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Abstract 

We give a lower bound on the following problem, known as simplex range reporting: Given a 
collection P of n points in d-space and an arbitrary simplex q, find all the points in P A q. It is 
understood that P is fixed and can be preprocessed ahead of time, while q is a query that must be 
answered on-line. We consider data structures for this problem that can be modeled on a pointer 
machine and whose query time is bounded by O(n ~ + r), where r is the number of points to be 
reported and 6 is an arbitrary fixed real. We prove that any such data structure of that form must 
occupy storage O(n aO - ~ - ~ ) ,  for any fixed e > 0. This lower bound is tight within a factor of 
n o-', 

1. Introduct ion 

Given  a set o f  n points  in d-space,  p recompute  a data structure capable of  count ing 

or  report ing all points  inside an arbitrary query  simplex.  This  problem,  known as 

simplex range searching, has been ex tens ive ly  studied in recent  years [4 -6 ,  

8,9,11,14,15,17,19,20].  On the practical side, the problem relates to fundamenta l  ques-  

tions in compute r  graphics,  (e.g., hidden surface removal) ,  while  theoret ical ly  it touches 

on some of  the most  central issues in a lgor i thm design and combinator ia l  geomet ry  (e.g, 

derandomiza t ion ,  geomet r ic  graph separation, k-sets). In spite o f  all the attention, 

however ,  only recent ly  have  opt imal  or quas i -opt imal  solutions been d iscovered .  If m is 

the amount  o f  storage available,  it is possible to achieve a query  t ime of  roughly 

n / m  l/a, where  " r o u g h l y "  means  that an extra factor of  the form n ~ [4] or ( log n) °° )  
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[14] must be added to the complexity bound. What allows us to brand these solutions 

quasi-optimal is an (almost) matching lower bound established in the arithmetic model 

of computation [2]. This lower bound is very general and holds for any realistic 

computing model, but it is limited to the case where searching is interpreted as counting 
or more generally computing the cumulative weight of  weighted points inside the query. 

This has left open the question of proving the optimality of the known algorithms in 

the reporting case: this is the version of the problem where the points inside the query 

must be found and reported one by one. To date, only the case of orthogonal range 

reporting has been satisfactorily resolved [3]. To prove lower bounds in the counting 
case is difficult enough, but the difficulty is compounded in the reporting case, because 

of the possibility for the algorithm to amortize the search over the output. This design 

paradigm, known as filtering search [1], is based on the idea that if many points must be 

reported then the search can be slowed down proportionately, which is then likely to 

result in a slimmer data structure. 

We look here at the typical case where a query time of the form O(n ~ + r) is sought, 

where r is the size of the output and 6 is any fixed constant. We show that on a pointer 

machine any data structure with a query time of that form must be of size O ( n  4~ - ~)- ~), 

for any fixed e > 0. This lower bound is quasi-optimal. Despite the apparent restrictions 

we place on the model, we must mention that the overwhelming majority of data 

structures proposed in the literature for range searching fall in that category. The 
magnitude of our lower bound is striking. It says, for example, that in E 2° to achieve a 

query time even as inefficient as O(7~- + r)  still requires approximately n ~° storage! 

The result combines graph theory with some slight integral geometry. The next 

section defines the model and proves a technical lemma regarding the spread of 

information across the data structure. Section 3 contains the proof of the main result. 
Concluding thoughts are given in Section 4. 

2. The complexity of  navigation on a pointer machine 

We assume some familiarity with the pointer machine model [18]. As in [3] the data 
structure is modeled as a directed graph G = (V, E) of outdegree at most 2. Let 
P = {p~ . . . . .  p~} be a set of n points in E a. To each node v of the data structure, an 

integer f ( v )  is attached. If  f ( v )  = i is not zero, then node v is associated with point Pi. 

A query q is a simplex in E a, and the algorithm must report all points in P A q. When 
presented with q, the algorithm begins at a starting node and, after following pointers 
across the data structure, terminates with a working set W(q) consisting of all the visited 
vertices that is required to contain the answer, namely, 

{ i l p i ~ q } c { f ( v )  l v ~ W ( q ) } .  

