equations [1-8]. It is well known tha t  search- 

ing for explicit solutions for nonlinear evolution equation, by using different methods,  is the 

goal for many researchers. Many powerful methods,  such as BScklund transformation,  inverse 

scattering method,  Hirota  bilinear forms, pseudo spectral  method,  the tanh-sech method  [9 13], 

the sine-cosine method  [14], and many others were successfully used to investigate these types of 

equations. However, some of these methods  are not easy to use and require a thorough knowledge. 

Practically, there is no unified method that  can be used to handle all types of nonlinearity. 
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In our previous work [12,13[, the  s ine-Gordon equation,  the s inh-Gordon equation,  and the 
famous s inh-Gordon equat ion given by 

~ttt  - -  ~ t x z  -b s inu  = 0, (2) 

~l, tt -- ~Zzz ~- sinh u = 0, (3) 

and 

u x t  + sinh u - 0, (4) 

respectively, were invest igated by using the s tandard  t anh  method  [9-13]. 
In this  work, we aim to extend our previous work in [12-13] to make further progress for other  

forms of the s inh-Gordon equation. In par t icular ,  we will invest igate the  double s inh-Gordon 

equation and its generalized form given by 

u t t  - k u x ~  -J- 2a sinh u + /3  sinh(2u) - 0 (5) 

a n d  

~,, - k~.,. + 2~ sinh(n~) + ~ sinh(2~) = 0, ,~ _> i, (6) 

respectively. The last form was introduced and studied in [8] by using specific approaches. 
Two reliable methods will be employed to formally derive distinct sets of solutions. The 

first method is the tanh method developed by Malfliet [9 Ii]. The Painlev4 property will be 

employed to support the tanh method. The second method, depends on a variable separated 
ODE, developed by Sirendaoreji et al. [I], used by Fu et al. [2] and by Wazwaz [15,16]. Sirendaoreji 
et al. [I] have fully described tile variable separated ODE method that has established scientific 

value and reliability. The variable separated ODE method works effectively if the equation 

involves sine, cosine, hyperbolic sine, and hyperbolic cosine functions. 
In what follows, we highlight the main features of the two methods as introduced in [9-11] and 

in [1,2,15,16], where more details and examples can be found there. 

2. THE TANH METHOD 

We first unite the independent  variables x and t [9 13] into one wave variable ~ = z - c t  to 

carry out  a PDE in two independent  variables, 

P (~,  ~ t ,  Ux, ~ x x ,  ~ . . . .  . . . )  = 0 ,  (7) 

into an ODE, 
Q (~, ~',  V' ,  ~ ' " , . . . )  : 0, (8) 

t ha t  can be in tegra ted  as long as all terms contain derivatives. Usual ly  the  in tegrat ion constants  
are considered to be zeros in view of the localized solutions. The  t anh  technique is based on 
the a p r i o r i  assumpt ion tha t  the  traveling wave solutions can be expressed in te rms of the tanh  

function. Then,  we introduce a new independent  variable,  

Y = tanh  (#4),  (9) 

t ha t  leads to the change of derivatives, 

d d (I- dy, 
d~ =# 

(10) 

2YEf+(1 
d4 2 

The solutions can be proposed as a finite power series in Y in the  form, 

M 

u ( # ~ )  = S ( Y )  = ~ a k Y  k, (II) 
k--0 
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l imit ing them to sol i tary  and shock wave profiles. The pa ramete r  M is a posit ive integer, most ly  1 

or 2, tha t  will be de termined by balancing y M  in the highest  derivative against  its counterpar t  
within the nonlinear terms. Consequently, the other pa ramete r s  can be de te rmined  as well. 

