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Abstract

We study the behavior of the electromagnetic field of a medium presenting periodic microstruc-
tures made of bianisotropic material. We reconsider the classical multi-scale homogenization tech-
nique by giving a new approach based upon the periodic unfolding method. The limiting homo-
geneous constitutive law is thus rigorously justified both in the time domain and in the frequency
domain. In particular we show that the limit law differs from the initial one regarding the convolu-
tion term accounting for the memory effects.

0 2004 Elsevier SAS. All rights reserved.
Résumé

On propose une justification rigoureuse de la loi de comportement limite d’'un matériau électroma-
gnétique présentant une structure périodique bianisotrope. Cette étude est menée sur les formulations
temporelle, puis fréquentielle, des équations de Maxwell en appliquant la méthode de I'éclatement
périodique. Nous montrons en particulier que la loi limite comporte un terme de convolution supplé-

mentaire qui rend compte de certains effets de mémoire.
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1. Introduction

The question of replacing spatially periodic material with respect to Maxwell equations
presentingheterogeneous microstructurbg a “new material” characterized lyomoge-
neous parametersas been addressed long time ago as an challenging one (Bossavit [2],
El Feddi [7]). The objective of thenicro—macroapproach is twofold: on the one hand, by
replacing a problem witlperiodically varying coefficientey anhomogeneouproblem,
one can save computation time, and on the other hand by selecting an “optimal design”
of the microstructures one can improve the performance oéffleetive parametersf the
homogeneous equivalent material.

From a mathematical point of view, Maxwell equations witine-independentoef-
ficients have been recently studied by Wellander [8] with a “two-scale” approach and
by Barbatis [1] with two-scale and “compactness compensated” approaches. In this pa-
per we revisit this problem using the novetriodic unfolding methodntroduced by
D. Cioranescu, A. Damlamian and G. Griso in the abstract framework of stationary ellip-
tic equations [4]. The study is conducted in the general case of constitutive laws that take
into accounbianisotropyandchiral symmetrythermalandmemory effectsThe treatment
of time-dependertoefficients we consider here presents several technical difficulties and
yields a limit constitutive lawdifferentfrom the original one, in particular the convolution
operator that accounts for memory effects is replaced by a more complex Hilbert—Schmidt
operator.

The paper is organized as follows: in the first section we give the expression of the
generalized Maxwell equations for bianisotropic materials, in the second section we de-
rive the limiting homogenized evolution problem, finally in the third section we adopt the
frequency point of view by considering the stationary Maxwell equations and derive the
associated limit homogeneous model. For the sake of clearness all proofs are gathered in
Appendix A.

These results have been first presented in [3].

1.1. Equilibrium equations and constitutive law
We consider a tim@ > 0 and a domain2 ¢ R® with Lipschitz boundarny 2. Under
the action of exterior sourcg®, j), the electric fieldE and the magnetic fieldl are

solutions to the following evolution problem posed@7) x £2:

4Dz, x) = curlH(z, x) — jE(t, x),
dB(t, x) = — curl Et, x) — 5z, x),

with the initial condition,

E(0,x) =E%x), H(O,x)=Hx) in £,
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and the ideal conductor boundary condition,
nx)xE@#,x)=0 on[0,T] x 252,

wheren is the unit normal vector td£2. The electric displacemeiit and the magnetic
inductionB are related t& andH by a constitutive law whose properties are described
below.

In the case of #inear dielectric media the general constitutive law takes the convolution
form:

D(,x) = (e *xE)(z, x),
{ B(t, x) = (u*xH) (¢, x),

where the parameters are the permittivitgnd permeability. of the material under study,
£ = 06,8 + oY + VE, u:uour8+aHY+vH,

¢o is the permittivity of free space;,. the relative permittivity of the mediayo the per-
meability of free spacey, the relative permeability of the media® > 0 the electric
conductivity that characterizes the current densifj,is the magnetic susceptibility, the
other quantities are introduced for the sake of symmetry; as functions oé isrtbe Dirac
distribution andY the Heaviside function. When we use the expressions, af given
before we get the general form of the constitutive law:

D(t, x) = 0er ()E(t, x) + [o o B (O)E(T, x) dt + [y vE(t — 1)E(z, x) dr,
B(t, x) = poptr (OH(t, x) + fo o (0)H(r, x) dr + [ v (1 — DH(z, x) dr.

In thehomogeneous cagarameters andyu are independent of the space variable §2.

In the isotropic case parametets, u,, o=, o vE VH are scalars or diagonal matrices.
In this paper we study the general caselofal materials whose constitutive law is sym-
metric inE andH,

D=¢g1xE+4 epxH,
B=pu1*E+ p2*H,

whereeq, €2, 11, up are of the same forms asandu given previously.

To be able to take into accoutitermal effectsve assume that all the parameters are
time-dependent. In the next section we rewrite the Maxwell equations in a more compact
form.

1.2. Generalized Maxwell equations

We introduce the following notations:

e j:(0,T)x 2 — RS j=(E, jM), is the exterior source,
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e u:(0,T) x 2 — RS u=(u1,u0), u1 =E, up = H, is the electromagnetic field,
e M is the Maxwell operator

o 2/ 6 _( curly
M.v—(vl,vz)eL(Q,R)_’M”_<—curlv1>’

e L is the operator associated to the most general constitutive law,

'
Lu(t,x)=A(t,x)u(t,x)+ / G(t,s, x)u(s,x)ds,
0

whereA, G are 6x 6 matrices, not necessarily diagonal.

Hence the evolution problem reads:

%(A(t,x)u(t,x) + fé G(t,s,x)u(s,x)ds) =Mu(t) — j() in(0,T)x £,
u(0,x) =u(x) in, 1)
n(x) xur(t,x)=0 on(0,T) x 052.

Let us remark that matrid contains the permittivity and permeability data and maffix
when it is under the forn (¢, s, x) = B(s, x) + C(t — s, x), takes into account conduction
effects via matrixB and memory effects via matrix.

The aim of this paper is to study the behavior of the electromagnetic field, solution
to problem (1), when the structure (that occupies the domirpresents periodic mi-
crostructures leading to matricéd, G) with oscillatory coefficients (with respect to the
space variable). When the datat depends upon the time variableve address this ques-
tion in the framework of aime-domainformulation. In the more classical situation of
time-independent data we consider flegjuency-domaiformulation.