The size of the data structure G is n, the number of nodes in the graph. Note that our 
model accommodates static as well as self-adjusting data structures. 
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A data structure G is termed (a, ~)-effective with a and ~ positive real numbers, if 

for any query q, we have I W(q)  l ~< a([ P N q[ +n~) .  A collection of  queries Q = {qi} 
is called (c, k, ~3)-favorable if for all i, I P n q i l  > n ~  and for all i I <  - . .  < i  k, 

I P n q q  N • - - n qi, I < c. We want to show that if 6 is small, an (a ,  6)-effective data 

structure must be large. Using the following result, which generalizes a lemma given in 

[3], we can lower-bound a data structure 's  size by exhibiting a (c, k, 6)-favorable set of 

queries. 

L e m m a  2.1. For any fixed a, 6 > 0  and c>72, if G is ( a, 6)-effective and Q is 
( c, k, 6)-favorable, then 

Iw l  > I O l n ~ / ( 3 ( k  - 1)28"~') ,  

for n large enough. 

Proof .  We exploit  the fact that the data structure can quickly answer a large number of 

very different queries to show that the data structure is itself large. More precisely, we 

look at the c-sets of V, 

v(~)={wc_vl  Iwl =c}. 
Recall that a tree is rooted if its edges are directed and the root is the only node with no 

incoming edge. Given any subset W c V, we define the spanning-size of W in G, 

denoted AG(W), as the minimum number of edges in any rooted tree that spans W and 

is a subgraph of  G. It is oo if no such tree exists. This definition applies to any directed 

graph, in particular to subgraphs of G. Below we shall need A T, where T is a rooted 

tree and a subgraph of G. 

The number of  c-sets in G of  spanning-size smaller than r is bounded by, 

I{W ~ V(C) l A~(W) < r } l  ~< I{(Z, W )  E V X  V (c) I V w ~  W, d( z, w) < r } l  

<~ IW[2 rc, 

because of  the limitation on the outdegree of  G. Suppose now that query q is presented 

to the algorithm. Fix a rooted tree T' c G which contains exactly the vertices of W(q). 
Because the algorithm reaches all the nodes in W(q), such a tree exists. We can select 

from W(q) a subset W that contains exactly one w ~ W with f ( w ) =  i for each 

p i E P n q .  
Let T be the Steiner minimal tree of  W inside of T'. Note that AT(Z) >~ A t ( Z )  for 

any Z c_ G. Embed the tree T in the plane and number the vertices of W in a natural 

order around the border of  T. Then, W = wl, w 2 . . . . .  w~, where s = I P n q I, and, 

s--1 

Y'. a r ( {W j, wj+,})  ~< 2 I T I .  
j - -1  

Consider the c-sets, 

W i = { w  i . . . . .  Wc+i_l}, i = 1  . . . . .  s - c +  l. 
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It is clear that, 

e + i - 2  

ar(wi)  <~ ~ ar({w j, wj+~}). 
j=i  

Summing over all i, 

s - c + l  s - 1  

AT(Wi) <~ ( c - 1 )  ~ ar({wj,wj+l}) <~ Z ( c - 1 ) l T [ .  
i - 1  j = l  

Since, I TI<IW(q)I,  if we assume that G is (a, 6)-effective and Q is (c, k, 6)- 
favorable (thus I P ~ q l > n~): 

s - c + l  

~_, A T ( W i ) < 4 a ( c - 1 ) l P n q l ,  
i=1 

for n large enough. By Markov 's  inequality, 

I{il Ar(W~) >1 8 a ( c -  1)}l ~< P n q l / 2 ,  

and therefore, 

I { i l A T ( W i ) < 8 a ( c - 1 ) } l > ~ P n q l / 2 - c + l >  I P n q l / 3 .  

Because Ar(W i) >1 Ao(Wi), this is also a lower bound on the number of  c-sets with 
spanning-size in G less than 8a(c -  1). 

This argument is valid for any q in Q. Since I P n q ~ , n  - - .  n q q l < c ,  for 
appropriate indices il < - - • < i k, a c-set of  small spanning-size will be counted at most 
k -  1 times. Thus, 

I{W~W<~)lAo(W) < 8 a ( c - 1 ) } 1  > IOl  [ P n q l / ( 3 ( k - 1 ) )  

> [ a l  n ~ / ( 3 ( k  - 1)) 

for large enough n. 
In view of the upper bound given at the beginning of this proof, the result follows 

easily. [] 

3. A lower bound for simplex range reporting 

According to the discussion of the previous section, any algorithm for solving 
simplex range reporting in time O(n ~ + r) can be modeled as an (a,  ~)-effective data 
structure, for some suitable constant a. An f2(n a<l - ~)- ~) lower bound on the size of  the 
data structure follows, according to Lemma 2.1, from the existence of a set P of  n 
points along with a (c, [log n ], 6)-favorable query set Q of size f2(n ad- ~)- ~- ~). The 
strictly positive real e can be chosen as small as desired. 