3. T H E  V A R I A B L E  S E P A R A T E D  O D E  M E T H O D  

As s ta ted  before, this  me thod  was developed by Sirendaoreij  e t  al. [1]. We first unite the 

independent  variables x and t into one wave variable ~ = x c t  to car ry  out  a PDE into 

an equivalent ODE. The  method  depends mainly  on assuming tha t  u({) satisfies an addi t ional  

variable separa ted  ODE given by 
d u  

u '  - -  - -  G(u), (12) 
d~ 

where G ( u )  is a sui table function of sine, cosine, hyperbolic  sine, hyperbol ic  cosine. Subst i tu t -  

ing (12) into the given equat ion yields a system of algebraic equations tha t  can be solved to 
determine  the unknown parameters .  I t  is worth  noting tha t  the variable separa ted  ODE (12) can 

be solved easily by using the method  of separa t ion  of variables. 

4. U S I N G  T H E  T A N H  M E T H O D  

In wha t  follows, we will apply  the tanh  method  to the  double s inh-Gordon equat ion and to a 

generalized form of this equation. 

4.1. The  D o u b l e  S inh-Gordon  Equat ion  

We first examine the double s inh-Gordon equation,  

u t t  - kUx~ + 2a  sinh u + ~ sinh (2u) - O, (13) 

tha t ,  by using the wave variable ~ - x - c t ,  can be converted to the ODE, 

@2 _ k) u" + 2c~ sinh u + /3  sinh (2u) = 0. ( 1 4 )  

We next  use the Painlev6 t ransformat ion,  

. = P ,  (15) 

or equivalently, 

from which we find 

The t ransformat ion  (15) also gives 

v -- v i 

sinh u - -  - -  
2 ' 

u = lnv,  (16) 

u" 1 v" 1 
= v ~ (v')2 " 

V 2 - - V  2 

sinh (2u) - 2 ' c o s h  u - - -  

v + v  - 1  

2 ' 

(17) 

( 1 8 )  

t ha t  also gives 

~ = areeosh [ ~ ] .  ( 1 9 )  
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Substi tut ing tile t ransformations introduced above into the double s inh-Gordon equation (14) 
gives the ODE, 

/3V 4 q- 20gV 3 --  20~V --  fl  q- 2 (C 2 -- ]g) VV" -- 2 (C 2 -- l~) (y , )2  = O. (20) 

Applying the balancing process of v 4 with vv" gives 

M = 1. (21) 

The  tanh method admits  the use of the finite expansion, 

v(z, t) = S(Y) = ao + alY~ Y = tanh(#{) .  (22) 

Substi tut ing (22) into (20), collecting the coefficients of each power of Y, and using any symbolic 
computat ion program such as MATHEIVIATICA, we obtain 

Oz 
a 0 ~ - - ~ ,  

V/~-/32 
a l - -  /3 (23) 

~ /  0~2 _ _  /32 

= 2 f l ( k - c 2 )  ' ~ >/5' k > £ ,  

where c is left as a free parameter .  This gives 

vG~_/52 
v(x,t) = - 5 +  /5 tanh  [# (z -- ct)], a > fl, (24) 

and 

v ( z , t )  = - ~  + c o t h [ # ( x -  ct)], 

Recall tha t  

from (19), therefore, we obtain the solutions, for a >/5,  k > c 2, 

>/5. (25) 

(2s) 

i ~ [ . (z  - ct)] 
/ 

at(z,t) arccosh ~ - 5  + /5 tanh  

k 

1 ) }  
4 

-a/ /5 + ( V / ~ - ~ g  /fl) tanh [#(z - ct)] 

(27) 

and 
/ 

_/32 
u(z , t )  = arccosh - f l  + 

\ 

1 )} 
( ) coth I. /z-  <1 

(2s) 
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On the other hand, for a </3,  we find 

1 ( c~ V @ - - c ~  2 
u ( x ,  t) = arccosh ~ ~ /3 tan [#(x - ct)]  

and 

where 

u (x, t) = arccosh /3 /3 cot [#(x - ct)]  

1 )} 
' 

