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1. I N T R O D U C T I O N  

In this paper, we are concerned with the decay property of the solutions to the evolutionary 
system 

U~ t -- A U l  ~- C~(Ul -- U2) = 0, in ~ × R+, (1.1) 

u~ - Au2 + ~(u2 - ul)  = 0, in ~ × R+, (1.2) 

u ~ = 0 ,  o n F 0 × R + ,  i = 1 , 2 ,  (1.3) 

Ou~ 
+ aiu~ + g~(u~) = 0, on r 1 × R+,  i = 1, 2, (1.4) 

0V 
Ui(0) = U,0 and u~(0) = u,1, in ~, i = 1,2, (1.5) 

where fl is bounded open domain in R n, {F0, F1} is a partition of its boundary F, v is the outward 

unit normal vector to F, R+ = [0, +co),  and a : fl ~ R, hi,a2 : F1 ~ R, gl,g2 : R --* R are some 
given functions. 

The problem of proving the energy decay rates for solutions of systems of evolution equations 
with dissipation at the boundary has been treated by several authors. Indeed, in the case of wave 
or plate equations we can mention Conrad and Rao [1], Komornik [2], Komornik and Zuazua [3], 
Lagnese [4], Lasiecka [5], Lasiecka and Wataru [6], Lions [7], and Zuazua [8] among others. 

Very little is known for the compactly coupled wave equations. To our knowledge, uniform 
decay estimates for the one-dimensional case and by applying a linear boundary feedback was 
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studied by Najafi, Sahrangi and Wang [9], and quite recently Komornik and Rao [10] have 
obtained exponential (or polynomial) decay in the multidimensional case when the boundary 
dissipation satisfies: 

c~Ixl ~ -< Ig~(~)l < ~21~I ~/~, if [x[ < 1, (1.6) 

if [x[ > 1, (1.7) 

where cl, c2, c3, and c4 are four positive constants. 
These works [9,10] have a serious drawback from the point of view of physical applications: 

they never apply for bounded functions gi because c3 > 0 in (1.7). The purpose of this paper is 
to obtain a variant of Najafi et al. and Komornik and Rao's results for functions such that  

- c o  < lim gi(x) < lim gi(x) < +oo. (1.8) 
X - - * - -  OO X - - ~ - [ - ~  

If gi(x) satisfies at most (1.8), the dissipation effect of gi(u~) is weak as [u~[ is large, and for 
convenience we call such a term weak dissipation. The most typical example is gi(x) = x /~/1  + x 2. 
Let us note that  the case of single wave equation with internal damping g(x)  satisfying (1.8) was 
studied by Nakao [11]. 

2.  T H E  M A I N  R E S U L T  

Throughout the paper we shall make the following assumptions. 

(H1) The domain ~2 is of class C 2. 
(H2) The partition of F satisfies the condition Fo N F1 = 0. 
(H3) There exists a point x0 E R n such that,  putting m(x )  = x - xo, we have 

m . u < 0 ,  onFo  and i n f m . u > 0 .  
r l  

(H4) The coefficients ai are nonnegative and they belong to CI(F1). Moreover, either Fo ~ O 
or infrl  al > 0 and infrl  a2 > 0. 

(H5) The function c~ is nonnegative and belongs to L°°(~). 
(H6) The functions g~ are continuous, nondecreasing, and 

g ~ ( x )  = 0 ~ x = O. 

Furthermore, there exists a constant c such that  

Ig~(z)l < 1 + cixl, v x  e R. 

REMARKS. 

(1) If n = 1, then f~ is bounded open interval, say f~ = (Xl, x2) C R, and hence hypothesis (H1) 
is always satisfied. Furthermore, hypotheses (H2),(H3) are satisfied in each of the following 
three cases: 

(i) F0 = 0, F1 = {Xl,X2}, 
(ii) r0 = {x l } ,  r l  = {x2}, 

(iii) Fo -- (x2}, F1 -- {Xl}. 
(2) If n > 2 and f / i s  star-shaped with respect to some point x0 E f~ (i.e., m .  v > 0 on F), 

then hypotheses (H2),(H3) are satisfied with F0 = 0, F1 = F. 
(3) If n _> 2 and f~ = f~l - f~o where f/o, f~l are star-shaped domains with respect to some 

point xo E f~o and f~0 C f/l ,  then hypotheses (H2),(H3) are satisfied with F0 = Of/0, 
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(4) If n _> 2 and f~ is not of the form mentioned in the preceding two examples, then in 
general there is no point x0 satisfying simultaneously (H2) and (H3). By applying an 
approximational method of Grisvard [12], one could considerably weaken assumptions 
(H2),(H3), at least in dimensions n = 2, 3, by adapting an analogous argument given in [3] 
for the wave equation. We note that  Moussaoui [13] has recently generalized Grisvard's 
results for arbitrary space dimension n. We do not pursue these matters here. 

(5) The condition infrl m • u > 0 of (H3) is unnecessary if we use the weight m • u in the 
boundary damping as in [3]. 

