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Abstract 

The paper discusses various relationships between the concepts mentioned in the title. In 
Section 1 Todorcevic functions are shown to arise from both morasses and square. In Section 2 
the theme is of supplements to morasses which have some of the Aavour of square. Distinctions 
are drawn between differing concepts. tn Section 3 forcing axioms related to the ideas in Section 2 
are discussed. 

Introduction 

One sign of vibrancy and maturation in an area of mathematics is that its practition- 

ers are increasingly discriminatory in the choice of hypotheses for their theorems. This 

discrimination manifests itself formally and, equally importantly, informally: in distin- 

guishing those hypotheses from which theorems can be proven from those for which 

there are counterexamples, but also in improved unders~nding of which techniques are 

likely to be adequate for a particular task. An example of this in infinite combinatorics 

and the subjects on which it impinges is the growing delicacy with which prediction 

principles (0, CH, weak 0, and others) were used in the 1970s. 

A second example in the same field has recently become apparent. Since 1980 gap- 

one construction devices, for constructing “large” objects (of size K+, where tc is some 

infinite cardinal) from “small” pieces, have been employed with burgeoning facility. 

Necessarily, many people have been involved in this development, albeit that while 

carrying out their work they may not have thought in such terms. The following is a 

brief, and partial, listing of some significant trends and papers connected with them. 

Morasses, have been considerably simplified, particularly by Velleman [23]. Enhance- 

ments of simpli~ed morasses have been examined and used by Velleman, Donder and 

others [24, 6, 171. Various trees have been used for stepping-up purposes, particularly 

innovatively by Todorcevic (Kurepa trees [18, 41, Aronszajn trees [19, 201). 0 has also 

been used to this end [20, 22, 21, 81. (Of course the title construction of Todorcevic’s 

amazing [20] is also a gap-one construction.) Forcing notions have been introduced 
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and axiomatised by Shelah, Shelah and Stanley, and Velleman, 12, 14-16, 23, 241. 
Gap-one constructions also occur in [I, 7, 91, and many other places. 

This paper tries to provide insights into the relationships between some of these 
devices, with an emphasis on those concerning on morasses. In Section I the theme is 
Todorcevic functions, in Section 2 several augmentations of morasses, and in Section 3 
forcing axioms. Each section is logically, but not pulpally, independent of the others. 

Most of the terminology is fairly standard, and hopefully any which is not will be 
readily understandable. The cardinality of x is X?, while its ordertype and cofinality 
are otp(x) and cf (x), respectively. IC will always be a regular infinite cardinal. A’ = 

((Q, lW+(&p I uG:BGJc)) will be a (K, 1)-simplified morass. Consequently each 
tl, is an ordinal and each Fab is a set of order preserving maps from 8, to %g. Recall 
that the axioms for a (K, 1 )-simplified morass are as follows: 
l ~/cr<p<Ic(8,688<Ic)and8,=h-+. 
l ‘da,<@ < tc(Qj < Ic). 
* ~‘o!~:P~Yd(.~~9={f.g/fE~~y&gE~~B}). 
0 V,cr<u(P& = {id} and ‘dcr < K either & 6-&+i is a singleton or a pair {f, g} such 

that for some ordinal (T, (called the spktting point of P&+1) f j @a = g / o, and 

rge(f> c s(o& 
l ~lirn(~)~~~~o, PI < crtifo E $$a Vj-r E Fpib! +(Bo, /Ii <y <M and 3f,’ E &,, 

3f( E @ply 3g E &,, (fo = g . f, and fi = g . f;‘)). 

0 K+ = u{ f’t?, ( a<lc&“f Es?%,}. 

(This is an ‘expanded simpli~ed morass’ in the te~inolo~ of [23]. It has become 
usual, see for example [26], to refer to these structures as simplified morasses, although 
it is still sometimes useful in applications to think about the set {f”& ( CI < K& f E 
9&} - the meaning of ‘simplified morass’ in [23].) 

Facts about simplified morasses will continually be used implicitly, particularly the 
fact that if f, g E ZQ and sup(f”vi) = sup(g”vz) then vi = vz and f 1 vi = g / ~2, and 
consequently the relation a, defined by (c(, v) a (p, r) if f(v) = r for some f E L&Q, 
is a tree relation. Finally recall that a (IC, I)-simplified morass is neat if 00 = 1, and 
~~=U{~“e~l~~~~~}foreach~<~~~,anditis~~u~if~~=l, 
* Vcz < K either .!&+i is almost trivial: Z?&+l = {id} and $,+I = 8, + 1, or &+I is 

neat: F&+l = (id, h, } and &+i = 0, u h, “8,, and in the latter case 01 and Us are 
limit ordinals, and 

0 ~lim(a)~Ic(C3,=U{f”BlrIP<a&fE~~,}). 
The reader can consult the papers mentioned above for more on simplified morasses 

per se. 

1. Morasses and Todorcevic functions 

In the first two sections of [20] Todorcevic showed that 17 is a much more powerful 
construction principle in its own right than had previously been imagined. From it 
he extracted several stepping-up lotions and so solved problems whose solutions 
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were envisaged in more primitive times to require the use of morasses (see [20], 

Sections 1, 2, [21]). In this section functions with the same properties as Todorcevic’s 

function p are derived from simplified morasses. Consequently these functions form 

part of the non-trivial common core of simplified morasses and 0’s. Work uncovering 

more of this core would be of great interest. The results proven below can be seen 

as confirming that the above-mentioned problems do have morass-theoretic solutions. 

(Note that, for K > ~01, the existence of a (K, 1 )-simplified morass and q K holding 

are mutually independent, relative to large cardinals-for one direction see [24], for the 

other the remarks at the end of this section.) 

For the following definition let K be any infinite cardinal. 

Definition 1. A Tudorceuic function (T-function) is a function f : [K’]~ -+ K such that 

(a) {{<[ ]f(&c) < V} <rc, for all c < K+and v < K, 

(b) f(L~)Gf(5~i) or f(i,~h for all t<i<v <K+, 

(cl f(5,i)Gf(t,v) or f(Lv), for all t < I < v < K+, 

(d) for all i = U1 < z < K + there is some [(A, z) such that 

f(g,1)Gf(T,r), for all < E [&ll,r),1). 

In Todorcevic’s original definition [20], Section 2.3) the bound in (a) is sharpened 

to v+: the first infinite cardinal greater than v. This bound has not been used in any 

application of these functions considered so far, but let functions obeying (b)-(d) and 

the strengthened form of (a), say (a+), be called T+-functions. 

Assume now that K is a regular cardinal. Let J& = ((6, 1 ad K), (F$ 1 cr<B < K)) 

be a (K, 1)-simplified morass. The following four functions can be defined immediately 

from &!. 

Definition 2. (a) d, : 8,, --f v + 1, the “date-of-birth’ function (at v), is given by 

d,(r) = the least CI such that 3f E 9!-& (c f rge(f)). 

(b) c,, : [0,12 + v + 1, the “coupling-point” function (at v), is given by 

c,( 5, &J = the least CI such that 3s E 9& (<, [ E rge(f)). 

(c) a,, : [8,J2 -+ [v + l]‘“, the “archive (of coupling points)” function, is defined 

as follows. Let <, [ < 8, and for LX < v + 1 let l,, i, be such that (CI, 5,) a (v, <) and 

(G)a(vJJ L e aa = c,( <, [). Inductively let ,!$ be the immediate ordinal predecessor t 
of rxi, if there is one, and let ai+i = cp,(~$, [p,) if {p, and ?$I exist and are distinct, 

and be undefined otherwise. Plainly ai+i < c(~, so there is some n such that c(,, exist 

but %,,+I does not. 

(d) b, : [(?,I* + v + 1, the ‘branching-point” function is given by 

b”(L 0 = &I, where tl,is defined from 4,[ as in (c). 
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Write f for fK in each case. Note that if v = K the range of each function is K (or 

[JC]<“‘) rather than K + 1 (or [K + 11’“). 

It is perhaps helpful to elaborate somewhat on the previous definition. Firstly, if J&’ 

is neat trg d(t) = 0, but if JZ is slow there will be points that are born further up the 

morass (for example, oa+i +n+ 1 for any c( -=E K and n < w). Secondly, b,({, [) is simply 

the point below (v, 5) and (v, [) where a branches if (v, 5) and (v, i) are in the same 

component of a, and if 4 is neat (and 8s = 1 ), a is connected. If, on the other hand, 

(v,[) and (v,[) are not in the same component of a then b,(<,{) = max{d(~),d([)}. 

Lastly, the note to the definition is explained by observing that if lim(cc) <v, f E 9?y,, 

f (&) = 5 and f ([,) = [ and if neither d(t,) nor d([,) = a, then the directedness of 

JY at a ensures ~(5, [) < a. 

Variants of c,,, a,, and b, whose domains consist of longer sequences of ordinals 

can be considered. The function a{, given by a:((, [) = (a:, . . . , ah), where a,(& [) = 

(&, . . . > a~), c( = a, and czi = otp(ai \ ai+i) for i < n, is also of interest. 