2. Time-dependent for mulation
2.1. Evolution problem

Let us state the appropriate functional framework to problem (1) by introducing some
definitions and assumptions. We denote:

e H(curl, 2) = {v e L%(£2; R3); curlv € L2(2; R%)} equipped with the nornijv||2 =
lv]2 + | curlv|?,

Ho(curl, 2) = {v € H(curl, 2); n(x) x v(x) =0in H~Y2(3§2; R3)},

H (curl, div, 22) = {v € H(curl, £2); divv € L2(2)},

H (curl, div0, £2) = {v € H(curl, div, £2); divv =0},

V(£2) = Ho(curl, 2) x H(curl, £2),
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e S andD the following triangle and line,
S={@t9el0 1% s<t},  D={@n; 1€l0,T[},
e WHP(S: X)={p e LP(S: X); 3L e LP(S;X), ¢lp € LP(0,T; X))},
o« W2P(S;X) = [ e WEP(S; X); 38 e WHP(S; X), ¢lp € WEP(O,T; X)), where

X is a Banach space, the spacdsh?(S; X) and WP (S; X) are respectively
equipped with the norms:

d¢
ol p:x = | = +lolpliLror;x),
Mt llLris:x)
¢
¢ll2.p:x = m +||¢|D||W1.p(0,T;x)-
1,p:X

In the sequel we assume that matdixs symmetric and uniformly coerciyee., there
existsy > 0 such that for all vector fields € RS,

V@, x) €[0,T1x 2, '¢pA@, )¢ >yIdl.
Hence we can establish the existence and uniqueness of the solution to problem (1).

Proposition 1. Let A € W21(0, T; L*°(£2; R36)) and G € W21(S; L (£2; R3%)) be two
matrices. With the initial conditiom® € V(£2) and the exterior sourcg € W11(0, T’;
L?(£2; R5)). The problem,

%(A(t,x)u(t,x) + fé G(t,s,x)u(s)ds) = Mu(t,x) — jt,x) in0,T)x £,
u©0,x)=u(x) in,
n(x) xur(t,x)=0 on(0,T) x 082,

has a unique solutiom € W-°°(0, T; L2(£2; R) N L>(0, T; V(£2)) that satisfies the
following bounds

du

dr

llull Lo, 7;v(2) + ‘ < C(”j”Wl‘l(O,T;LZ(Q;RB)) + ””0”\/(9))-

L>°(0,T;L?(£2;R%))
The regularity of the solution is therefore,
u e CH[0, T1; L?(52; R®)) N CO([0, T1; V (£2)).
Remark. It is important to note that when the matiix readsG (¢, s) = B(s) + C(t — )

with B € WL1(0, T; L®(£2; R3®)), C € WL1(0, T; L™ (£2; R39)), the solutioru of prob-
lem (1) satisfies the more precise bound:
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du

Vi e[0,T], ”u”LOO(O,Z;LZ(.Q;RG)) + a

L®(0,1;L2(£2;R6))

< o€ {jllwrror: 2oy + 14°lvia)}-
This will allow, in Section 3, the study of the frequency formulation.
2.2. Conservation law

In the case of “perfect” media with constitutive |dW= ¢E, B = uH, the electromag-
netic energy density defined 8z, x) = (E(z, x) - D(¢, x) + H(z, x) - B(z, x))/2 satisfies
the evolution law:

A€
-+ (curlE-H—E - curlH) = —E - j®.

This yields, when the current densit§f vanishes, the conservation law:

/%(z‘,x)dxzo, /5(t,x)dx=/5(0,x)dx.
2 2

2

In the framework of this study, which takes into account more complexity in the constitu-
tive law, we can still write a&onservation lavas follows (see Remark (i) of the proof of
Proposition 1):

t t n
1 1 dA 0G
E/A(r)u(t)-u(t)+§//E(S)u(s)-u(s)ds+f//E(Il,s)u(s)u(tl)dsdm
0 2 0 0

2

t t
—}—//G(s,s)u(s)-u(s)ds—{—//j(s)-u(s)ds:%/A(O)u0~uo. 2)
0 0 2 2

2.3. Homogenization

Now we consider a material whose periodic structure is characterizeddigmentary
microstructurewith sizea > 0 supposed to go to zero (the “small parameter” generally
denoted by in the literature, is denoted here byto avoid any confusion with permittivity
¢). The constitutive paramete(el®, G%) and the datau®?, j*) that depend om, are
supposed to have the regularity needed by Proposition 1. Hence,=dd, we obtain a
family of electromagnetic fields* (indexed byx) solutions to evolution problems:

S(AX (1, U (t, x) + [o GY(t, 5, x)u% (s, x) ds)
=Mu*(t,x) — j*(,x) in(0,T)x £,

u®(0,x) =u*0x) in s,

n(x) xuf(t,x)=0 on(0,T) x 952.

©)
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This paper aims at finding the asymptotic behavior of the solutfowhena goes to zero;

for doing that, we need to precise the asymptotic behavior of the initial data and of the
source since they depend upenThis is done below under the following assumptions
(with strong convergences in both cases):

(4)

u®% - 40 inv(R),
j*—j  inwyi0, T; L2(2; R®)).

2.3.1. Periodic geometry

In this section, for the sake of simplicity, we restrict the microstructure to eiloic
formand we denote by = [0, 12 the reference cell. For alle R3 let[z] be the unique in-
teger such that—[z] € Y, so that we may write = [z] + {z} for all z € R3. Consequently,
for all « > 0, we get the unique decomposition:

o) e

To be consistent with this geometry, the constitutive paraméitsG*) are assumed
to be periodic with perioda; more precisely we assume that according to the previous
decomposition there exists two matrigess, G) such that

A“(z,x)zA(z,{fD, G“(z,s,x)zc;(t,s,{f}). (5)
o o

2.3.2. Periodic unfolding operator

We study the limit, whem goes to 0, of the family®, by usingthe periodic unfolding
method4]. The periodic unfolding operatd, : v € L?(2; R) — L?(2 x Y; R) is defined
by:

T (V) (x,y) :v(a[f} +ay), xen, yey.
o

Hence the periodicity of the constitutive parameters yields,
To(A%)(t, x,y) = A(t,y), Ta(GY)(t,s,x,y)=G(t,s,y) ae.in]0,T[x£ x7Y.

For our purpose all functions defined Irf(£2) are extended by 0 outsid@ and we
denote byH,}er(Y) the space of periodic functions with vanishing mean value.

Some properties of the operatfy, essential in the sequel, are stated in the next theorem.
Theorem 2. (i) For all v € L?(£2), we have the strong convergence

T,(v) > v inL%L2 xY).
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(i) Let v* be a family of functions uniformly bounded i&?(2). There exists
v e L?(2 x ¥) such that, up to a subsequence, we have the weak convergence

T,(v%) = v in € L% xY).

(iii) Letv* be a family of functions uniformly bounded#f(curl, £2). There exists three
fields,
v e H(curl, £2), ¥ € L3(82, Hye (Y; R)),

U e L%(2, Hpe(Y: R?)),  divy () =0,
such that, up to a subsequence, we have the weak convergences

V¥ — v in H(curl, £2),
T,(v*) = v+ Vo in L2(2 x Y; RY),
T, (curlv®) — curly v +curly o in L2(2 x ¥; R3).