Let q be any nonzero vector in Euclidean d-space and /~ any strictly positive real. 
The slab Hq,l~ is a " t h i c k "  hyperplane, derived by taking the hyperplane perpendicular 
to the vector through q and passing through the point q and translating it continuously 
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by small amounts parallel to q. The exact translations are Aq for all - / z  < A </.L. 

Summarizing, for q ~ E a, q ~ O, Ix > O, 

Oq,g = { x ~  Eal [ (x ,  q ) - r q l 2 [  ~</zlq[}.  

The point q is the defining point of the slab Hq,~. Although our final result is stated 

for a collection of simplex queries, the query set we construct is a collection of  slabs. 

Once a favorable query set has been constructed, using slabs for queries, we can replace 

the slabs by very long flat simplices using elementary perturbation techniques. The value 

/~ is fixed later on in the proof. Hence our attention is focused on the choice of a set of  

defining point for slabs making up the query collection. Reflecting this attention, from 

now on the set Q will be a set of points, the set of defining points fo r /z  width slabs. It 

will be understood that the collection of  queries is actually, 

{Hq.g ]q E Q}. 

Let C d = [0, 1]a be the unit d-cube in E d. We construct a favorable query set in two 

steps. First we position the slabs so that their arrangement has certain geometric 

properties: their intersection with C d must be large, but their k-wise intersections with 

each other must be small. Next, n points are thrown at random into C a and we verify 

that with high probability the slabs are favorable for this point set. 
Further on we shall demonstrate that a sufficient condition for any k of  the slabs to 

intersect in a small volume is that any k of the defining points have a large convex hull. 

This relates to Heilbronn's problem [12,13,16]: what is the largest area, over all 

point-sets P = {pj . . . . .  Pro} C C2, of  the smallest triangle with vertices in P?  Here we 

require that the convex hull of  k points in d dimensions should have volume ~O(1/m). 

This can be achieved if k > log m: 

Theorem 3.1 (Chazelle [2]). For any d > 1 there exists a constant c > 0 such that a 

random set o f  m points in C a has, with probability greater than 1 - 1 /m ,  the property 

that the convex hull o f  any k >~ log m o f  these points has volume greater than ck /m .  

Hence a random point set is likely to be " g o o d "  for the construction of a favorable 

query set. 
Let Q0 be a random set of m points uniformly distributed in C d_ ~. Theorem 3.1 

assures that with high probability any k/> log m points will "enc lose"  a large volume. 

We create a set of  points Q in C a from Q0 in C a_ ~ as follows. Shrink C a_ ~ by a factor 
of  two and paste it to the top face of  Ca, that is, the face with coordinate d constant 1. 

Paste so that the (1 . . . . .  1) comer of  C a_ i contacts the (1 . . . . .  1) comer of  C a. This 

carries the points of  Qo to a set of  points Q' on the top face of C a. Send rays from the 
origin through each q' ~ Q', and select a series of  points along each such ray. Fixing a 
real (0 < / z  < 1), each q' gives rise to O ( 1 / / z )  points along the ray by the map, 

q' ~, 2tziq' , 
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Cd-I 

I 

Fig. 1. Building the query set. 

where i ranges over all integers which make coordinate d of 2ixiq' lie within 

[1 /2 ,3 /4 ] .  To be precise, Q is the image of Qo × I under the map, 

Ca_ 1 ×Y_~C,~  

(x ,  . . . . .  xa_ , , i )  ~ Ixi(x,  + 1 . . . . .  xa_ , + 1,2). 

where, 

I = {i @ Y I 1/(4IX) <~ i ~< 3 / ( g / z ) } ,  

(see Fig. 1). 

L e m m a  3.1. Assume IX goes to zero with increasing m. Then, 

(1) Q is a set o f  size @(m/ tx ) .  

(2) For all q ~ Q the slabs Hq.~ have an intersection with C d o f  volume @(Ix). 
(3) Any k = [log m] of  these slabs have an intersection o f  volume, 

O( Ixam(log m) a 2). 