~ /  /32 --  Oz2 

~ =  2 / 3 ( k - e 2 ) "  

4.2. G e n e r a l i z e d  F o r m  o f  t h e  D o u b l e  S i n h - G o r d o n  E q u a t i o n  

We next examine a generalized form of the double sinh-Gordon equation [8] given by 

u t t  - k u ~  + 2(~ sinh (nu) +/3  sinh (2nu) = 07 n > 1, 

that  can be converted to the ODE, 

( e  2 - k) u" ÷ 2a sinh ( n u )  + / 3  sinh (2nu) = 0, 

upon using the wave variable ~ = x - c t .  Proceeding as before we use the transformation, 

or equivalently, 

from which we find 

1 
% -- [ n v  1 

Tt 

V _ _ V  - 1  
sinh ( n u )  - 2 ' 

v 2 --  v - 2  v + v - 1  
s i ~ h ( 2 ~ ) -  2 ' c o s h ( ~ , ) -  2 ' 

that  also gives 

l rcco h 

Substituting these transformations introduced into (33) yields the ODE, 

/3TRY 4 + 20~l~V 3 --  20!nV /3~ + 2 (e 2 -- k) vv" - 2 @2 _ k) (v') 2 -- O. 

B a l a n c i n g  v 4 with v v "  gives 

(29) 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

M = 1. (39) 
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Consequently, we substi tute the finite expansion, 

v (z, t)  = S (Y) = ao + alY, Y = tanh (#( ) ,  (40) 

into (38), collecting the coefficients of each power of Y, and using any symbolic computation 
program such as Mathematica,  we obtain 

OL 
a 0 - -  f l  ' 

a l  f l  ' 

/ ~ ( ~  - 9  ~) 

>/3, (41) 

c~ > fl, k > c 2, 

where c is left; as a free parameter. This in turn gives 

v ( z ,  t) = - ~  + /3 t a n h  [ # ( z  - c t ) ] ,  c~ > fl, (42) 

and 

v (.% t) - ~  + fl coth [#(z - ct)], c~ > ft. 

Recall that  

u(z , t )  = larccosh [V + ~ - l  l , 

from (37), we therefore obtain the solutions, for c~ >/3,  

(43) 

(44) 

(z,t)  l a r ccosh  { 2  ( f l +  v/c~2 - f12 u = - tanh [# (x - ct)] 

1 / ) }  
q 

( x / ~  - fl-ff//3~ tanh [# (x - ct)] (~/9) + 
\ 

(45) 

and 

u (z ' t)  = larcc°sh { l ( 2 - + V/c~2- fl2 c°th [# 

1 )} 
-t , 

+ cork  I ,  (x - et/] (~/~) 
\ 

On the other hand, for c~ < fl, we find 

(46) 

u (x, t) = arccosh - /3 fl tan [fl~ (x - ct)] 

_ 1 ) }  

a/f l  + ( V / ~  - - ~  /fl) tan [# ( z - c t ) ]  ' 

(47) 
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and 

where 

(x , t )  = a r c c o s h  ~ /3 /3 cot [~ (~ - ~t)] 

1 )} 
a/ /3 + ( V @ - - ~ 2 / / 3 ) c o t  [fi (x  - -c t )]  ' 

(4s) 

/~ (/3 2 - ~) 

5. U S I N G  T H E  V A R I A B L E  S E P A R A T E D  O D E  M E T H O D  

In what  follows, we will employ the variable separa ted  ODE method  [1] to formally derive new 
dis t inct  t ravel l ing wave solutions to the two equations examined before. The aim here is to obta in  
explicit  solutions with dis t inct  physical  s t ructures  compared  to the  solutions obta ined  by using 

the t anh  method.  