Notation. We extend tdR® some notation defined iR3.
Let vy, v2 € R3, v = (v1, v2), w1, wa € R, w = (w1, wo), n € R3, then

curlv := (curlvy, curlvy), divv := (div vy, divvy),

nxv:=nxuvy,n X v, gradw := (gradw1, gradw).

Fora > 0 letu® be the solution to (3); as established in Proposition 1, it satisfies the
uniform bound:

du®

dr

lu®ll@.1:v ) + ‘ <c(]] Wil0,7;12(2:R8) T ”“a’OHV(m)’

L®(0,T;L2(£2;R®))

therefore we are in position to prove the convergence of the faiflilgnd to identify its
limit.

Theorem 3. Let A% € W21(0, T; L°°(£2; R36)) and G* € W21(S; L= (£2; R%9)), be two
matrices given by5). With the initial conditiont*-? and the sourcg® satisfying assump-
tions (4), letu® be the solution t@3). There exists three fields,

ue Whe(0,T; L2(2; R®) N L=(0, T; V(2)),
it € Whoo(0, T; L2(82; He (Y R?))),
it € L™(0, T; L?(£2; He(Y; R9))), divy (@) =0,
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(i) which are limits defined as follows

u® —u weakly *inL*°(0, T; V(£2)),
T (u®) — u+ Vyit strongly inH1(0, T'; L?(£2 x Y; R%)),
T, (curly u®) — curlyu +curly i strongly inL2(10, T[ x£2 x ¥; RO);

(i) which solve the evolution problem

LA Y u(t, x) + Vyi(t, x, ) + [ Gt, s, ) uls, x) + Vyii(s, x, y)) ds)
=Mu(t,x) + Myi(t,x,y)— jt,x) in(0,T)x 2 x7Y,

u(0) + Vyi(0)=u® in2xY,

nxur=0 on(0,T)x0ds2.

(6)

Problem(6) has a unique solution, i, i, the fieldu + V,u and its derivative with
respect to time satisfy a conservation law analogous as (2):

1 _ _
> / A(t,y)(u(t,x)—i—Vyu(t,x,y))o(u(t,x)—i—Vyu(t,x,y))
2xY
1

1 A
+ 5/ / ((jj—t(s, y)(u(s,x) + Vyu(s, x, y)) . (u(s,x) + Vyu(s, x, y)) ds
0 2xY

t n
G
—I-// / E(tl’s)(u(s’x)+Vyﬁ(s’x’y))'(”(tl»x)+Vyﬁ(t1,x,y))dsdt1
0 0 2xY

t

—|—/ f G(s,s)(u(s,x)+Vy12(s,x,y))'(u(s,x)—i—Vyﬁ(s,x,y))ds

0 2xY

t
+ffj(s)-u(s)ds=%/A(o,y)uo(x)-uo(x).
0 R 2

2.4. Limit model

In this section we show that tHemit solutionu given by (6) solves global Maxwell
problemposed in(0, T) x £2, while the correctorg andi solvelocal diffusion problems
posed in(0, T) x Y.

Theorem 4. Let A% € W21(0, T; L>®(£2; R3%)) and G¥ € W21(S; L>®(£2; R%5)) be two
matrices given by5). With the initial condition:*? and the sourcg® satisfying assump-
tions (4). There exists a unique limit electromagnetic field,
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u=(E,H) e Wh>(0,T; L3(£2)) N L=(0,T; V(£2)),
solution to the homogenized problem

%(A(t)u(t,x) + fé G(t, s)u(s, x)ds)

=Mu(t,x) — j(t,x) — T, x) in(0,T)x £2,
u(©0) =u® in g,
nxur=0 on(0,T)xas2,

(7)

where A, G are two matrices independent of the space variahlgZ? is an extra source
which depends only upon the initial conditia (their expressions and regularity are
given in(A.5)—(A.6) below).

The homogenized constitutive law which expresses the limit electric displacéinent
and the limit magnetic inductiof® in terms of the electromagnetic fields and Hi,
(D, B) = L([E, H), takes the form:

t
Lu(t,x)=AM)u(t,x)+ / G(t,s)u(s, x)ds.
0

The computation of relies on the first corrector whose expression is given in (A.5). The
expression of the second correciois given in (A.8) below.

Remarks. (i) Let us first consider the most general physical situation which corresponds
to a matrixG* that readsG%(¢, s) = B%(s) + C%(t — s), with an obvious definition of
associated matrices, C. In this case the initial constitutive law haganvolutionterm

t t
LY@, x) = A%(t, x)u®(t, x) + / B*(s, x)u®(s, x)ds + / C*(t — s, x)u*(s, x)ds
0 0

and the limit constitutive law takes the form:
t t
Lu(t,x)=A@)u(t, x) +/B(s)u(s,x) ds +/C(t,s)u(s,x) ds,
0 0

whereA, B, C are given in (A.9). The homogenized kergetiepends upon two variables,
hence itdoes not take the convolution forioreover it is not obvious to give a physical
meaning (in terms of electric or magnetic susceptibility) to the homogenized rdatrix
(ii) However, whenA® and B* do not depenan ¢ we show that the new homogenized
constitutive law is of the convolution form, i.&,depends upon onlgnevariable,
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t t
,Cu(t,x)=Au(t,x)+B/u(s,x)ds+/C(t—s)u(s,x)ds,
0 0

the expression of is given in (18).

(iii) In the case where neithet® nor B¢ dependupons andno memory effecire taken
into account, i.e.C* = 0, we recover the classical results (even though slightly different
from [8]).

(iv) Strong convergenc&@heorem 3 suggests the formal asymptotic expansion:

_ X - X
u“(x) =ux) + Vyu<x, —) + ou (x, —) e
o o

Hence the computation of the term of order O (with respeat)tbas to take into account
the first correctoiz. Under assumptions of Theorem 3 and by following the same approach
as in [4], we obtain the strong convergences of the electromagnetic field:

u® — (u 4 Uy (Vyit)) - 0 in H1(0, T; L?(£2; RY)),
curl u® — (curly u + Uy (curlyit)) — 0 in L2(]0, T[ x£2; R®),

wherel{,, is the averaging operator:

1 X X 2
Ua(v)(x)z—/v(a[—]+az,{—}) dz, VYvels(2xY).
Y| o o
Y

3. Frequency formulation
3.1. Stationary Maxwell equations

In order to study thetationary problenwe assume, in this section, that the constitutive
law reads:

t t
L% (t,x) = A“(x)u®(t, x) + / B%(x)u®(s,x)ds + / C%(t — s, x)u”(s, x) ds,
0 0
where matricegt” andB* are independent of in other words the permittivity, the perme-
ability and the electric conductivity of the material only depends upon the space variable.
We denote by (p) = f0°° e P'u(r) dr the Laplace transform of any functiene L1(0, 00).
According to the bounds given in Proposition 1, there exists a conggan that depends

only on the data such that the solutinf to problem (3) has a Laplace transform for all
p = po. Therefore, we may consider the following equilibrium equation: Fopa po:

(pA%(x) + B*(x) + pC%(p, x))ia®(p, x)
= Mi®(p,x) — j*(p, x) + A% (0)u®O(x) in £, ®)
nxu{=0 onos,
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and the associated constitutive law is:
N o o 1 o o Aol
(D*(p,x),B*(p,x))=( A (x)+;B (x) +C*(p,x) )% (p, x).