Recall that the partition relation K+ ft [A]$,<i. means that there is some f: [K+]' + 

K such that V,4 E [rc+]” (f”[A]* = A). It is immediate that both b and c demonstrate 

the relation K+ ft [ICI&~, as would the branching function of any Kurepa tree. 

In fact, b shows the relation K+ $t [A]&, for each A<K if _&’ has simple limits 

(see Definition 2.2(b)). 

Proposition 3. If ~2’ is a neat simplified morass c (= c,) is a T-function. 

Proof. First of all here is some notation which is also useful elsewhere. 

Notation 4. If r a s write I+& for the map from ri + 1 to si + 1 which is the common 

part of the simplified morass maps witnessing t-as. If ,U < rc+ and d(p) < CI < K write 

pr for the ordinal (less than 0,) such that (a,,~~) a(rc,p) and 1,4; for I+!J~~,~~)(~,~). 

(a) Let i < K+ and v < K. If vbd([) then S = {t<[ j c([,[) < v} is empty. 

Otherwise let (v,[,,) a (K,[). If c(&[) <v then 3~(=5y)<iv(~[(Iy(s)=Q. Thus ??<[” + 

1 do, < K. 

(Clearly, c also satisfies (a+) if for each c( < K 8, < a+ . This occurs automatically 

if K < ~02, and if K is not a limit cardinal it is easy to convert J? into a (K, l)- 

simplified morass with this property. Further information about which limit K have 

(K, 1 )-simplified morass with small limits is given in Section 2.) 

(b), (c) Let 5 <i < v <K’. Set a = c(<,[). Suppose c(~,v)<c(~,[). As rG;” / (ia+l) 

= $f”, the supposition gives $,Y(<?) = I&(~) = 5, and thus c(& v) 6c(<, [). Moreover, 

if max{ c( 5, v), c(<, v) } < fi < CI the maps witnessing c( 5, v) < p and ~(5, v) < /3 are both 

equal to I+@ on VP, and so agree at {g. Thus ~(5, [) </3 and so J = a. Whence either 

c( <, [) = c([, v), which implies d( [), d(i) or d(v) = M, or c( 5, [) = ~(5, v). Similarly 

if c(i,v)<45,v) then 45,1) = 45, ) v or c([, v) = ~(5, v). Thus if c(c, v) < c(& [) or 

~(4, v) then c(<, i) = ~(5, v). (b) and (c) follow immediately. 

(d) Let 2 < v < K+ and lim(R). Let S = { 5 < /2 ) c(t,v) < c(<,n)}. The aim is to 

find some bound [ < JL for S. If S = 0 it suffices to set c = 0, so suppose S # 0. It is 
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at this point (only) that the assumption of neatness comes in. It is needed locally, i.e. 

what is actually needed is that d(l) Gci(v). Of course, this holds if J& is neat, since 

that assumption is equivalent to assuming that d(y) = 0 for all y < K+. 

Let a(& v) = (a,,. . . ,510). Note that each a; is a successor ordinal, so setting 

fii + 1 = SI, for i < n is a good definition. Let k <n be the least j such that a~, < “a, 

and, for i < j, op, = Ag,(< va) if there is any such j, and be undefined otherwise. Note 

that R-6 < vg for all 6 d K if k is undefined, and for all 6 E [ak, JC] if k is defined. 

Suppose 5 E S. Temporarily setting y = 6 A- 1 = c(& A), one has ~8 < 58 -=c vii = 

v;. < 0s d i.,. Thus k is defined, c(5,1) $ /?k, the latter shows that 5~~ < 0~~. As { E S 

was arbitrary it clearly suffices to set [ = ~,~(~~~ ). 

Notice, the assumption that li is a limit ordinal has not been used, and so can be 

dropped. 

The definition of Todorcevic’s p can seem rather mysterious. The function c, on the 

other hand, can be thought of as being built up by a familiar morass construction if 

the reader so desires, because for each 

(U{(j/JG), WC)> a) I e7 i E [op, Q)) 

U{(&,Ti,ff) ]3i <2d(&) = CC} if ff = /?+ I). 

In an earlier version of this paper it was shown that a certain function extracted from 

an (w, 1)-simplified morass witnessed Todorcevic’s theorem WI $, [cut]& (see [20], 

Section 4). The existence of such a morass is a theorem of ZFC (see [23]). Despite 

the use of morass technology, which to some extent simplified the ~ombinato~cs of 

the proof, the definition of the function was rather complicated. The specific definition 

is not given here, since after reading the earlier version Velleman came up with a very 

elementary proof of Todorcevic’s result. (The reader should consult [27].) 

Returning to T-functions, Velickovic showed that when IJ, holds Todorcevic’s T- 

function p also has the following properties. 

Fact 5 (Velickovic, Lemmas 4.3-4.5). 

(a) VX, Y E [~+]“(cr = sup(X)<fi = sup(Y) 

+ WE [XlK3Y’f [YIK& EX’Vrf E Y’[[ <q --+ ~(~,~)~~(~,~)I)* 

(b) WC, Y E [~+]“tly < &3X’ E [XIK 3Y’ E [YIKv’i; E X’ V’g E Y’ (p(&q) 

3 ~(5, Y) or p(r: 1~)). 

(p(a,j’)>p and at least one of p(a,y) and p@,y)). (When K = 01.) 

Proposition 6. if .A is neat, c satisfies the conditions 5(a)-(c). 
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Proof. Velickovic showed that (b) and (c) follow from (a), so it suffices to prove this 

alone. The structure of this proof is similar to Velickovic’s, although, of course, the 

details are different. Let X, Y, a and fi be as in the statement of (5(a)). For E < K let q” 

be the least q such that dom I& \ { a} G q. (Hence (E, c(,)a(lc, tf).) Then C = { qE 1 ECJC} 

is closed and unbounded in ~1. If q E C and y < y then either c(q,a) < c(y,a) = c(y,q) 

or c(~,cr)~c(y,cr), c(y,q). In the latter case clearly c(y,a) = c(y,n) again as LX, = q:). 

For each q E C pick some distinct 6, E Y \ q and use property (1. Id) to pick [,, < n 

such that c(~,S,)~C([,U]) = c({,c() for all 5 E [[,,q). By Fodor’s Lemma fix S E [CIK 

and ‘J < CI such that Vq E S [, < y. Let x =X \ y. If c1 = /I, let X’ E [zIK, S’ E [SIK 

and Y’ E [{6, 1 9 E S’}]” be such that for all q in S’, [n,6,) n X’ = 0. If CY < j3, 

let X’ E [ylK, S’ E [SIK and Y’ E [{6, 1 y E S’}]” be such that ~([,a) > c(c(,6,) 

for all i” E X’ and q in S’ with 4 > q. For then ~(5, CX) <c(& 6,) or c(a, 8,) and 

c(5,&)3c(5,co. 
Todorcevic and Velickovic have found many uses for T-functions, and T-functions 

satisfying 5(a)-(c) in stepping up arguments. These are arguments whereby some 

proposition about K is transferred to a similar, but usually slightly weaker one about 

rc+ (although often the weakened result is known to be best possible). The principle 

use of T-functions in [22] is to show that a certain forcing is ccc. Baumgartner and 

Shelah have also introduced a variety of function designed to help show certain forcing 

notions have ccc. They call their functions “functions with the property A”. 

Definition 7 ([2], Section 8). A function f : [w2]* + [co21 <(JJ has property A if 

(i) V’5 < i < ~2 f (L i) C 5 and 

(ii) VD~[[~2]““]~‘3a,b~D’d/5~(a\b)V’1~(b\a)Vv~(anb) 

(r,i>v-vEf(4,i))&(v<i-)f(5,v)Cf(g,i))&(v<5~f(i,v) 

G f(L 5)). 

These functions are closely related to T-functions (as was asserted in [22]). 

Proposition 8. If there is a T-function satisfying 5(a)-(c) then there is a A-function. 

Proof. Let g be the T-mnction. Set f (5, [) =def (6 < t 1 g(S, 5) <g(& i)}. Note 

g(6, i) < g( 5, <) if and only if g(6,r) < g(4, i). Suppose that D is an uncountable sub- 

set of [o~]<~. Without loss of generality suppose that D is a A-system, and list it 

as (a, 1 T < 01) with a, n a O = a and max(a,) < min(a, \ a) for all r c: CJ < 

WI. Now apply (5(c)) to D. Let r < CJ < 01 be such that given v E a, t E a, 

and i E a, both g(v, 5) and g(v, i) d g(4,i). Clearly, v E f (L i). So suppose 6 E 

f (v, 5). The aim is to show that 6 E f (5,[). Both g(6, v) and g(6,r) <g(v, 0, and so 

g(S, 0, s(S, v) < g(v, 5) <g(<, 0. The proof that f (v, i) 5 f (L i) is symmetrical. Thus 
f has property A. 
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Baumgartner and Shelah obtained a function with property A by forcing. In their 

“Notes added in proof” they observe that their forcing “is really just adding a cer- 

tain kind of simplified morass.” In fact their forcing adds a simplified morass with 

continuous paths (cf. [17]), a stronger concept than that of a simplified morass on its 

own. (See Section 2 for further details on this point.) They use both the paths and 

the fact that the function is added generically to check its properties. However, Propo- 

sition 8 shows that this is unnecessary as both an (01, 1 )-simplified morass and (its 

consequence) q w, guarantee the existence of a A-function. 