5.1. The Double Sinh-Gordon Equation 

The double s inh-Gordon equation,  

Utt --  k Z t x x  -/- 2Ct sinh u + /3  sinh (2u) = O, (50) 

can be converted to the ODE, 

(c 2 k) u" + 2a  sinh u + /3  sinh (2u) = O, (51) 

or equivalently, 
2 ~  /3 

u" + - -  sinh u + sinh (2u) = O. (52) 
( d  - k )  ( d  - k)  

We next  assume tha t  u(~) satisfies the  variable separa ted  ODE given by 

d u  
u'  (~) = ~ = a + b cosh u, (53) 

a~  

where a and b are parameters  tha t  will be determined.  Differentiating (53) with respect  to 

gives 
b 2 

u"  (~) - ab sinh u - ~- sinh (2u) = 0. (54) 

Compar ing  (52) wi th  (54), we obta in  

2c~ 
a b -  

k -- c 2' 

b2 _ 2/3 
k -- c 2' 

(55) 

so that 

26~ 
a -- k > c 2, 

, /2/3(k - d ) '  

b - 2/3 k > c 2. 
, /2 /3(k - c2)'  

(56) 
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Equat ion (53) is separable, hence, we set 

1 
du = d~, 

a + b cosh u 

where by integrating both  sides, we find the following solutions, 

2 a - b  
~ arctanh (~aaa - -~  

2 a - b  
a 

a 

tanh2) =~ +~o, 

t anh 2)  = ~ + ~0, 

tanh ~) =~ +~0, 

a > b ,  

a > b ,  

a < b ,  

or 

~ a r c c o t  - tanh  = ~ + ~o, 
x/b 2 - a 2 a 

a < b ,  

where ~0 is constant  of integration. Using (56) gives tile exact solutions, 

u(:e,t) = 2arctanh / ~  tanh  ((x - c t ) + ~ o )  
V ~ F  29 (k - ~2) 

u (x, t)  = 2arctanh V ~ coth 2~-]¢- - -P)  ((x - ct) + ~o) 

u (x , t )  = 2arctanh V ~ - - 2 ~  tan 2/~]~--c2)  ((x - c t )  +~o) 

t 

and 

u (x, t) = 2arctanh ,[ V ~ cot 29 (c z - k) 

However, for the case where a = b, equation (57) becomes 

1 
du = a d{, 

1 + cosh u 

where by integration, we obtain 

therefore, we find 

or equivalently, 

U 
tanh  ~ --- a (~ + ~o), 

u (x, t) = 2 arctanh [a ([ + [o)], 

(i ) u ( x , t )  = 2arc tanh  ( k -  c 2) ( ( x -  ct) + ~o) • 

c~>9, 

0 ~ > 9 ,  

C~< 9. 

a < 9 ,  

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 
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Concerning the case where b - a ,  equation (57) becomes 

1 - cosh(u) 
du a dG (70) 

where by integration, we obtain 

therefore, we find 

coth u = a(~ + ~o), (71) 

u (z, t) = 2 arceoth [a (~ + 40)], (72) 

or equivalently, 

u ( x , t ) = 2 a r c c o t h (  J ~ k  ((x - ct) + 4o)) . (73) 

5.2. A General ized  Form of  the  D o u b l e  S inh-Gordon  E q u a t i o n  

We finally consider a generalized form of the double sinh-Gordon equation, 

u t t  - ku~:x + 2c~ sinh (nu)  + flsinh (2nu) = 0, (74) 

that  can be converted to the ODE, 

(c 2 - k) u" + 2a  sinh (nu) + fl sinh (2nu) = O, (75) 

or equivalently, 

2a sinh (nu)  + fl u" + (c 2 _ k~ (c 2 - k~ sinh (2nu) O. (76) 

We next assume that  u(4 ) satisfies a variable separated ODE given by 

d l t  
u'  (4) = 7 ;  = a + b cosh ( n u ) ,  (77) 

a¢  

where a and b are parameters that  will be determined. Differentiating (77) with respect to 4 
gives 

b2n 
u"  (4) - abn sinh (nu)  - 2 sinh (2nu) = 0. (78) 