With the same kind of assumptions on the data as those needed for the evolution problem,
we can state an existence and uniqueness result analogous to that of Proposition 1.

Proposition 5. Let A% € L®°(2; R36), B* € L>®(2; R3), c* ¢ WLL(R; L>®(£2; R3))
be three matrices, let*:% € V (£2) be the initial condition ang® € WLL(R+; L°(£2; R))
be the source. There existgop > 0 such that problem(8) has a unique solution
n* = (E%, H%*) € L*(po, 0o; V(£2)). This solution satisfies the uniform bounds

|8 |20y < 5 el ()20 <€ VP> o

The estimate of the solution and the strong convergence (4) yield the existence of a limit
electromagnetic field and of two fields of correctors, » which are given in Lemma 6
and Theorem 7. B

3.2. Homogenization and limit model

We use the same notations as in Section 2.2.1 and assume that there exists three matrices
A, B, C such that

cornsllf) romalfi) cwnncrfi) @

Hence we can establish, with an approach analogous to the time formulation, the conver-
gence of the sequengé.

Lemma 6. Let A% € L*®(£2; R36), BY € L®°(2; R36), c* ¢ WLL(RT; L>(£2; R3%)) be
three matrices given bg9). With the initial conditionz®° and the source® satisfying
assumptiong4), leti* be the solution t@8). There exists three fields

i € L (po, 00; V(£2)),
u € L®(po, 00; L3(82; HpeY; R?))),
u € L®(po, 00; LA(82; Hpe(Y; RY))), divy (1) =0,

(i) which are limits defined as follows

u* —n weaklyx in L% (pg, 0o; V(£2)),
T, (0%) — &+ Vyu strongly inL2(pg, oo x 2 x Y; RY),
Ty (curly %) (p) — curly a(p) +curlyu(p)  strongly inL?(2 x ¥ R®),
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(ii) which solve the evolution problem

(PAY) + B + pC(p))(@(p, x) + Vyu(p, x, y))
= M i(p, x) + Myu(p, x,y) — j(p,x) + Au(x) in2xY, ¥p> po,
nxu1=0 onadsf.

In the next theorem we give the expression of the homogenized equilibrium equations.

Theorem 7. Let A% € L°°(£2; R36), BY € L®(£2; R3%), C* ¢ WLL(RT; L*°(£2; R3%)) be
three matrices given bg9), with the initial condition«®? and the source/® satisfying
assumptiong4). There exists a unique limit electromagnetic fild L°°(pg, co; V (£2))
solution to the homogenized problem

(pA+ B+ pC(p))i(p, x)
=M i(p,x)— j(p,x) = T°%p,x) + [y A0u(x) in2, Vp> po,
nxu1=0 onas.

The homogenizeeéffective matrices A, B,C and the extra source7° are described
in (A.12) below.

We note that in accordance with Remark (ii) in Section 2.4, the limiting constitutive law
takes in this case, the same form as the initial one

—~ - 1 ~
(D(p.x).B(p,x)) = (A+ ;B—I—C(p))ﬁ(p,x).

The correctow is given in (A.11), the second correctocan be computed as previously in
terms ofi. Itis easy to check that, u, CandJ° are the Laplace transforms of respectively,
i, u,C and7°.

4. Comments

Let us conclude this paper with some remarks.

(i) Stability of the constitutive lawVhen the initial constitutive law is of form,

t t
Lu(t,x)= A, x)u(t,x)+ / B(s, x)u(s,x)ds + / C(t —s,x)u(s,x)ds,
0 0

we have established that the corresponding homogenized one is:



832 A. Bossavit et al. / J. Math. Pures Appl. 84 (2005) 819-850

t t
Eu(t,x)=.A(t)u(t,x)+/B(s)u(s,x)ds—i—/C(t,s)u(s,x)ds,
0 0

where the initial convolution functiod has been replaced by the Hilbert—Schmidt
kernelC. However Theorem 4, states that under some regularity on the data, the pre-
vious form isstable by the homogenization procedurais allows multi-step scalings
without need of new mathematical tools.

(i) Other geometriedA straightforward extension is given by replacing cubic elementary
cells by any cells having th&2 paving property Another extension can be obtained
with more general assumptions on the data. For example, let us assume that there ex-
ists two matricest € W21(0, T; L®(£2 x Y; R36)), G e W2L(S; L>®(£2 x Y; R3%))
which satisfy the strong convergences:

To(A%)(t, x,y) — A(t, X, ),
T.(GN)(t,x,y) — G(t,x,y) a.e.in]0,T[x2 x Y.

This yields a limiting constitutive law of the same form but in whtble global vari-
able x still appears It is of interest to note that in addition to the classical situations
[4], an easy way to get these convergences is obtained by letting:

A%(t, x) =Uy (A) (1, x), G%(t,5,x) =Uy (G) (2, 5, X).

(i) Weak convergence®/eak convergences instead of strong ones (4), would have led
to small changes by adding extra sources in the right-hand side of the equilibrium
equations.

Appendix A
In this section we give the complete proofs of our results.
A.1. Proof of Proposition 1

We begin with a preliminary lemma whose proof is based on Fredholm theory for
\olterra equation.

Lemmal.l. Letm e N*, A e W"1(0, T; Rmz), r € {1, 2}, be a symmetric uniformly coer-
cive matrix,G € W"1(S; R"’) be a square matrix and € W"1(0, T; R™). There exists a
unique functiorg € W"1(0, T'; R™) such that

t

A(r)g(t)+/é(t,s)g(s)ds=j(t) forall ¢+ in [0, T].
0
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The proof of Proposition 1 derives from Faedo—Galerkin method; for clearness it is

broken into 3 steps.

First step. Existence of an approximate solutigp of u. Letes,...,e,,... be a se-
guence of linearly independent elementsVi2) whose linear finite combinations are
dense inV(£2), V,, = Vect(ey, ..., e,). The scalar coefficients;" of an approximation
um(t) = /1 h]" (t)e; of the solution to problenil) are solution to then x m system:

t

/(A(t)um(t) + /(G(t, )it () — Mty (s)) ds> - e
2 0

t

=/<A(0)um(0) —/j(S)dS> ey, (A1)

2 0

whereu,, (0) = )~ , o"¢; is the orthogonal projection af(0) on V,, for the scalar prod-
uct of V(£2). The existence ai,, € ~W2’1(0, T; V,,) is adirect consequence of Lemma 1.1
with an obvious definition ofi, G, j in terms ofA, G, j.