Proof.  The first claim is trivial. The second follows from the fact that each coordinate of 

any q ~ Q is in the interval [ 1 /4 ,3 /4 ] .  So a ball of radius 1 / 4 - / 1 .  and center q 

intersects Hq in a hyperdisk D which lies entirely inside C a. The cylinder of height 2/z 
and cross section D at its midpoint is inside C d. Here we assume, by increasing m if 
necessary, that IX << 1 /4 .  This gives the lower bound on the volume of Hq,u N C a. The 
upper bound follows by placing a sufficiently large ball around q, say of radius fd-, so 
as  to contain the piece of Hq.t, that lies in C d. 

The third claim is substantiated as follows. Let Hq,a, . . . . .  Hq~,~, be the k = [log m] 

slabs, where the qi are all distinct. If  qi and q~ are collinear with the origin, the 
intersection is empty. If they are not, let P l , . . . ,  Pk be the points in C a 1 which gave 

rise to ql . . . . .  qk. The convex hull of the Pi has ( d -  1)-dimensional volume at least 
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c ~ k / m  for some appropriate positive constant c t. Triangulate the convex hull using 

O(k d- 1) simplices and choose one among the simplices of largest (d  - 1)-volume. After 

renumbering, the vertices of this simplex are p~ . . . . .  Pd and it has volume at least 

c 2 / ( k  a- 2m). We conclude that, 

]det(q, . . . . .  qd) l >1 c 3 / (  ka 2m) , 

where the qi have been renumbered according to the same pattern as the pi and e z and 

c 3 are positive constants depending only on the dimension. The lemma follows from the 

next result. [] 

L e m m a  3.2. Given k = [log m], from every set ql . . . . .  qk c Q a subset qi ~ , . . . .  qi , can 

be selected such that, 

Vol (Hq l ,p  (-] . . .  [~Hqk.,u.) ~ Vol(Hqi, , ix ('} . . .  (~Hq.bu.) 

= O(/.*am(log m ) a - z ) .  

Proof.  We can still assume that no two q~'s are collinear with the origin. The first 

inequality is trivial. In general, let ql . . . . .  qd be linearly independent vectors. The 
polytope H q , , i ,  ( 3  • • • 0 Hq,~,~t is a translate of the parallelotope defined by d vectors wj 

where, 

{ 2 ~ l q ~ l  if i = j ,  

(wj ,  qi)  = 0 otherwise. 

To be more precise, 

Hq,,u A " ' "  ( " ) H q , , , l ~  = {~dlaiWi]O<~ o~i< 1 , i =  1 . . . . .  d} + x  0, 

where x~ is the unique point of E d satisfying, 

(Xo,  q i ) -  ] q i l 2 =  _ i  z l q i l  

Fig. 2. Intersection parallelotope. 
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for all i = 1 . . . . .  d (see Fig. 2). Denote by [w] the matrix (w 1 . . . . .  Wd), by [q] the matrix 

(ql . . . . .  qa), and by A the diagonal matrix with Ai~ = I qi 1- Note that det[w] is the 
volume of the parallelotope Hq,.~ N " • • n Hq,,,~. From [w ]T[q]  = (2/x)~l we have 

det{w} d e t [ q ] = ( Z / x ) d [ q l ]  " "  I qal .  

Recall that from the set qj . . . . .  qk c Q we can select d vectors such that det[q] >/ 

c 3 / ( k  a- 2m), and v r d / 4  ~< I qil ~< 3 f d / 4 .  This gives the bound. [] 

We finish the proof of  the lower bound with a probabilistic analysis of the interaction 

between the query set Q and n points P chosen randomly in the unit cube C d. For any 

real 0 < 6 < ( d  - 1 ) / d  and any fixed e > 0, set, 

/ x=  1 / (~-n l -  ~), m = n  c t ( l - ~ ) - l - e  , 

where ~- depends only on d and will be selected appropriately in Lemma 3.3. Note that 

/x tends to zero and m tends to infinity as n tends to infinity. Set k = [log m] and 

c = [ d 2 / e ] .  We claim that with high probability the collection of slabs H = {Hq,u I q 

Q} is (c, k, ~)-favorable for the point set P, where Q is as in Lemma 3.1. 