Comparing (76) with (78), we obtain 

2a 
abn - - -  

Ig - -  C 2 ~ 

b~ n _ 2fl 
1~ - -  C 2 '  

(79) 

so that  

a z 

b = 

2a  

~/27~fl (k - d ) '  

23 

v/2nfl (k - d )  

(80) 
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Equation (77) is separable, hence, we set 

a + b cosh (nu) 
du = d{, 

where by integrating both sides, we find the following 

2 
_ _  arctanh 

n v @  - b 2 

2 
_ _  arccoth 

,~V~ - b 2 

2 
_ _  arctan 

rzV~ - -  a 2 

" a-b  ) 
~aaa---@- T t a n h ( - ~ )  = ~  +~0, 

' a - b  & t,.h (~))=~+~o, 

< b-a 1 b ~ a a  tanh ( - ~ )  = {  +{o, 

a > b ,  

a > b ,  

a < b ,  

o r  

2 arccot ~ l / b -  a 
n,/b 2 - a 2 \ V b + a 

- - t a n h ( ~ ) )  = { + { o ,  a < b ,  

where ~0 is constant of integration. This in turn gives the exact solution, 

. (.,,> =-'.re..,," ~ r/'("-~'> ((..-c,,>+{o>)) ~VTT tanh ~V~5~-- c') 

/ /~+9 (/~(~2-92) )) ~(~,~)-2arctanh\va-aT_ge°th~v5a~-_7((*-c~)+e0),~ , 

. ( z , t ) - 2 n  arctanh / //3 + a ( / n ( / 3 2 - a 2 )  ) )  ~ V ~ 2 -  ~ tan ~ V 3 c T ~  - - 7  ( ( z - c t ) +  {o) , 

and 

o,> )) 
u(x ' t )  : 2arctanh ~ v ~ - - - ~  c°t ~ V  2~-~k =-~) ( ( x - c t )  + ' 

However, for the case where a = b, equation (81) becomes 

1 + cosh (nu) 
du = a d~, 

where by integration we obtain 

I t~nh (~*)  - = a ( ~ + ~ 0 )  n \ 2 /  

therefore, we find 
2 

u (x,t) = - arctanha (~-- ~0), 
n 

a ( ~ .  

a ( , &  

o~ ( ,6. 

(81) 

(82) 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

(90) 

(91) 

(92) 



Exact  Solutions 1695 

or equivalently 

u (x, t) = 2_ arctanh / V  ((x - ct) + ~o) • 
n 

Concerning the case where b = - a ,  equation (81) becomes 

(93) 

1 - cosh (nu) 
d u = a d ~ ,  (94) 

where by integration, we obtain 

l coth (~'z.@) a(~C + ~0), 
yt 

(95) 
therefore, we find 

or equivalently, 

2 
u ( x , t )  = - a r c c o t h ( a ( ~ + ~ 0 ) ) ,  (96) 

n 

~(x,t) 2arccoth(( 2~ ) = ~ ~ ((~ - ~ t )  + ~0)  (97) 

6. D I S C U S S I O N  

The double sinh-Gordon and its generalized form were investigated by using the tanh method 
and a variable separated ODE method. Several exact distinct travelling wave solutions were for- 
mally derived by using the two methods. The obtained results clearly demonstrate the efficiency 
of the methods used in this work. Moreover, the methods are capable of greatly minimizing the 
size of computational work compared to other existing techniques. Unlike what was thought be- 
fore that  the sinh-Gordon and the sine-Gordon equations cannot be solved by the tanh method, 
the introduced analysis confirms that  the tanh method can be effectively used for these equations. 

The variable separable ODE method is useful in that it provides new distinct solutions other 
than the solutions obtained by the tanh method. As indicated in [1], this method changes 
the problem from solving nonlinear partial differential equations to solving a separable ordinary 
differential equations. 
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