It was remarked upon earlier that the subject of the true extent of the overlap between 

morasses and 0 remains of interest. This is so even in the case IC = ~1, when much 

is known. For example, while q ,, holds if there is a (01, 1 )-simplified morass, it is 

consistent relative to an inaccessible that q ,, holds and there is no (~1, 1 )-simplified 

morass. To see this is so one may collapse the inaccessible to w2 while simultaneously 

adding a q ,, sequence by using conditions consisting of closed subsets of countably 

many limit ordinals smaller than the inaccessible with a suitable coherence property. 

Silver’s argument that there are no Kurepa trees in the Levy collapse of an inaccessible 

to 02 can be adapted to this forcing. Alternatively, one may argue that if there is an 

inaccessible in V there must be a least one in L. Taking L as the ground model, Levy 

collapsing this inaccessible over L to 02 guarantees that there are no Kurepa trees and 

so no (WI, I)-simplified morasses, while q w, must hold since 02 in the extension, 

being the least inaccessible in L, is not Mahlo in L. 

Jensen showed that if q ,, holds there is a ccc forcing to add a Kurepa tree, and 

Velickovic [22] gave a proof of this using T-functions. However Todorcevic (in per- 

sonal communicaton) has observed that there can be no ccc forcing to add an (WI, l)- 

simplified morass unless the weak Chang conjecture, wCC(oi), fails. But wCC(wi) 

is similarly independent of the existence of Q,,, and hence of the existence of a T- 

function. It would be interesting to find conditions that did suffice ensure that there was 

a ccc forcing to add an (01, 1)-simplified morass, or indeed to add a q o, sequence. 

2. Continuity and coherence principles for morasses 

It is frequently useful in constructions involving a simplified morass to have a greater 

degree of control over the limit stages than that afforded by the simplified morass alone. 

In this section various ways of augmenting the notion of a simplified morass which 

putatively facilitate limit steps of inductions will be examined. The idea is to enable 

morasses to be used in building objects from collections of pieces which are not closed 

under full directed limits but do satisfy some weaker closure notion. Equivalently, the 

forcing axioms corresponding to these augmented simplified morasses cover a wider 

class of forcings than the axiom corresponding to simplified morasses alone. 

Let .,& = ( ( Oa ( a G JC), ( Fxp 1 c( <j? d PC) ) be a (rc, 1 )-simplified morass. Immediately 

below a rather general formalism is set up which facilitates discussion of various 

restrictions on the limits of A. 
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Definition 1. If c( < K and lim(a) a simple limit at 01 is a club set D, C a and a 

collection of maps (gi ) /3 E Da) such that g; E 5~~ for each fl E D,, 

~‘B,r~D,(p<r-,3f~~~~g~=g~.f) and (1) 

b’fl<aVf EF~,3yED,\f13f’EFby(f =g;.f’). (2) 

A path at CI is a simple limit such that D, = CC. A simple path or limit at successor CI 

satisfies Definition 1 with clause (2) omitted. 

For any set C which is club in some ordinal, let C’ be the set of limit points of C. 

Definition 2. (a) J&’ has small limits if 8, = Z for each lim(a) < K. 

(b) _M has simple limits if it has a simple limit at each lim(cc) < K. 

(c) & has continuous limits if it has simple limits such that for each lim(cc) < K, 

V’y~D:,V’p<yb’f E~~y36ED,n[B,y)3f’E~~6(g%.f ==g;.f’). (3) 

(d) 4 has linear limits if it has a simple limit at each lim(a) < K such that 

‘dYED:,(D,=D,ny and Vj3ED,gi;=g,l.g;). (4) 

In Definition 2(b)-(d) each reference to simple limits can be replaced by a reference 

to paths, leading to the concepts of JZ having paths, continuous paths and linear 

paths. (The terminology would probably be improved if one could use coherent limits 

for linear limits and linear limits for simple limits, but this would conflict with the 

usage in [24] in which linear limits were introduced.) 

There are several ways in which each pair of properties could be related. It could 

be that every simplified morass with property (x) has property (y), or that if there is a 

simplified morass with (x) then there is one with (y), or it is consistent that if there is 

a simplified morass with (x) there is one with (y). Note that the definition is arranged 

in order of (formally) increasing strength, and that each notion for paths is formally 

stronger than that for simple limits, in both cases in the first sense above. It is also 

clear that in this first sense none of the properties imply any of those below them. 

If K = 02 and JH is a (K, 1 )-simplified morass with small limits the first 01.2 levels 

of the morass can be dispensed with and replaced by any simplified morass segment 

of height 01 + w with at least wr distinct maps in 9&olw,+w. In the revised simplified 

morass cfO_Hrs(f) If E ~o,w,+,)) = WI and thus there can be no simple path at 

01 -to, since if there were the union would have cofinality o. Nevertheless, the morass 

will continue to enjoy small limits. 

If J& has linear limits is simple to alter some of the limits maps so that the revised 

limits are continuous but not linear: for example take any c( and y E 0: such that 

otp(D,,) = w and replace the map at the smallest element of D, by any other map 

which factors through the map at the next element. Similarly it is easy to obtain a 

simplified morass with simple but not continuous paths. 



C. Morgan! Annals of Pure and Applied Logic 80 (1996) 139-163 141 

But it is not clear a priori what the relationship is between, say, continuous paths 

and linear limits in the other two senses. In fact this particular question was the starting 

point of these investigations. 

Passing to less trivial points, in [17] it was shown that if ~$4 has linear limits it also 

has continuous paths. (In fact the definition of continuous paths in [ 171 specifies that 

there should be a path for successor tl < K as well as for limits, but we can simply 

use induction on JC to fill the gaps. If IX = a’ + 1 we can take g:, to be any map 

in &, and set gi = g:, . y$ for each /I < a’.) By analysing the proof one obtains 

that if JJY has simple limits it has simple paths, and if it has continuous limits it has 

continuous paths. However, as Velleman showed in [ 171, no (rc, 1 )-simplified morass 

has linear paths. This latter fact was also implicitly proved earlier by Donder in the 

proof of Lemma 1 of [6]. That lemma shows that linear limits cannot be “trivialised 

on a cofinal set”: i.e. there can be no cofinal set S C K such that for all c( and /I in S if 

x < B then D, = Dg n a, or, equivalently, such that for all a in S, D, = S n a (whence 

S would be club). Linear paths are trivialised by the well-known cofinal subset of K, K 

itself, while the consequence Donder drew was that if IC is weakly compact some club 

would trivialise any putative limits and so there is no (K, I)-simplified morass with 

linear limits. 

The main result of [6] complements this conclusion, showing that if V = L and 

K is not weakly compact there is a (K, 1 )-simplified morass with linear limits. At 

the other end of the scale, if K is ineffable there is no (K, 1 )-simplified morass with 

small limits, since the inherent tree of a (K, 1 )-simplified morass with small limits 

obviously witnesses the ic-Kurepa Hypothesis, which must fail if K is ineffable. Perhaps 

surprisingly, in L at least, this dichotomy encompasses all of the concepts mentioned 

so far. For it will be shown in this section that if K is weakly compact there is 

no (K, 1)-simplified morass with continuous limits, and if K is not ineffable there is a 

(K, 1 )-simplified morass with simple limits. Consequently L fails to distinguish between 

seemingly different notions: small and simple limits and linear and continuous limits. 

First of all it is established, as promised, that simple and continuous limits give 

simple and continuous paths, respectively, and hence that one may concentrate attention 

on whichever of the versions of these continuity concepts is more convenient for each 

particular purpose. 

Lemma 3. Suppose A (a simpkjied morass) has simple limits. Then A has simple 
paths. Moreover if the simple limits are continuous the paths shown to exist will also 
be continuous. 

Proof. The construction used will be that of [17, Lemma 2.11, in which linear limits 

were used to obtain continuous paths. The weaker hypotheses of this lemma will suffice 

to prove its conclusions. Suppose (( gi 1 p E 0%) 1 lim(a) < K) is a collection of simple 

limits for Jz’. It will be proven by induction on a (including successors) that given 

any p < a and f E 9jja there are simple paths at a such that f; = f. If a is a 

successor it is easy to “fill in” the gap between a and the largest limit smaller than it 
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as indicated above, and then use composition with the path at this ordinal to complete 

the definition. So assume c( is a limit ordinal. First choose [ E D, such that there is 

some f’ E 9$[ such that f = gf . f I. By the inductive hypothesis choose a simple path 

(J,$ 1 y < [) at c such that fi = f ‘. Now, again by the inductive hypothesis, choose 

simplepaths ((f,61y<h)IdEDor\[+l) such that if 6 is the successor of 6* in 

D,, then gi . f$ = g&. Next one combines these paths to get a simple path at a. For 

y < M. set f; = gi . f:, where 6 is the least element of E = (DE \ LJ greater than y. 