Second step. EstimatesWe differentiate (A.1) with respect tg then we multiply it by
h"(¢) and add ovet. This yields

t

/%(A(t)um(t)+/G(I,S)um(S)dS) ’um(t)=/j(t)-um(t).

2 0 2

We integrate this equality ové®, ¢] and get the estimate:

t
/ AWt -t (1) < / AO)tn (0).11 (0) + / QU2 (s) ds
0

2 2

+ 17 ll22 0,1 22(2:R8) Um (1),
WhereUm (t)= SUR'E[O,Z] [| 227 (S)”LZ(Q;]RG) and® e Ll(o’ T) is given by

ds.

eu) = 1‘ 9 Q)
o 2 dt LOO(Q;R?:G)

t
0G
Lo (2. + “G(Z, t)||L°°(_Q;R36) +OfH E([’S)

With Gronwall lemma we get:

il oo 0.7: 12(52:R8)) < {117l L20,7: 12(52: 8 + |4 (0) HV(.Q)}'
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The constant only depends UPOWA ||y 110,71 (2:R3)) ||A*1||LOO(0,T;LOO<Q;R36)) and
1G 1,1, 10(2:R38)- TO estimate%, we differentiatg(10), and letr = 0, hence

Finally, we differentiate Eq. (A.1) twice, multiply b%’tl, sum over! and integrate over
[0, #] to get:

din o)

& <cf{llillwiior: 2 emrsy + [4O ]y o) }-

L2($2;R®)

du_m (l)
dr

<cllillwasor:iz@mey + 4Oy g -
L2(2;R6)

The constant only depends UpOA|ly210,7. 1~ (2:r3)) ||A*1||Lm(0’T;Lm(Q;R36)) and
||G||2,1;L°°(.Q;R36)'

Third step. Existence of a solutionSequences,, and d&% are bounded inL*>°(0, T;

L2(£2; R5)). We extract subsequences, still denoted in the same way, and get the weak
convergences:

G~ Q¢ in L0, T; LA($2; RY)),

{ U —u  in L2, T; L2(2; RS)),
henceu is in W (0, T'; L2(82; R®)). For allr € [0, T] and alll < m, we get:

t

%/(A(t)um(t)+/G(fas)um(s)dS) 'e1=—/um(t)~Mej —/j(t)'ej.
2

0 2 2

Since both sides of the equality weagonverge inL.*°(0, T'), we can pass to the limit and
by density ofV,, in V(£2), we get:

t

%/(A(l‘)u(t)+/G(t,s)u(s)ds> .vz—/u(t).Mv—/j(t).v’ Yo e V().

2 0 2 2

On the one hand, we deduce that L°°(0, T; V (£2)) and on the other hand that

t
%f(A(t)u(t)+/G(t,s)u(s)ds) .v=/Mu(t)-v—/j(t).v’ Vv e V().
2

2 0 2

By density ofV (£2) in L2(£2; R®) the previous equality is still valid for all € L2(52; R®),
and finally (1) is satisfied for almost all € [0, T'].
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From the equalityMu(t) = %(A(t)u(t) + fé G(t, s)u(s)ds) + j(¢) we deduce the fol-
lowing bound on the curl-field:

leurlull o 7. 1202)) < (lilwas r:c2:mey + |40y o))-

Remarks. (i) By multiplying the equilibrium equation (1), and noting thaf Mv-vdx =0
forall v € V(£2), we get the conservation law (2).

(i) Under weaker assumptionsA € WL1(0, T; L®(£2; R3)), u(0) € L?($2; RS),
j e LY, T; L3(2; R®) and G € WLL(S; L>®(£2; R5)), problem (1) has a weak so-
lution u € CO([0, T']; L2(£2; RP)) that solves the variational equation:

t

/(A(t)u(t) +/G(t,s)u(s) ds) )

2 0
t

=/<f(M(M(s))—j(s))ds+A(0)u(0)) v, YveL?(2;R®),

2 0

and satisfies the same conservation (2yv

(i) Let G be of the particular fornG; (¢, s) = B(s) + C(t — s).

With the assumptions € W10, T: L°°(£2; R36)), C e WL1(0, T; L (£2; R9)) the
solutionu to (1) still belongs to the spad&l>°(0, T; L2($2; R®) N L>(0, T; V(£2)) and
satisfies the same bounds. In addition, a straightforward computation leads to the more
precise estimate:

d_u
dr

Vvt € [0, T], ”u”L"O(O,t;LZ(Q;RG)) +
L>°(0,1;L2(£2;R®))

<o (Il llwraor:r22:m8) + 4O (o) }-
The constantsg, c1 are strictly positive and depend only on the dataB andC. Let us

also notice that wher and B are independent of, andT = +o00, we may define the
Laplace transforni(p) = fé’o exp P u(t) dt for all p > c;.

A.2. Proof of Theorem 2

The proofs of (i) and (ii) are given in [4]. The proof of part (iii) relies on the following
decomposition (see [6]):

H(curl, 2) = VH}(£2) ® H(curl, div0, 2).

Since the spacél (curl, div, £2) does not coincide with the spad&l(s2), we introduce

in Lemma 2.1 a new spacH‘} C Hléc to study the convergences of unfolded bounded
sequences and we establish in Lemma 2.2 the inclusieeurl, div, 2) C H}(2; R3).

Let us first introduce some notation:
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O is a domain (open, connected subsefRihwith Lipschitz boundary,
o (x) =dist(x, 30) is the distance af to the boundary 00,
o HXO)={¢ € H3.(0): ¢ € L¥(O) andpV¢ € L%(O; R")} equipped with the norm

I¢llo = /161220, + 12V N2z g

L2(0) ={ € L{(0); pop € LZ(O)},

loc

o L2(0; LA(Y)) ={ € LE(O: L2(Y)): [oy [0 (x, »)[?0%(x) < +00}.
We denote by, the bounded set:
Oaz{er; p(x)>ot}, a>0.

Lemma 2.1. Let (v¥), be a bounded sequence Hi/}((’)). After extraction of a subse-
guence, we get the weak convergences

v — v in H;(O),
To(0¥) — v in L2(O x Y),
Tu(Viv*1lp,) = Vv + Vo in L2(0; LA(Y: R"),

wheret belongs toL%(O; leer(Y)).