If u = (Ul, u2) is a solution of problems (1.1)-(1.5), then we define its energy E : R+ --+ R+ by 
the following formula: 

E(t)  := ~ (u i + [Vui] 2 + (u~) 2 + IVu:l 2 + - ( u l  - u2) 2 + ~ 1 

It is well known (see [10, Theorem 1]) that  under hypotheses (H1)-(H6), given (uio,uii) 6 
H1o(i2 ) x L2(fl) (i = 1,2) arbitrarily, problems (1.1)-(1.5) has a unique weak solution satisfying 

u, e c (R+, H~o(a) )  n C 1 (R+, L : ( a ) ) ,  ~ = 1, 2, 

where we set H~o(~)  = {v e H i ( n )  I v = 0 on r0} .  
Our main result is the following. 

MAIN THEOREM. Let (ui0, Uil) 6 (H2(~'/)n Hlo(n))  x Hlo(f~) (i = 1, 2) such that 

OUio 
Ov + a i u i ° + g i ( u ~ l ) = O '  onF1,  i = 1 , 2 .  

Assume that there exists a number p such that 

p = 1, i f n  = 1, (2.1) 

p > 1, i f n  = 2, (2.2) 

p > n - 1, i f n  > 3, (2.3) 

and four positive constants Cl, c2, c3, c4 such that  

cl lz l  p < I9~(z)l < c21zl l ip,  i f lz l  _< 1, (2.4) 
c3 < Ig~(x)l < c41xl, i f lz l  _> 1, (2.5) 

and assume that a is a nonnegative constant, then the strong solution of (1.1)-(1.5) satisfies the 
estimates: 

E(t)  < cE(O)e -~t,  V t  > O, i f p  = 1, (2.6) 

where c, w are positive constants and 
c 

E(t)  < (1 + t)2/(P-1) ' V t  >_ O, i f p  > 1, (2.7) 

where c is a positive constant. 

REMARK. If (2.4) holds, then it holds also for any q > p. Thus as soon as (2.4) holds for some p, 
the main theorem applies and provides the decay rate corresponding to the least q > p satisfying 
the assumptions of the theorem. 

To end this section, let us recall the following useful lemma. 

LEMMA 2.1. (See [14, Theorem 9.1].) Let E : R+ --* R+ be a nonincreasing function and assume 
that there are two constants a > 0 and T > 0 such that 

tt ~ E~+I(s) ds < TE(O)aE(t) ,  Vt 6 R+. (2.8) 

Then we have 

E(t)  <_ E(O) \ - ~ ]  , V t  >_ T. (2.9) 
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3. P R O O F  O F  T H E  M A I N  T H E O R E M  

Multiplying (1.1) by u~, (1.2) by u~, integrating their sum by parts in ~ x ( 0, T), and finally 
eliminating the normal derivatives by using the boundary conditions (1.3) and (1A), we obtain 
easily that 

E(O) - E ( T )  = ~tlg 1 (ul) + u~292 (u~) d'ydt (3.1) 
1 

for every positive number T. Being the primitive of an integrable function, hence E is locally 
absolutely continuous and 

E'  f I = - ulgl  (ul) + u2g2 (u'2) d~f (3.2) 
Jr  1 

is satisfied almost everywhere in R+. 
We ave going to prove that the energy of the strong solution 

ui • n °° (R+, g2(~)  C1Hrlo ($2)) A W 1'°° (R+, Hrlo(~)) A W 2'°° (R+, n2(~)) , i = 1, 2, 

satisfies the estimate 

sTE(p+I)/2(t)  dt < cE(S)  (3.3) 

for all 0 < S < T < +co. Here and in the sequel we shall denote by c various positive constants, 
depending only on the initial energy E(0) and on the four constants c~ appearing in assumptions 
(2.4),(2.5). 

According to Komornik and Rao [10, Lemma 4.1], we have by multiplying equation (1.1) by 
E(P-1)/2(2(x - xo) .  VUl + (n - e)Ul) that 

T 2 T 
E(p-F1)/2dt <~-cE(~)~-cE/s E(p-1)/2~ ( u : ) 2 ~ g i  ('L/':)2-~- (ui)2. (3A) 

i=1 1 

2 in estimate (3.4), we apply a method introduced by Conrad In order to get rid of the term u i 
and Rao [1]. Thanks to [10, pp. 353-355], we arrive at 

~s T E ('-1)/2 f Ju[ 2 d'y dt 
JF1 

< cE(S )  + c E (p-l)/2 lulgl (ul)l + lu2g2 (u~)l dTdt  + c Ep/211u'llL2(rl) dt 
1 

where ]u{ 2 = u~ + u~ and lu'] 2 = (u')~ + (u') 2. 
Now, we want to estimate the last term of the right-hand side of the above estimate. 

LEMMA 3.1. It  holds that  

! Ilu [IL~(r~) ~ c]E'l 1/2, i£n = 1, 

and 
, c[E,[1/(p+l), Ilu IlL'(r,) < i fn  _ 2. 

PROOF OF LEMMA 3.1. Using the growth assumption (2.4), we have 

~u (Ul)2 d'~ ~-e~u (ulgl(ul))2/(p+l) d~[~-c u ~ g l ( u l )  d~ 
i[_<1 i1<_1 i[<_1 

( ~  , )21(,+1) 
~_ C Ulg I (u~) d~/ <_ cIE'I 2/(p+l). 