Clearly, the definition ensures fi; = f. Now one must check that (Ly 1 y < a) is a 

simple path at CL 

Firstly, check that (1) holds. Suppose j3 < y < E, so that fi; = gt. fi and f; = gF.ft, 

for some 6 6 E in E. If 6 = E, (1) holds since it does for the path at 6. So suppose 8<&, 

in which case 6 GE*. By ( 1) for the original limits f; = g$ . h for some h E 9~~. . 

Since g$ = g,* . fi*, it follows from (1) for the path at E that fa = g,” . f; . k for some 

k E 9~~. As gz . f; = jIy by definition, fi = f F . k as required. 

Secondly, check (2) for lim(a). If y < CI and f E 9&, there is some S>[ such 

that f = gi . f’ for some f’ E F$. But by the definition f i = gj, for 6 E D, \ [, so 

f =fi. f’. 

Finally, suppose that the original limits were continuous limits, and, inductively, that 

each time one chases a simple path, a continuous path is chosen. To check that (3) 

holds at c(, suppose /I < lim(y) < IX. If u is a successor and y is the largest limit ordinal 

smaller than it, (3) holds trivially by the definition of the paths at 01. So assume lim(cr) 

and let f E Fpy. For 6 < c1 let (6 be the least element of E greater than 6. 

If there is some 6 < y such that ts = 56, = r say, then 5:. f = g9;- f;. f = g:. fj .f’, 

for some f’ E 9&, by the inductive hypothesis that (3) holds for the path at 5. But 

g; . fi . f’ = f; . f’, as needed. 

If there is no 6 E [p, y) such that <a = rr, then y E D, \ [ and &? = g;. Suppose 

firstly that y E D, \ (0; U (I), and let y* be the predecessor of y in D,. Then for 

6 E [y*, y), f; = gt . fi. By the inductive hypothesis (2) holds for y, since y is a limit 

ordinal, so f = fl. f’ for some 6 < y and f’ E Fp6, where without loss of generality 

fi, y* <6. Thus f; . f = 4;” . f = g; fd’ . f’ = fs” . f’. 

The remaining case is that y E 0: \ c. By (3) for the original limits, there is some 

6 E D, n [b, y) such that gy . f = gi . f’, and (by (1)) one may assume that 5 < 6. 

Observing that fi = g$ finishes the proof. 

Now turn to the resemblances between continuous and linear limits. It is more or 

less immediate that when (2) holds, (3) is equivalent to: 

~yED~~‘pEDy36ED,C7[P,y)3fE~~s(g~.g~.f=g~.f andgi.f=gi). 

(3’) 

Proof. (+) Suppose a, /I and y are as in the hypothesis of (3’). Applying (3) to the 

map gi gives some 6 E [/I, y) and f E 9~6 such that gy .gi = gi. f. By (1 ), gi = gi. f’ 

for some f’ E 9$, and thus g; . g6 f’ = gi . f. But then f = f ‘. (Since given any 

two pairs of maps hi, ki (i = 0, 1) in a simplified morass, if ho + ko = hl . kl and the 
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hi have the same domain, which contains the ranges of the ki, one has ho = hl on 

rge(ks) U rge(ki), and so ko = kl. 
(G) Let CI, p, y and f be given as in the hypothesis of (3). By (2) there is some 

6 E D, \/I and some f’ E 9$6 such that f = g6. f ‘. By (3’) there is some E E [6, y) and 

some f” E 4, such that gi = gi . f” and g: . f” = g; . gI . f” = g; . gi. Consequently 

g; . f = g,* . f ‘I . f ‘, as required.) 

This observation will be particularly useful when considering forcing axiom charac- 

terisations of augmentations of morasses in Section 3. 

The following lemma relates two variants of continuous limits. 

Lemma 4. Zf & has simple limits then for each lim(a) < K and y E DL, 

Vfi<yVf E~~,36ED,nD,\B3ffE~~s(g~.f =g$.f’) - (5) 

Vr8ED,30ED,nD,\p3f EFPs(g;.gi.f =g;.f andgi;.f =gi). (5’) 

And if the limits are paths then (3), (3’) and their analogues derived from (5) and 

(5’) are all equivalent. 

Suppose that A! has continuous limits (g; 1 /I E D, ). For convenience set g: = id If?,. 

For each limit c( < K, let hiY = (gF)-l . gi for /I < y and p, y E D, U {a}. Note that 

(1) in the definition of simple limit guarantees that each hiy is an element of 9~~. 

Lemma5. Foreachlimita<tc, ((h~,IBED,ny)lyED~U{cr}) isacollection 
of fake linear limits, that is, obeys (1) (2) and (4) with D, U {cc} in place of K 

(changing the other bound variables suitably of course). 

Proof. Fix p, y and 6 E D, U { u } with /I < y 6 6. Firstly, by (1 ), 

hL = (g;)-’ . g; = (g;)-1 . g; . f = hFs. f 

for some f E 9&. Secondly, if 6 E 0; U {a}, then, by (3) (resp. (2) for 6 = a), for 

each f E 9~s there is some E E [/I, 6) n D, such that 

gi . f = g,” . f’ and so f = (g$)-l . gf . f’ = h$ . f’ 

for some f’ E LFffE. Lastly, 

a $6 = (g$)-1 . g; = (gs) -’ . g; . (g;)-’ . g; = h;6 . hi$, 

so this strengthening of (4) holds. (It is stronger because there is no demand that 

6 E D;.) 
Note that if the continuous limits are paths the fake linear limits given by Lemma 

(5) have limits at each limit y <a. 

Lemma 6. Zf rc is weakly compact there is no simplified morass with continuous 

paths. 
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Proof. Consider the following tree: the elements are fake linear limits through J%, 

ordered by extension, that is for limit CI and Cc, 

- i’ 

if CI < E and for 1 E D, and y <a one has +/ = 5$. If .A has continuous paths and K 

is inaccessible then, as shown in Lemma 5, this tree is a K--tree. Consequently if K is 

weakly compact there is a branch of length K through the tree. But this branch (or more 

strictly the union of its elements) then constitutes a collection of (true) linear limits, a 

contradiction to Donder’s Lemma 1 from [6]. (There is similarly a branch through the 

restriction of the tree to those fake linear limits generated by the continuous paths as 

in Lemma 5, which constitutes a collection of linear paths, contradicting Velleman’s 

result in Section 2.3 of [17].) 

Corollary 7. (V = L) If there is a (K, l)-simplijed morass with continuous paths there 
is one with linear limits. 

Proof. By Lemma (6), if & has continuous paths, K is not weakly compact. Theorem 

(2) of [6] asserts that if V = L and K is not weakly compact there is a (K, I)-simplified 

morass with linear limits. 

I had hoped to improve on Corollary 7 by showing the result held outright. However 

Dieter Donder found a serious error in my purported proof, and I should like to thank 

him for this and for convincing me that my various efforts to patch the proof were to 

no avail. My plan was to use condensation properties of the model L[A4] of [lo] and 

[ 1 l] extending those given there to obtain an unsimplified morass with linear limits 

and from that a simplified one. However my argument broke down if L[M,A] is not 

“reshaped” - in fine structural argot - for some A & K where L[M, A] C V. Thus the 

question as to whether there is necessarily a (K, I)-simplified morass with linear limits 

if there is one with continuous paths is still open. (Indeed it may be that one needs 

to assume O(K) as well, or possibly something even stronger.) It seems that L[M] 
will be sufficiently re-shaped if K+ is accessible in L, and so it seems one will need 

some large cardinal hypothesis to separate the existence of linear limits and continuous 

paths. 

Theorem 8. ( V = L) There is a (K, 1 )-simpleed morass with small limits if and only if 

there is a (K, 1 )-simpl$ed morass with simple limits (if and only if K is not ineffable). 

Proof. Assume V = L. The proof is a very mild modification of [6, Theorem 21, and 

is presumably what Donder had in mind in his note at the end of [6] (p. 236) If K is 

not ineffable one can thin the initial 9’ of [6] as in [5], p. 431, rather than by using 

weak compactness as in [6, pp. 231-2321. Continuing in the style of [6], the resultant 

morass will have simple limits, but the analogue (12)(c) will in general fail for c1 as 

in Case 1, so the limits will not cohere. 
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I elaborate slightly on the comment before Proposition 1.3. 

Definition 9. A is a (IC, 1 )-simplified morass with authentic small limits if a has no 

v-Cantor subtrees for any infinite v < K. (Recall that a tree T is v-Cantor if there is 

some p <v such that the height of T is p + 1, each level T, has size at most v for 

% < v, and TP > v, while no two elements of TP have the same set of predecessors in 

T.) 

Observation 10. It is implicit in the proof of [24,4.3] that a (K, 1 )-s~pli~ed morass 

with simpIe limits has aathent~c small limits. And it is clear that a (u, 1 )-sirn~~i~ed 
morass with authentic small limits has small limits. 