Proof. First we show that the sequen@g(Vv*1p,) is bounded inL2(O; LA(Y; R")).
We have:

[ 1790 10)P Tt = [190Po? < o2
OxY Oy

Functionp is 1-Lipschitz, hencéZ, (p)(x, y) — p(x)| < 2/na for all (x, y) € O x Y. This
yields:

2

3

[ 17 10)P i <c [ L7010 7wl +ca® [ 1T(7610,)
OxY OxY OxY
<cll+ ca? [[voef <o,
Ou
Therefore the sequencg, (Vv*lp,) is bounded ian)((’);Lz(Y;R")). From the se-

quences”, 7, (v*) and 7, (Vv*1p,), we can extract subsequences, still denoted in the
same way, that weakly converge:
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V¥ —p in H/}(O),
To(W¥) — in L2(O x Y),
To(Vxv*1lp,) = ¢ in L2(O; LA(Y;R")),

and such that for alv € N* anda < 1/N, we have another set of weak convergences:

v —~p in H1(O1n),
To(v*) = v in L2(Oyn x Y),
Ty (Viv*1p,) = To(Vir®) = Voo + Vg in L2(Oyy x Y RY),

where iy belongs toL?(O1)y; Hpe(Y)). Since the limit is unique, we get = v in
L%(O x Y), ¢ = Vov + Vyiy in L2(Oyy x Y;RY), for all N € N*. The sequence
10,,, U is bounded iNL2(0; Hye(Y)). It weakly converges t6 € L2(O; Hpo(Y)) and
U=y in L3(Oyn; Hye(Y)) forall N e N*. O

It is worth to point out the following result: Let the sequenéebe bounded ir.2(0),
then there exists € L2(O x Y) such that, after extraction of a subsequence, one has the
weak convergences:

To(v®) = v in L2(O x Y),
T,(v%1p,) —v inL%O xY).

Lemma 2.2. We haverd (curl, div, 2) ¢ HX(2; R3).

Proof. Letv e H(curl, div, £2). The solutionw € Hol(.Q; RR3) to the variational problem,
wa (VO =/curlv -curl® +divedive Yo e HF(2; R3),
2 2

satisfies [[Vwll;;2(o.r3)3 < llcurlvl 2p.r3) + [diVoll 2. The vector fieldu =
v — w € L%(2; R®) has a vanishing Laplacian i ~1(£2; R%) and it is inC*®(£2; R3).
Let us denote by the function defined by (here represents the distanced®):

oN(x) = SU[{O, p(x) — %), X € £2.

The test functiorup]zv € Wg"’o(.@; R3) has a compact support included §h. Thus we
have:

0:/—Au-u,o,zv:/|Vu|2p,%,+2/pNVuu-VpN,
2 2 2
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and by noting thapy is 1-Lipschitz we get:

12 v2
/ IVul?p} < 2{/ |Vu|2m%} {/ |u|2} <3 / \Vul?of + 2/ jul?.
2 2 2 2 2
This yields [, |Vul?p% < 4 [, [u|?, the sequenctvu|?p2 simply converges toVu|?p?
whenN — oco. Lemma 2.2 follows from Fatou’s lemma.g
Proof of Theorem 2. The direct sum
H(curl, 2) = VHZ(2) ® H(curl, div0, 2)

is orthogonal for the scalar product Irf(2; R3) (see [6]), hence any vector field can
be uniquely decomposed as

V=V, w®, oY e HF(2), w* € H(curl, div0, £2),
and we have:
v Hi@) T |w® ”LZ(Q;R3) <C|v| 12(2:R3) curlw® = curlv®, divaw® =0.
Let v* be a bounded sequence H(curl, £2). Then, by Lemma 2.2, the sequenog&
is bounded inHl}(Q; R3) and the sequence® is bounded inH1(£2). From these last

two sequences we can extract subsequences, still denoted in the same way, that weakly
converge,

VY = in H1(£2),

To ™) = v in L2(2; HY(Y)),

To (Viv®) = Vi + Voo in L2(22 x Y; R3),

wY — w in HX(22; R3) N H(curl, 2),
To(W®) — w in L2(2 x Y; R,
To(Viwlp,) = Viw + V, o in L5(2; L2(Y; RY)),

wherei € L2(£2; Hpe(Y)), ¥ € L5(82; Hpe(Y; R®)) and diy, = 0. Therefore we get the
weak convergences:

W —-v=w+V in H(curl, £2),
Ty (v%) = v+ Vyd in L2(2 x Y; R3),
To(curl, v*1p,) = To (curl, w*1p,) — curl, w +curly o in L2(2; L3(Y; RY)).

The sequencé, (curl, v¥) is bounded inL2(2 x Y;R3), it weakly converges to an ele-
ment in this space. Hendec L?(£2; Hper(curl, div0, 1)), so thatv € L?(£2; Hpo(Y; R?))
since Hper(curl, div0, Y) C Hye(Y; R3). O
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A.3. Proof of Theorem 3

The proof is broken into 3 steps; first we state the weak convergence of the family
u®, 7, (%), Ty (curlu®), then we give the limit evolution problem and finally we establish
the strong convergences.

Step 1. Weak convergences
Up to subsequences, still denoted in the same way, we have the following ezgak
vergences

u —u in L0, T; V(2)),
To(u®) = u+ Vyi in L>(0, T; L?($2, H(curl, Y))),
To(%) — % v, % in L>(0, T; L%(2 x Y; R%)),

T, (curl, u®) — curlyu +curlyii  in L®(0, T; L2(22 x Y; R)).

Proof. By using the uniform boundﬁﬂ*ollv(g) < 17N wrio.r:L2(0:rS) < ¢, We show
that the sequenag* is uniformly bounded in.*°(0, T'; V (£2)) and that the sequenéigi is
uniformly bounded in.> (0, T'; L2(2; R%)). Then the proof follows from Theorem 2.0

Step 2. The evolution proble¢6)
According to the propert{,, (vw) = T, (v) 7y (w) for all v, w € L2(£2), we deduce the
weakx convergencd, (L*u®) — L(u+ Vyu) in L*°(0, T; L2(£2 x Y)), where

t
L% (¢, x) = A%(t, x)v“(t, x) + / GY(t,s, x)v*(t, x) ds,

0
t

Lv(t,x,y)=A(t, y)v(t,x,y) + / G(t,s, y)v(s, x,y)ds.
0

The weak formulation of problen®) is, for all v € L2(£2; R%) and for allr € [0, T,

t !
/L“u“(t)-v://(curlu%‘(s)-vlcurlu‘i‘(s)-vz) ds—//j“(s)w)ds
20 20

2
+/A°‘(O)u°"o 0. (A.2)
2

We recall (see [5]) the approximate integration formula:

1
/”_E T,

2 2xY

1
<lvllprgres distr,02)<ymep  TOrallve L7($2).
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We take in (A.2) the test function” (x) = ¢ ()Y ({£}), ¢ € D(2; R®), ¥ € D(Y; RS).