L e m m a  3.3. Let  the n points  P = {PI . . . . .  p,} be independently and uniformly dis- 

tributed in the unit cube C d. With probabili ty 1 - o(1), for  all q ~ Q, 

[ Hq,~ n P [ > n ~. 

Proof. The points Pi ~ H q,~ , i = 1 . . . . .  n, are independent Bernoulli random variables 

with common probability, 

p = Vol(Hq,~ n Ca) > K t  x = K / ( ' c n ' - a ) ,  

for an appropriate K which depends only on d. We can make ~- small enough so that 
np > 2n ~. The expected number of  points in q is therefore E([ Hq,.  n P l) = n p  > 2n  8. 

The Chernoff bound [7,10] states that, for X = {x 1 . . . . .  x.} a Bernoulli random variable 

where x i = 1 with probability p and xi = 0 with probability 1 - p, 

Prob x/.<(l-K np , 
i ~ l  

for 0 < K < 1. Therefore, the probability that I H q , .  n P I ~ n p / 2  is less than ( 2 / e )  "p/2. 

Taking the disjunction over all q ~ Q, 

Prob(Zlq ~ Q s . t .  [Hq,tz  n P I ~< n p / / 2 )  -~< I Q IProb( I H q , .  n P I ~ n p / 2 )  

< ( m / i x ) ( 2 / e ) . p / 2  

n d ( l -  ~5)- cS- ~ ( 2 / e )  " '  

It is not difficult to see that this probability goes to 0 as n goes to infinity. Therefore, 
with probability approaching 1, e v e r y  Hq.t, has more than n p / 2  > n 8 points in it. [] 
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L e m m a  3.4. Let P be a set of n random points chosen uniformly in the unit cube C a. 
With probability 1 - o(1), for all distinct ql . . . . .  qk ~ Q, 

IHq,.~n "'" NHq, ,~NPI  <c.  

Proof .  The events Pi ~ Hq~,~ n • • " N Hq~,g, for i = 1 . . . . .  n, are independent Bernoulli  

random variables with common probabili ty,  

p =  Vol(Hq,.  N " - "  n H q k , , ~ )  < K t z d m ( l o g  m )  d - 2 ,  

for an appropriate constant K, (Lemma 3.1(3)), We again refer to the Chernoff bound: 

for any positive real K, 

Prob x i > ~ ( l + K ) n  p <~ , 1 + -  ,+~ , 
i=1  

thus if np < 1 then for any integer b >~ 1, 

The expected number of points i n  nq,,,~ n • " • nqk,~ is less than 1 for n sufficiently 

large, hence, 

( K'(log m)d-2)  c 
Prob( [ Hq,,u n . . -  NHq~,~, N P  [ >~ c) <~ 

cn  ~ 

where K '  is a positive constant. Recall from Lemma 3.2 that the upper bound on the 

volume of  a k-wise intersection of  query slabs is derived by considering a subset of  only 

d of  them. Therefore, 

Prob(Bql  . . . . .  q~ ~ Q s.t. I Hu,,~ n - . .  n H¢~,~ n P] >~ c) 

<~([Q,d)(  K'(l°g m ) d - 2 )  c 

cn  ~ 

which goes to 0 as n increases. [] 

What  has been shown is the existence of  a collection H of  O(n aO-~)-8 ~) slabs 

and a set of  n points P such that H is ([d2/e], [ (d( l  - 6 ) -  1 - e )  log hi, 3)-favorable  

with respect to P.  We can now apply Lemma 2.1 and derive, 

Theorem 3.2. Simplex reporting on a pointer machine in E a with a query time of  
O(n~ + r), where r is the number of  points reported and 0 < 6 <~ 1, requires space 
a,-2(ndO-8)- ~), for any fixed ~ > O. 
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4. Conclusion 

Our bound implies that if the search time is to be in O((log n) b + r), for b arbitrarily 

large, then the space must be in g2(n a ~) for all fixed ~ > 0. The factor of n -~ was 

introduced in the proof during the construction of an example query set in order that 

certain probabilities could be driven to zero. We believe that an improvement of the 

method might reduce the n " factor to a polylogarithmic one. To get rid of this extra 

factor altogether, however, appears more difficult. Finally, we would like to approach 

the question of halfspace range searching, where we expect similar techniques to give a 
bound of J2(n ld/21 ~) for polylog-time queries. 
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