Lemma 11. Zf A? is a neat (K, 1 )-simplified morass with authentic small limits, 

b(= bK) demonstrates rc+ f, [,I]:,<, for each 1 <K. 

Proof. Clearly it suffices to prove the lemma for successor A. (To see this, suppose 

that the lemma fails for some limit cardinal A. Then there is some A E [rc]” such that 

b”[A12 = ,u for some @ < 3,. Hence b”[B]* = p for any B E [Alp’, and any such B 

contradicts the lemma for II+.) So assume 1 = r+. 

The hypothesis is far stronger than is necessary. The assumption of neatness is simply 

to prevent il many points having the same “date-of-bide’ and distinct ancestors at that 

level, and could be weakened to specify that. (I leave the trivia1 thinning argument to 

the reader.) The conclusion of the lemma is also true of the branching function of any 

k--Kurepa tree with no v-Cantor subtrees for each infinite v < K (and this shows the 

lemma itself.) I prove the contrapositive of this assertion. 

Suppose b is the braching function of a rc-Kurepa tree T. Suppose A is a set of 

points at level IC in T, with T = ;1 < rc and b”[A]* = p < 1, so that the partition 

property holds. (To be pedantic, I should thin T to a subtree whose set of points at 

level K has size it+ and containing A, let me re-cycle notation and also call this subtree 

T.) 
Let /I < K be least such that there is some set B, of size I, of points at level /3 which 

are predecessors in T of points in A. Note that B is a limit ordinal of cofinality p d ct. 

Let S be the subtree of T 1 p+ 1 whose underlying set is { y j 3x f B yTx & 3w, z E B 3 
ti;, i E A(wTG, zTF & b(t3,f) = ht(y)) }. Then S is a r-Cantor subtree of T. 

Note. In [2.5,2.6] Velleman proves the combinatorial principle lilj(wj), due to 

Hajnal and Komjath, holds in L. (It is not important to know what this principle 

and its variants mentioned below actually are for the purposes of the present discus- 

sion.) Explicitly he uses a (neat) (WI, 1)-simplified morass with linear limits to show 

a principle called W&(Q) holds and then uses some auxiliary lemmas that hold in L 

to complete the proof. But inspection of the proof shows that all he uses of the linear 

limits is that at each y of cofinality w there is a sequence (/$ / i < CO) eofinal in y 

and a sequence of maps (hi 1 i < w) with each hi E 9~~~ and l&‘Og, = 8,. Thus an 
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(~2, l)-simplified morass with simple limits (at points of cofinality w) clearly suffices 

for his proof. Inspection also reveals that his proof shows w&(0,+1) holds using an 

(w,, 1 )-simplified morass with simple limits at points of cofinality w. 

Now the auxiliary lemmas Velleman uses are 

Lemma 12. CH, WH(JC) and K+ + [WI]:,> imply H(K); the former and the latter 

hypotheses hold in L; and H(o,) implies H,(o,) for n2 1. 

One also knows that WI ,~[wI]‘,,, and that if, [ml]&, implies 2Kft [ol]::,’ if there 

is a rc-Kurepa tree with no wl-Aronszajn or o-Cantor subtrees (by the main result 

of [20] and by a special case of [ 18,9.3], respectively). Inspection of the proof of 

[24,4.3] shows that such a tree exists (for IC = o,+l) if there is an (o,, 1)-simplified 

morass with linear limits at levels of cofinality < ~1. So H,+I(w,+I ) holds if there is 

an (o,, 1)-simplified morass with linear limits at levels of cofinality <ol for all m dn 
and CH holds. It is clear from [6] that such simplified morasses are available in L. 

However as Velleman remarks in his “notes added in proof”, Todorcevic has proven 

that each H,+l(w,+l), for n 2 1 holds in L, using I&, . In fact Todorcevic’s proofs use 

only T-functions and so it follows immediately from the results of Section 1 that one 

could use (o,, 1)-simplified morasses alone (i.e., without worrying about what limits 

these morasses have) instead of Q,, This raises the (open) question as to whether if 

there is a (IC, 1 )-simplified morass there is one with linear limits at points of cofinality 

< 01. Presumably this question is related to that of removing the assumption of V = L 

from Corollary 7 and Theorem 8. 

This seems an appropriate place to note that any simplified morass with the variant 

of small limits that cf (x) = cf (0,) and Z = 8, at regular cardinals CI almost has simple 

limits at regular cardinals by a crude cardinality argument: properties (1) and (2) of 

the definition of simple limit are satisfied but the D, need not necessarily be club. To 

see this observe that & = UBcor Fpol has size CI as Ba = E. Hence a simple limit can be 

defined inductively, ensuring that each of the E many elements of 9 can be factored 

through it in turn. At limit ordinals below CI one uses the following Lemma which is 

a mild generalisation of [23,3.5] and which is proved in exactly the same way as that 

corollary. 

Lemma 13. Suppose A is a (JC, 1 )-simplijed morass, CI 6 K, /* < cf (a). cf (0,) and 
for each 6 < p there is some pa < CI and fh E 9&. Then there is some y < M and 

maps g E 9& and fi E FbhY such that for each 6 < p, fh = g ’ fj. 

3. Forcing axioms corresponding to the augmentations of morasses 

The fimdamental work on forcing axiom characterisations of morasses was carried 

out by Velleman in [23] and [24]. His forcing axioms are named after the particular 

closure notions they satisfy, the other properties being common to them all. In this 



C. Morgan1 Annals of Pure and Applied Logic 80 (1996) 139-163 153 

section forcing axiom characterisations of the notions introduced in the previous sec- 

tion are given in a similar style. In summary the situation is as follows: small limits 

correspond to a variant of the K--directed closed forcing axiom, simple limits corre- 

spond to the K-closed forcing axiom and continuous limits correspond to a new kind 

of h--strategically closed forcing axiom, in which a strategy gives a reaction to the 

position in which a player finds themself, rather than the sequence of prior moves in 

the game. Where convenient a unified account is given. 

Definition 1. Let P be a partial order and 9 = (D, / a < rcf ) be a family of rcf dense 

open subsets of P. 

(a) Vp E P rim(p) ‘def {a < rc+ 1 p E Da}. 

(b) VJCC < rcf P, ‘def {p E P 1 rim(p) C a}. 

(c) p* =def u,<,pa. 

Suppose for each 01 < K, y < K+ and order-preserving f : o! + y there is rcf : P, 4 
P?. Consider the following conditions on 9 and the n, for each CI < K, y < rcf and 

order-preserving f : c( + y. 

(i) VP E P, Wm(nf(p)) = f" rim(p)). 
(ii) VP, 4 E PE(pdq * ~f(p)G~f(q)). 

(iii) VCQI < CIr < KV’a* < rc+ Vfo : CIO jO$. cc1 Vf, : CI] +o.p. a2 

(Zfl.fO = Xf, . Xf,>. 

(iv.W) P’ # 0 &V’a < K (D, n P’ is dense in P*). 

(iv.S) ‘d’a < j3 < x(Pp # 0&(D, n Pp is dense in Pp). 

(X.v.W) P’ is a forcing notion satisfying X. 

(X.v.S) V’cc < K P, is a forcing notion satisfying X. 

(vi.W) V’p<a<y<rc’Jf :~-‘o.p.Y(fIP=id&f(B)Sa&pEPaj 
p and nf( p) are compatible in P' ). 

(vi.S) V/?<a<y<rcVf :aA,.+,y(f I/?=id&f(j3)>a&pEP,+ 

p and zf(p) are compatible in P,). 
(d) 9 is X-weakly k--indiscernible if it satisfies (i)-(iii),(iv.W),(X.v.W) and 

(vi.W), and 9 is X-strongly K--indiscernible if it satisfies (i)-(iii), (iv.S), 

(X.v.S) and (vi.S). 

(e) P satisfies the X-strong forcing axiom (the XSFA,) if for each X-weakly 

rc-indiscernible set 9 there is some G C P such that a < K (G n D, # 0) 
and G is rc-complete. 

P satisfies the X-weak forcing axiom (the XWFA,) if for each X-strongly 

K-indiscernible set 53 there is some G C P such that c( < K (G n D, # 0) 
and G is rc-complete. 

The properties X which are most interesting are closure properties of various kinds, 

in particular K-directed closure, rc-closure and various strategic closure properties. Write 

DWFA, and DSFA, for the K--directed closed forcing axioms. 
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Velleman showed that there is a (K, l)-simplified morass if and only if DWFA, holds 

if and only if DSFA,. The next theorem has a very similar proof, which is given in 

full for the reader’s convenience. 

Theorem 2. The following are equivalent 

(a) There is a (K, I)-simplijed morass with simple paths. 
(b) rc-closed-SFA, holds. 

(c) Ic-closed- WFA, holds. 