We transform the equality by unfolding (hen€g(v®)(x, y) = 74 () (x, y)¥ (y)) and we

pass to the limit by using the strong convergence established in Theorem 2 and thanks to
V"Il L2((xes2 | distx,02) <mep — O- Thus we get the limit variational problem by the density

of the tensor produd®(2; R®) x D(Y; R6) in L2(£2 x Y; RS),

t
/L(u—l-vyﬁ)(t)-v: f /((curlxuz(s)+curly172(s))-vl

2xY 2xY 0

— (curly u1(s) + curly i1 (s)) - v2) ds
t

- / fj(s)-vds+ / AU’ v VveL?(2 x Y;RY).

2xY 0 2xY

Step 3. Strong convergences
The proof of the strong convergences is broken into 4 intermediate steps.

3.1. A preliminary convergence resultLet ©® be a domain irfR2 and K be a matrix in
LY(0, T; L= (0O; R%)). We consider a sequeneé that weaklyx convergesy® — v in
L>®(0, T, L2(O; R5)). We denote byj.| the norm inL>(©®; R3®) and by||.||> the norm in
L2(O; R®). We use the straightforward identity:

Kv*v* — Kvwv=K®@* —v).* —v) + K@* —v).v+ Kv.(v¥ —v)

and the estimate

/K(s)(v“(s) —v(5)).(v¥(s) — v(s)) < [K @) |[|v*(s) = v(s) ||§ a.e.in(0, 7),
(@]

to obtain

limsup | K(s)(v¥(s) — v(5)).(v%(s) — v(s)) < | K ()| g%5),

a—0

whereg(s) = limsup,_,q [v*(s) — v(s)|l2. Finally, with Fatou’s lemma we get:

t t t
Iimsup</fK(s)v“(s).v“(s) ds—//K(s)v(s).v(s)ds) </||K(s)||g2(s)ds.
0\ 0 00 0

A direct extension to matriX € L1(S; L°°(O; R)) yields,
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a—0

t N
lim Sup///(K(tl,s)va(s).v“(tl) - K(tl,s)v(s).v(tl)) ds drg
00

t n
< / f |K (11, 5) || g () g (t1) ds dry.
00

3.2. Convergence iL2(]0, T[ x 2 x Y;R8). We apply the unfolding operator to the
conservation law satisfied by,

1 A (P (1t o 1l dA¥
E/ ()u()-u()+§// -
0 R

2
t n
[ ]5

at
0 0 £

1
+ / / J) sy ds = / A% Ou .y,
0 2 o

and make use of the previous steps where the dofasreplaced by2 x Y, the sequence
v* by 7, (u*) and the limitv by u + V. From the coercivity of the matrid we have the
inequality:

Hu®(s) - u“(s)ds

t
(t1, s)u® (s)u® (1) ds dt1+//G°‘(s,s)u“(s)~u°‘(s) ds
0 2

1
S0 —v0l3 <5 / Al ) (@) = v(®).(0%(0) — v(D)),

2
o
1 1
< E/A(t)v“(t).va(t)—/A(l)va(t).v(l)—i-E/A(t)v(t).v(t)
o 1) o

to obtain, for allr € [0, T'],

t

t N
SP0< / 61(5)g%(s) ds + / / 6a(i1, $)g(11)g(s) ds dry,
00

0
t t, n
2 1 2
< / ) ds + / { / 92(t1,S)dS}g (1) dn
0 0 0

t t

+% / { / ez(rl,s)dtl}gz(s) ds,

0 K}
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wheref(s) = II%—?(S)IILoo(y;Rse) + G (s, )l ooy w38y, O2(11,5) = II%(M, )Nl oo (v: R36)-
Hence by Gronwall lemma, we hayér) = 0 for all r € [0, T'], which in turns leads to the
strong convergence for alle [0, T],

To ™) (1) — u(t) + Vyii(t) in L?(2 x ¥;RO).

Then, the Lebesgue theorem of dominated convergence implies the strong convergence:

ToW®) — u+ Vyii in L%(10, T[ x£2 x Y; RO).

3.3. Convergence iff (10, T[ x 2 x ¥; RS).  The derivative?s- is the weak solution of
an evolution problem Witﬁjg in the right-hand side and with initial condition:

o

du® dA
A%(0) % ©0) +

o (Qu(0) +G*(0.0u(0) = M(u”(0) — j*(0).

Assumptions (4) on the data imply that the sequer‘@e{gg) and?;(%(O)) strongly
converge respectively, ih1(0, T; L2(2 x Y; R®)) andL2($2 x ¥; R®). Then we show as
before, the strong convergence:

%Ta(u“) IR AL

& Y in LZ(]O,T[X.QXY;RG).

3.4. Strong convergence of the curl field&Ve apply the unfolding operator {8) and get
from the previous strong convergence:

To(curly u®) — curlyu +curlyu  in L2(10, T[ x£2 x ¥; R®).
A.4. Proof of Theorem 4

We begin the proof with two preliminary lemmas, the first one is a generalization of
Lemma 1.1 to more complex right-hand sides.

Lemma4.l. Letm € N*, r € {1,2} and p € [1, +o0]. Let matrixA € W"-7(0, T; Rmz) be
uniformly coercive, leG € WP (S; }R’”Z) be a square matrix and e W7 (S; R™). There
exists a unique functiog e W"?(S; R™) such that

t

A(r)g(r,s)+/6(¢,s1)g(sl,s)dsl=1€(¢,s) a.e.inS.

N

Same use of Fredholm theory gives the proof.

Lemma 4.2. With the same notation as in Lemmal let A € W"-P(0, T; L°°(Y; R%5))
be a uniformly coercive matrix, lef € W"P(S; L®(Y; R36)) be a square matrix and
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ke WrP(0,T; L®(Y: R®). There exists a unique function e W"7(S: Hy((Y: R?))
such that

t

/(A([»}’)Vyg(tas»)’)+/G(t’sl»)’)Vyg(slas»)’)dsl) 'Vyz()’)
Y

s

= /k(t, 5,¥)-Vyz(y), Vze leer(Y? RZ) a.e. inS. (A.3)
Y

The proof is broken into 2 steps according to the values afdr.

First step. Existence of a solution in the case-1, p # 1. Lethy,...,h,,... be a

Hilbert basis of Hye(Y; R?), H,, = Vect(hy, ..., h,). We look for an approximation of
the solution to problem (A.3) under the forg, (r, s, y) = > )21 o) (r, s)h; (y) where the

scalar functiong;" are solution to the: x m system:

t
/ At ) Vgm0 5.3) - Vyhi(y) + / / Gt 52, )Vygm (51, 5, ) - Vylty () st
Y s Y

= / k(t,s,y)-Vyhi(y). (A.4)

Y

With Lemma 4.1, the functiog,, is in W7 (S; H,,). With Gronwall lemma we get the
estimate,

||8m||1,p;H1(y;R2) < C||k||1,p;L00(y;R6)

(the constant Only depends Oﬂ—‘, D, ”A”Wl’p(O,T;LOO(Y;R?’G))' ”A_l“L”o(O,T;LOQ(Y;RSG))
and||Glly, . . (y:r36))-

After extraction of a subsequence from the sequepgcewe have the weak conver-
gences:

gm— g in LP(S; Hpe((Y; R®)),
gmls = gls N LP(0,T; Hye(Y; R®)),
agm 9 ; . gl (y. b6

s S8 in LP(S; Hpe(Y; R®)).