1 

(3.5) 
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On the other hand, if n = 1, we have u~ e H~o(~ ) C L°¢(~) and then 

(ul)  2 d7 < c UlUlg I (U~) d7 
i1>1 ~1>1 

<_ cHu~lIIL ~ [ ulgl' (U'l) d'y _< cIE'[. 
JF 1 

I f n  > 2, set ]l. I1~ := H" IIL~(rl), s := 2 / ( p +  1), and a := ( 2 -  s)/(1 - s), we have 0 < s < 1 and 
= 2p / (p -  1) > 2. Then 

.,~'luil_>Z (ul)2 d'y < 

_< 

_< 

_< 

in the last step, we used the fact H I ( ~ )  
We obtain similar inequalities for u2. 

c [ lulJ 2-s (ulgl (ul)) s d7 
JF 1 

luil~-' ,/(i-,)II(~Igl 
, (1-s)a I s 

Ul . Ilu~gl (Ul)lll 
u' 2p/(v+l)[Eli:/(p+l) 

1 2v/(p-1) 

clE'12/O,+ l) ; 

C L2p/(v-1)(F) following from (2.3). 

PROOF OF THE MAIN THEOREM COMPLETED. For any fixed e > 0 we have 

ClUigi (t~;)I ---~ SU 2 -~- c £ - l ~ i  (U;) 2 , 

and 
cEp/2 IJu~lJL~(r,) - eE(V+I)/2 + ce-VlE'l • 

From (3.5)-(3.7), and by choosing e small enough, we have: 

E(~-I)/~f lul 2 < ~ E (p+l)/2 + cE(S) + cfE(~-i)/~fg~ (ul )  2 + g= (uh) ~ 
Jrl JS Jrl 

when 6 > 0 is an arbitrarily real number. By adding (3.4) and (3.8), we obtain easily 

zT T 
E (p+l)/2 < cE(S) + 1412 -4- gl (ul) 2 -4- g2 (ul) 2 d'ydt 

JS JFz 

for all 0 _< S < T < +oo. 
From Lemma 3.1, (2.4)-(2.5), we have 

IIg, (u~)llL2cr,) -< clE'l ~/cp+I), i = 1, 2. 

Substituting into the right-hand side of (3.9), we obtain that  

E (p+1)/2 dt <_ cE(S)  + e E (p-1)/2 IE'I 2/(p÷l) dt. 

Using the Young inequality, for any fixed e > 0 we have 

cE(p-1)/2IE'I2/(p+I) ~_ eE(p+I) /2  + ce(1-p)/2lE'l .  

Therefore, 

f T (1 + ( 1  - e) E(V+l)/2(t) dt <_ c 

and choosing 0 < e < 1, it follows that  

TE(p+I)/2(t) <_ cE(S) ,  dt 

with p = 1 if n = 1. 
Thanks to Lemma 2.1, we deduce (2.6),(2.7). 

(3.6) 

(3.7) 

(3.8) 

(3.9) 



24 M. AASSILA 

R E F E R E N C E S  

1. F. Conrad and B. Rao, Decay of solutions of wave equations in a star-shaped domain with nonlinear boundary 
feedback, Asymptotic Anal. 7, 159-177 (1993). 

2. V. Komornik, On the  nonlinear boundary stabilization of the wave equation, Chin. Ann. of Math. 14B (2), 
153-164 (1993). 

3. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation, J. Math. 
Pures et Appli. 69, 33-59 (1990). 

4. J. Lagnese, Boundary stabilization of thin plates, S lAM Studies in Applied Mathematics, Vol. 10, SIAM, 
Philadelphia, (1989). 

5. I. Lasiecka, Stabilization of wave and plate-like equation with nonlinear dissipation on the boundary, J. Diff. 
Equa. 79, 340-381 (1989). 

6. I. Lasiecka and D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear 
boundary damping, Diff. Integ. Equa. 6 (3), 507-533 (1993). 

7. J.-L. Lions, Exact controllability, stabilization and perturbat ions of distributed systems, S l A M  Rev. 30, 
1-68 (1988). 

8. E. Zuazua, Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Control 
and Optim. 28, 466-478 (1990). 

9. M. Najafi, G.R. Sahrangi and H. Wang, The study of the stabilizability of the coupled wave equations under 
various end conditions, In Proc. 31 st Conf. Decision and Control, Tucson, AZ, December 1992. 

10. V. Komornik and B. Rao, Boundary stabilization of compactly coupled wave equations, Asymptotic Anal. 
14, 339-359 (1997). 

11. M. Nakao, Energy decay for the wave equation with a nonlinear weak damping, Differential Integral Equa- 
tions 8 (3), 681-688 (1995). 

12. P. Grisvard, Contr61abilit~ exacte des solutions de l '~quation des ondes en presence des singularit~s, d. Math. 
Pures et Appl. 68, 215-259 (1989). 

13. M. Moussaoui, Private communication. 
14. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson, Paris, (1994). 