Proof. (a)+(b) Let P be a partial order and 9 = (D, 1 c( < K’) a K-closed weakly 

k-indiscernible set of dense open subsets of P (under the functions { rcf 1 f E ‘y is 

o.p.&(a,y)~~x~+}.) Suppose~=((8,1a~Ic),(%~BIadBdrc)) isasimplified 

morass and ((gi1p<a)Icc< ) K IS a collection of simple paths for it. Suppose also 

that each ea is a successor. (Any (K, 1 )-simplified morass can be modified so this is true 

without destroying the property of having simple paths by the methods of [23,Theorem 

3.101). Write C for K--closed, so, for example, the forcing axiom is CSFA, 

Inductively pz E P*, yx < K and f * E %bz for each c( < K and f E %p, will be 

defined satisfying the following conditions: 

(a) 

(b) 

KX < K (rol .0X C rlm(p,) C Y~+I ). 

V’B < LY. < K (yfl < y* < K). 

(c) b’fi<adIcVf E%~,‘v”z<yg+l (ifr=ya.[+& and[<y~if[+l<B~ 

then f*(z) = ya . f (0 + 5). 

So f * is order-preserving and (f . g)* = f * . g*. And if %Xa+i is a pair { h,j}, then 

h* I (~a . ~a) = j* I (~a . a,) and h*“yl+i Cj*(y, . CT,). 

(d) ~lB<a<rc~~E%~,(Pl~71f*(Pg)). 

Initially let ya = 1 and by (iv.W) and (C.v.W) choose po E P* so that 00 & rlm(po). 

Next suppose that y/r, %*> and pg have been defined for all 6 </I <cc. Choose yl+i so 

that rlm(p,) G ya+i. Inductive condition (c) gives f * for each f E %aG(+~. If %Ua+i is a 

singleton it is easy to choose p*+l such that ya+l &+I & rlm(p,+i ) and pa+1 < xf*(p,) 
by (iv.W) and (C.v.W). If on the other hand %Oa+~ is the pair {h,,j,}, let A = 
hz”y%+l Ujl”yl+l GE, 6 = otp(A) and k : 6 -+ A be the order preserving bijection. 

Then k-' .h,* = id, k-’ .j,’ I ya’crz = id and k-’ .jz(y,.a,) = ya+l, and (vi.W) is appli- 

cable to k-‘.j,*. Let q = xid(pa). By (iii) xh;(p) = nk(q) and rtj:(p) = rCk(rtk-l.j:(q)). 

By (vi.W) let r E P* be such that r<q,7tk-1.~;(q) and supppose Y E P,J, where E <a’ 

and extend k to k’ : 6’ --+ E’ < IC. Then h,* = k’ . id and jz = k’ . (k-l . j;) . id, so 

zk’ d zh; (p), rtj; (q). It is then easy to pick pa+1 and such that ya+i . oaf1 G rlm(p,+l ) 
and pr+i < r&‘(Y). Clearly the inductive hypotheses are maintained. 

The limit stage is dealt with by showing that it is only important to take into account 

the images of the pp under the simple path maps at a in order to preserve the inductive 

hypotheses, and that this can be done by K--closure. Specifically, if lim(a) and yb, %& 
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and pp have been picked for all 6 <p < ~1, let yor = lJp__yg. By (c), f * is defined 

for each f E P&. By the definition of simple paths, for each f E 9~~ there is some 

E E (p, a) and some f’ E 9~~ such that f = gz . f '. Thus, by inductive hypothesis (d) 

applied to 4 'v'f E Fpa 36 E (B,a>(71(9~)*(~b)~71f-(pg)). 
Also, for any /3 < E < a there is, by the definition of simple paths, some f E 9~~: 

such that g; = gz.f. So by inductive condition (d) at E, q,;)*(pb) = r~(~:)~(znf.*(pg))> 

%:)*(P& 
As P* is k-closed there is some Y E P* such that (r <Q;)* (pb)), and so for all 

p < a and f E F&, r < TC~* (pp). Once more r can be extended to some pcl such that 

y1 ‘0, CI rlm(p, ). 
Now let yK = IJ,,, y1 = K and let G be the upward closure of { rcf* (p,) 1 a < K & 

f E Fz, }. G is directed, for given 71.f; ( p10 ) and rcf; ( pl, ) there are y E (a0 U aI, K), 

B E &, fo’ E %,, and f,’ E 4,, such that fo = g . fi and fi = g. f,‘. But 

“/;*(Px, 1 = Q* (qf(P, )> and p7 d ~1; ( p,, 1, for i = 0, 1, hence Kg ( p,, ), ny,* (pa, ) 3 

v(py) E G. 
G really is sufficiently generic, for if z < K + there are [ < IC+ and < < K such that 

z = K. [ + (. One can then pick a < K, f E 3% and [’ < 0, such that ya > 5 and 

f([‘) = i. Thus 7’ = ‘is. [’ + Ej E rlm(p,), and so r E rIm(rrf*( p,)) and zt~-*( pr) E 

GnD,. 

Finally G is k-complete. If X C G and z = A < K, one may without loss of generality 

take X = { ~~;(p~~~) 1 6 < i}, where for each 6 < %, /?a < K and fa E 9~~~. By the 

directedness of simplified morasses there is some y < K, g E P& and fj E Fjdy such 

that fb = g . f; for each 6 < 1. Hence pi, < z(c;,‘)* (pa,) and so nn,-(p,) E G extends 

each q-; (PA ). 
(b)+(c) is trivial. 

(c)+(a). The natural conditions for adding a (K, 1)-simplified morass with simple 

paths are of the form p= ((e,la~~),(~~~ladB~~~),(g~IP<a~~),B), where 

(i) fi -C K, 

(ii) (0, 1 a<p) E [IC]~‘+’ and 

Va <b dp (P$ is a set of order preserving maps from 8, to 0,), 

(iii) Va<p((.FI,, = {id} and 9&+i is either a singleton or a pair { h,, 11/1} 

such that for some o. less than 8,, h, I oa = j, 1 CT@ & h,f/ 8, Q,(o,)), 

(iv) Vzdfldydp(P&={g.f ]gEFj,&f E&p}), 

(VI ~Wa)dpV’Bo, PI < avf0 E FpOg~f~ E up,,% E (PO U Pl,a> 

39 E %,a 3f,’ E q$)y 3f,’ E Fp,i’ (fo = 9. fo’ & fl = 9. f{>, 

(so ( ( fl, / a < p), (.E& ( ad p d p) ) is a (K, 1 )-simplified morass segment) and for each 

limit a < p 

(vi) V’B < a (si E &,), 

(vii) V/3 < y < a 3f E 9~) (gi = g; . f >, 
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(viii) VP < c1 'df E FbM 36 E (j3,cc)tlf' E Fpb(f = g$. f'), and 

(ix) B is an order preserving function from 8, into K+. 

When considering more than one condition adorn each associated notion of each 

condition by adding a superscript of the name of the condition. The conditions are 

ordered in the obvious way: p 6q if 

(v) 3f E P&,(BQ = BP. f). 

Let D, = { p E P 1 c1 E rge(BP)} for each CI < K+. Clearly each D, is a dense open 

subset of P and so the notation of Definition l(a)-(c) is applicable to 9 = (D, 1 c( 

<K+). IfM<K,y<ic+, f: GI + y is an order preserving map, and p E P,, define the 

condition nf(p) E Py by setting nf(p) = ((0: I cd@), (9$ I &d/3<.@), ((gi)P 1 B < 

s<@), f. BP). Then rcf : P, --f Pv for each a, y and f. Clearly it suffices to check 

the six conditions for the K-closed strong rc-indiscernibility of 9, for then, by the forc- 

ing axiom, a sufficiently generic set exists, and consequently a (K, 1 )-simplified morass 

with simple paths. 

(i) rlm(nf(P)) = {f(D) I P E rWp)I = f” rWp). 
(ii) If p bq then Bq = BP . g for some g E z%$~~, so f . BQ = f . BP . g. Thus 

Xf(P) d X/(4). 

(iii) Clearly 7cfi .fo = 7rfi . 7cfo. 

(iv) If CI < B < K and p E Pp \ D, let y d $’ be such that cx E (BP(y), Bp(y + 1 )), if 

possible, y = pp if rge(BP) 2 c(, and y = - 1 if y < n rge(Bp). Define q E P by 

pq = + I, = t3: 4 QpP1 - 51 - BP 56c<pp, 

((Y:)~ 5 < Giq) = I t Wi)dpp), 
84 fY + 59 P {A}, where 1 y = id and h(y + 5) = y + 1 + 5 for y + l< O:p, 

and Bq(T) = BP(yTqfor 5 < y, Bq(y) = CI and B4(y + 1 + i) = Bp(y + c) for y + 1 + t$,. 

Thenq<pandqED,nPp. 

(v) Suppose (pa 1 LX < A) is a descending sequence of conditions from Pg, where 

A is a limit ordinal less than K. Define pi below each pee piece by piece as follows. 

Let p’ = p be the sup{ ,u’ I M < 2. }. For < < [ < ~1 let 8”, 96 be the (common) 

values of @, 9(: for those 6 < /z for which they are defined. Let U = Uaci. rge(B”), 

0; = &p(U) and let B’. : Of, + U be the order preserving bijection. Let g$ = 

(B”)-’ . B’ for each CI < A. Now define (g’; I 5 < p) as in Lemma 1 of Section 2, 

using { @ 1 ct < A} as the club set in p and the paths already defined as the limits 

at smaller ordinals. Lastly, for each 4 < /A, let F$, = {g! . f ) 31 E [C&P) f E 41). 
It is clear that (i)-(ix) all hold for p”, so p’ E Pa. Equally it is clear that V’cc < 

i(p”dp”). 
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(vi) If f, p are as in the hypotheses define q<nf(p), p, as follows. Take p4 = pJ’+ 

rge(BP) U rge(B*/(P)) = rge(BP) U f” rge(W), and take t?$ = otp(U) and Bq = c-’ 
where c is the transitive collapse of U. Take FPPP(, = {id, h}, where h 1 (c”jl) = id and 

h(c”j3+~)=(~“a)+~forc”j?+~<B~~,and~~~,=(f~g~f EF~P,4&gEF&,) 

for ci. < pp. 

Clearly q is as desired. 

Similar results obtain for the other augmentations of simplified morasses introduced 

in the previous section. The proofs each have the same format as the proof of Theorem 

2, and so only the details of variations are given. 

Definition 3. Suppose P is a partially ordered set. A thin directed subset of P is a 

directed subset of P such that 6< ht(D), where ht(D) - the height of D - is the 

supremum of the ordertypes of strictly descending chains in D. P is x-thin-directed 

closed if every thin directed subset of P of size less than K has a lower bound. 

Theorem 4. The following are equivalent: 
(a) There is a (K, 1 )-simplijed morass with small limits. 

(b) x-thin-directed closed-SFA, holds. 
(c) x-thin-directed closed- WFA, holds. 

Proof. (a)=+(b) The only variation from the proof of the analagous case of Theorem 2 

is in the treatment of the limit case. Suppose u is a limit ordinal less than K and 

( yg 1 /I < a), (FE; 1 E 6 fi < ct ) and a descending sequence of conditions ( pb 1 j? < CL) 

have been defined, obeying the inductive hypotheses. Then since the limits are small, 

D={v(~g)lB < CI & f E 9~~ } is a directed set of size ti, and of height ~1, and hence 

is a thin directed set. As P’ is K-thin-directed closed there is some r E P* such that 

Vf E ZQ r d zf*(pp). As usual r can be extended to some pal with ya . da C rlm(p,). 

(The reader might worry whether D really has height a. Clearly, this is the maximum 

height D could have and ( xid(pb) I B < CY is a strictly descending chain of height c(, ) 

by property (iii) of Definition 1, if id E Fja for each p < CI. It is standard that one can 

trade-in a morass for one with this property, but even this fact is not strictly necessary. 

Recall the standard notation that if f E 9~~ and 5 6 88 then f(r) is the least ordinal 

containing f “5. 

Lemma. Let fi < a<~, f E YPa and 5 E OP. Then there is some g E Fba such that 

g j { = f I 5 and g(4 + 6) = the 6th element of HP \ T(r), for 5 + 6 < tIP, where 
Hp = U{ h”Op I h E 3$%}. Moreover, j(e,) is minimal for those g with g I 5 = f I 5. 

Proof. Exactly as in [25, 2.41. 

Now let 1s be the map given when the lemma is applied to 5 = 0 and any f E R&. 
Then it is, immediate that 1s = Z, . f for each fi < y < CY where f E F& is the 
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map obtained when the lemma is applied to < = 0 and any map in 9&. Finally, 

(V&&r) I P < CI ) IS a strictly descending chain, by property (iii) of Definition 1.) 

(b)+(c) Trivial. 

(c)+(a) The proof is similar to the analogue in the proof of Theorem 2, save 

that references to the paths should be ignored and the conditions are merely (K, l)- 

simplified morass segements with the additional requirement that they should have 

small limits. The only place where the proof differs is in checking that the conditions 

satisfy (K-thin-directed c1osed.v.S). Suppose { pa 1 a E D} C Pg is a thin directed set 

of conditions. Define p;. below each pot for c( E D. Let p” = p = sup{ pa 1 c1 E D}. 
For 5 <[ < ~1 let 6’., 9$ be the (common) values of O’, 94 for those 6 E D for 

which they are defined. -Let U = lJ aED rge(B’), l3: = otp(U) and let B” : 0; + U 

be the order preserving bijection. Let f[ = (B’)-’ . Ba for each CI E D and for 

each (x < p, let 9?& = {f/’ . f 1 3~ E [a, p) f E 4,). Then p’. is a condition since 

0; = lJ,,DO;X = lJaEDpz = 7 (and ( 6;x 1 CI E D) is a strictly increasing sequence.) 

Clearly pj, 6 px for each CI E l?, and p E Pg. 

The direct forcing equivalent of continuous paths requires a strengthening of the 

notion of strategic closure. The details of this and of the original notion are elaborated 

in the following extended definition. 

Definition 5. For P a partial order and a E On let Gr be the two player game in 

which the players construct a descending sequence of conditions from P of length GI. 

Player I chooses the conditions at limit stages and player II at successors. Player II 

wins a play of the game if player I is unable to move at some stage p < a in the play, 

otherwise player I wins. 

For /3 < M let [PI” be the set of decreasing sequences of elements of P of length /?. 

A quasistrategy for player I is a mnction S : U{ [PI” I lim(/?) < a} -+ Y(P) such 

that whenever p E S((p, 1 y < /?)), Vy <p p6pY. 
Player I plays by S up to stage &< cx) in a run of Gr if for each limit 6 less 

than p, pa E S(( pp I y -c 6)). S 1s a winning quasi-strategy for player Z if for each 

limit b and each partially completed run, ( p, I y < /?) of G! in which player I has 

played by X S(( P? I Y < P)> # 0. 
S is a winning strong quasi-strategy for player Z if for each limit B and each 

partially completed run, ( p1 1 y < /?), of Gg in which at each limit 6 < /3 there is 

somesequence(q:‘Ii<k)cofinalwith(p,Iy<6)suchthatp6ES((qQIi<k)), 

WP,lY<:PD#@. 
Now suppose that P, 2 and the rcf are as defined in Definition 1. A quasi-strategy, 

S, for player I in G:* is closed under the nfs if whenever CI, y < rc, f : a --f y is 

order preserving, lim(/?) < rc, (~6 16 < j?) E [PIP, and p E S(( ps I 6 < j3)) n Pa, 

then ZAP) E S((nf(ps) 16 < P)). S 1s a bounded realm quasi-strategy if whenever 

lim(fi)<K, E<K and (psl6<8) E [PxlB, S((pa16</3))GP,. 
Consider the conditions 

(S.v.W.) Player I has a winning quasi-strategy for Gi* which is closed under 

the nfs, 
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(S.v.S.) Player I has a bounded realm winning quasi-strategy for Cc* 

which is closed under the rcfs, 

(SS.v.W.) Player I has a winning strong quasi-strategy for G,P* 

which is closed under the rrfs, and 

(SS.v.S.) Player I has a bounded realm winning strong quasi-strategy for GF* 

which is closed under the rcfs. 

These give rise to the axioms SSFA,, SWFA,, SSSFA, and SSWFA, as in Def- 

inition 1. (The initials SS standing for strongly strategic.) Velleman showed that the 

former two axioms hold iff and only if there is a (K, 1 )-simplified morass with linear 

limits. 

Theorem 6. The following are equivalent: 

(a) There is a (JC, l)-simpli$ed morass with continuous paths, 
(b) SSSFA, holds, 

(c) SSWFA, holds. 

Proof. Once more the proof is as that of Theorem 2, save that some adjustment is 

necessary in the limit cases. 

(a)+(b) Augment the inductive hypotheses with the following: 

(e)lim(a) * Pi E S((Q;Y(PS) 16 <m)). 

If z = 0 or is a successor the construction of pa and ya are exactly as in Theorem 2. 

So suppose CI is a limit ordinal less than K, and (yg 1 j? < a), ($i 1 c<p < a) and 

a descending sequence of conditions ( pb 1 b < M) have been defined, obeying the 

inductive hypotheses. Let ya = UB__y~ and define f * for each f E & by inductive 

hypothesis (c). 

Since continuous paths are simple, p = (7c(,;;)+(pp) 1 j3 < g) E [PI’ is a descending 

sequence, as shown in the proof of Theorem 2, and so can be thought of as a play 

in G[*. If player I has played by S so far, pz can be obtained by applying S to p. 

So suppose lim(6) < a. By induction hypothesis (e), pi E S(( I. I p < S)), so 

%~)*(Pa) E S(( y,;.,fJ(Pg) I P < 6)). 
Consequently, the proof would be completed by showing that the sequences 

b%$jY(Pll) I B < 6) and (~CB;j*.Cy;j4~~) I P < 6) are cofinal in each other. 

Now, by Section 2( 1) and Section 2(2), for each /I < 6, there is some E E (/I, 6) and 

some J” E 9$ such that g; = gi . g% f’. So Q;Y(P~~) = 71(g::)*.(g:‘)*.(./f)*(~~). But 
inductive hypothesis (d) gives p,: dn(f,)(p~) (since it gives this for any f’ E 9&.), 

thus for some E < 6 it is the case that Q;)* (pg) b n!yj;,*.Cyy,-( pE). 

Conversely, the continuity property from the defimtion of continuous paths (Section 

2(3 )) is that g$ . g$ = g,” . f for some E E [/I, 6) and some f E @ibE. Thus, by inductive 

hypothesis (d) again, 
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(c)+(a) The proof is as in Theorem 2, except that the conditions must satisfy the 

additional requirement that 

(x) For each limit CI 6~ and /I < lim(y) < a, and for any f E Yjy there is some 

E E [p, y) and f’ E 9~~ such that g; . f = g," . f '. 

The verification that the conditions are appropriate material for an application of 

the forcing axiom is as before, except that in checking (v.) it is necessary to show 

that p;. satisfies (x.). So take as a strategy, S, the construction as the checking of 

((c)+(a))(v) in Theorem 2. By the proof of Lemma 1 of Section 2, it suffices to 

show that the structure given by the proof of Theorem 2((c)+(a))(v) prior to the 

conversion of the limit at p into a path, has a continuous limit at p. 

Fix a limit CI < 2. Suppose the sequence ( pp 1 j < LX) = p 1 CI is such that pa E S(q), 

where q = (qi 1 i < k) is a descending sequence of conditions cofinal withp ) cc. Reserve 

roman letters for the superscripts notions associated with elements of q and greek letters 

for notions associated with elements of p. (Thus ,u’ is ,@I, while /_? is pr.) 

Then for any /zI < ,u” there is some i < k such that p<$ < p’, and so gi = g$.f for 

some f E F&, . By the strategy for obtaining pr it is immediate that g$ = (BP, )-’ .@I. 

Now, as the two sequences of conditions are cofinal there is some 6 < c( such that 

pi dqi, so there is some h E TPlpC, such that B% = BPS . h. Moreover the strategy for 

obtaining pi, gives that g$ = (BP/ )-’ BPx. Consequently, 

g;: g;’ = (BP/ )-I .BP..g;: .f =(BP’)-’ .BP,.(BP,)-’ .Bq,.f 

=(BP()--l .BP" .h.f = g$ .(h.f), 

where # E [p, p”). Now, gi’ = g$ k for some k E F&, by Section 2(l), since pa 
is a condition. As all of the maps are morass maps, k = h . f (cf. (3) _ (3’) in 

Section 2). Thus Section 2(3’), and so continuity, is verified as required. 

In view of Theorem 8 of Section 2, the above theorem asserts that the axioms 

SSFA,, SWFA,, SSSFA, and SSWFA, are all equivalent. 

Mechanical strategic closure is another modification of strategic closure of interest. 

This time a quasi-strategy is a function taking positions as arguments. That is instead 

of the usual (psychological) notion in which a player is given some possible responses 

to the prior sequence of moves in the game, a mechanical quasi-strategy gives a subset 

of the set of all continuations for the player at the given stage of the game, regardless 

of how the position was reached. 

Expressing this formally, let - be the equivalence relation on U{ [PIP 1 lim(P) < U} 

defined by 

Let [(p71y</l)] be the --equivalence class of ( py 1 y < j?). 

A mechanical quasi-strategy for player I is a function S : U{ [PIP 1 lim(p) < a}/- 

-+ P(P) such that p E S([( py I y < /!I)]) + t7’y < /I pd pv. As descending sequence of 
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conditions determine equivalence classes, a reasonable abuse of notation is to write a 

sequence itself as the argument of a mechanical quasi-strategy rather than its equiva- 

lence class. With this convention one can define “playing by S”, “winning mechanical 

quasi-strategy for player I”, “closed under the rrfs”, and “bounded realm mechanical 

quasi-strategy” verbatim as in Definition 5. These allow the definition of a partial order 

satisfying 

(MS.v.W.) Player I has a winning mechanical quasi-strategy for G[* 

which is closed under the rtfs, and 

(MS.v.S) Player I has a bounded realm winning mechanical quasi-strategy for G{* 

which is closed under the rcfs, 

and so the axioms MSSFA, and MSWFA, (the initials MS standing for mechanical 

strategic). 

It is immediate that a partial order satisfying (Ic-c1osed.v.W) satisfies (MS.v.W) 

and that a winning mechanical quasi-strategy is a winning strong quasi-strategy, and 

consequently that a (K, 1)-simplified morass with continuous paths directly ensures that 

MSSFA, and MSWFA, hold, and they in turn ensure there is a (K, 1 )-simplified morass 

with simple paths. However it is open whether either converse holds. 

In the case of each forcing axiom considered it is a simple matter of enumeration 

to show that the particular augmentation of a simplified morass under consideration 

guarantees the existence of a generic object meeting K many X-K-indiscernible sets 

of dense open sets. Provided 2<‘( = K, it is possible, again by a simple enumeration 

argument, to guarantee the existence of a generic object meeting X-K-indiscernible 

sets of dense open sets which are indexed by elements (homogeneously) Y< K(~+) 

(cf. [ 151). 

Recently Cherlin, Hart and Laflamme have put a substantial amount of effort into 

preparing Shelah’s work on his class of uniform partial orders for publication. As this 

seems likely to reach the light of day relatively soon as [14], and as Shelah’s work 

has similarities with the morass inspired forcing theory discussed above, this may be 

an opportune place to comment on it. 

Each K-uniform partial order and single density-system satisfy the requirements for 

the h--closedWFA,, save that the dense sets given by the density system are labelled 

by elements of Y<,(rc+). Consequently if there is a (rc, 1)-simplified morass with 

simple paths and 2”( = K there will be a generic object meeting any K--many density 

systems. This object will itself be indiscernible in the sense that it will be of the form 

( np ( pz ) 1 tx < K & f E F& ) . However the conditions for rc-uniformity are much more 

severe than those imposed on P,+ if it is to fall under the rubric of rc-closedWFA,, 

so much so that a generic object meeting any K-many density systems can be found 

under the assumption 2<‘( = K alone. (This object, which will not be indiscernible, is 

obtained, in the notation of [14], simply by enumerating for each successive 5 < K+ 

the Di(u,V)jG<t such that tl C p < rc ( in order type K and meeting them.) 

Nevertheless, in various application 016 I cfc~j=K 1 is necessary to dictate appropriate 

density systems if 2<K = K (or DL,) alone is assumed, whereas in many cases a (K, l)- 

simplified morass with built-in-diamond (which does not make any demands on 2K) 
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suffices. Some of these cases will be covered in the preliminaries to forthcoming papers 

on higher gap applications. 

It is readily apparent that Ic-directed-uniform can be defined in the spirit of K-uniform, 

replacing each closure under unions with closure under directed sets. The examples of 

Ic-uniform partial orders in [ 141 and [13] are all in fact K-directed uniform. Of course, 

any use of simplified morasses with simple paths can then be replaced with a use of 

a plain simplified morass. 

Finally Shelah has introduced another idea which should be included in the same 

circle: “historicisation of forcing conditions”. He used this technique to obtain a hmc- 

tion with property d (cf. Section l.S), and it is used again, with greater relevance, in 

the paper [ 161. Any historicised forcing, with pp = K and 1’ = K, in the terminology 

of Section 4 of [ 161, adds a (K+, 1 )-simplified morass with continuous paths. Con- 

versely, if there is a (K+, 1 )-simplified morass with continuous paths and a complete 

amalgamation system for it (e.g. if 2” = K+) then a generic object exists for any such 

historical set of conditions. This will be discussed further in the paper [ 121. In [ 171 

the major example of historicised forcing in [ 161 is replaced by a simplified morass 

construction. The proof in [ 171 uses, and seems to require, a simplified morass with 

continuous paths and a complete amalgamation system (to simulate genericity). For 

example it is unknown whether [7 (or even a simplified morass with simple paths) 

could be used instead of the morass. 

Questions. I close by recapitulating, at the referees’ suggestion, some of the unsolved 

problems mentioned in the course of the paper. 

(1) Find conditions under which one can add an (01, 1)-simplified morass by ccc 

forcing. 

(2) The same problem for q ,, . 

(3) Is it consistent that there is a (K, 1)-simplified morass with continuous paths but 

no simplified morass with linear limits? Are large cardinal hypotheses necessary to 

resolve this? 

(4) Under what conditions are there (K, 1 )-simplified morasses but no (K, 1 )-simplified 

morass with linear limits at ordinals of cofinality <WI? 

(5) Separate small from simple limits. 

(6) Where does mechanical strategic closure lie in the closure hierarchy? In particular, 

are MSSFA, and SSSFA, equivalent? Or are MSSFA, and rc-closed-SFA, equivalent? 

(7) Can one show wswi $t (ws~i,3)~ from less that a (WZ, 1)-simplified morass 

with continuous paths and 2w’ = ~2, for example using instead a (K, 1 )-simplified 
morass with simple limits or &, ? 
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