Then we check thag is solution to (A.3), by passing to the limit in (A.4) and by the
density of the linear combinations of functions of the Hilbert bagsis..., k,,,.... The
uniqueness of is a consequence of the linearity of the problem.
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Second step. Existence of a solution in the case 1. We suppose now that e
wil, T; L*(Y; R)), G e WLL(S; L®(Y; R%0)) andk € WLEL(S; L®(Y; R)). There
exist sequencesAy € CL([0, T1; L®(Y;R3®)), Gy € CX(S; L>®(Y;R3®)) and k €
CL(S; L>=(Y; RY)) that strongly converge as

Ay — A in WO, T: L>®°(y; R3%)),
Gy — G inWLL(S; L®(Y; R%9)),
ky =k in WLL(S; L°(Y; RS)).

For any(M, N) e N? the functiongy — gu belongs toV1(S; H(Y)) and is the solu-
tion of the problem:

/AN(t, VIVy(gn — gm)(t,5,y) - Vyz(y)
Y

t
+//GN(I,S1, MVy(gn —gm)g(se, s, y) - Vyz(y) dsy
s Y

= /(AM —AN)(E, y)Vygm(t, s, y) - Vyz(y)
Y

t

+ / / (Gat — GN)(t. 51, Y)Vy8mg (51,5, ¥) - Vyz(y) dsy
s Y

+ /(kN —km)(t,s,y) - Vyz(y) Vze leer(Y; Rz).
Y

We deduce the estimate:

lign — gmlly 1 miyr.re) < {IAN — Amllwiro, 7. ooy r3) + IGN — Gyl 1. 1o (v.R3)

+ llkn = knrll1.1: oo v RS) } -

where the constantonly depends off, || Ally 110,71 (y:r36)) ||A*1||LOO(O)T;L00(Y;R36))
and [|Glly 1. .~ (y.r36 The sequencegy)y is a Cauchy sequence IVM(S; Hpe(Y))
whose limitg is solution to (A.4).

The lemma is obvious fop = 4+-oc0. Forr = 2 we proceed in the same way, using for
p =1 the density of2(S; X) in W21(S; X), whereX is a Banach space.

Proof of Theorem 4. It relies on an appropriate choice of test functions in the variational
form (6).
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First step. Computation af. We choose in (6) test functionsof the formu(x, y) =
P(X)V,0(y), ¢ € LA(R2), ¥ € Hyo(Y; R?). Hence, for alk € (0, T) we get:

/L(u + Vyit) - Vyi = / AOu®- Vb Vi€ Hye(Y: R?),
Y Y

where Lv(¢, x, y) has already been defined in Step 2 of Lemma 3. We consider the de-
compositions:(z, x) = ug(t, x)ex andu®(x) = ug(x)ek wheree, is the canonical basis of

R® and introduce three families of elementary correctaré, w©, w) (with value inR?)
which are solution to different localiffusion problemposed inY .

o Correctorw;* € W21(0, T; Hye(Y; R?)), depends on operatar and solves:
/A(t, Ve + Vyind (1. y)) - Vyi(n)dy =0 Vi € Hyo(Y: R?).
Y

e Correctorw € W21(0, T; H,(Y: R?)), associated to the initial condition(0, .),
solves (Lemma 4.2):

t
/A(t,y)vyw,ﬁ’(r,y)-vyﬁ(y)+//G(t,s,y)vyw,?(s,y)ds.vya(y)
Y Y O

=/A(O, Ve - Vyi(y) Vi € Hpe(Y: R?).
Y

o The kemnelin; € W2L(S; H.(Y: R?)) solves (Lemma 4.2):

t
/A(t,y)Vywk(t,s,y)~Vyl7(y)+//G(t,S1, YVIVywi(s1, s, y) ds - Vyv(y)
Y s

=— / G(t,s,y)(ex + Vywi(s,y)) - Vyo(y) Voe ng,(y; ]RZ), a.e. inS.
Y

Therefore, there exists a correctoe W21(0, T; Hp,(Y; R?)) that can be written as

t

iW(t, x,y) =W, yyur(t, x) + w2, y)ud(x) + / Wi(t, s, y)uk(s,x)ds  (A.5)
0

andw (0, y) = —w(0, y) impliesi(0) = 0.
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Second step. Computation ®f We choose in(6) test functionsu € L2(£2; R®), hence
forallr € (0, T) and for allv € L?(£2; R), we get:

/L(u~|—Vy12)(t)-v= f AOu® v

2xY 2xY

t
+/ f (curlx uz(s) - vy —curly ug(s) -va — j(s) - v) ds.

0 2xY

We lets = 0 and obtain for alb € L2(2; R®):

/A(O)(u(0)+vya(0))-v= / AOu° - v,

2xY 2xY

from which we deduce (0) = u®. Hence we can writd, L(u + Vi) dy = Lu + £%P.
The homogenized operatdf is associated to the initial conditiarf and can be written
as

£%°, x) = (/Lvyw,ﬁ’(z,y)dy>u2(x)= (/]Lo(t,y) dy)uo(x),

Y Y

where the matrix.? is described by its columns:

t

L7, y) = A(t, )V, W2, y) + / G(t,s,y)Vyw(s, y) ds.
0

The homogenized operat@ris given byLu(z, x) = A(t)u(t, x) +fé G(t, s)u(s, x) ds with
the new homogenized matrices G:

A(t) =/A(t, y)dy, g,s) =/G(t,s, y)dy, (A.6)

Y Y

where the matrices, G are described by their columns:

Gi(t,s,y) =G(t,s,y)(ex + Vyi (s, y)) + At, y)Vy ik (1, 5, )

{ Ar(t,y) = At, y)(ex + Vyw (2, ),
+ [1 G(t, 51, y)Vy Wi (s1, 5, y) ds1.

This yields the limit evolution problem (7):

/%Eu-v:/(curlug-vl—cur|u1~v2) —/(j—}—%ﬁol,tO) v VUELZ(Q;R6).
2 2 2
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Since the term$ £%° plays the same role as a source term, let us defjat€u® = 7°.

As in the general case of diffusion problems, we can show that the homogenized matrix
A is symmetric and coercivdt is easy to check the following regularity of tiedfective
matrices and extra source:

Aew?1(0,T:R¥), gewW? (S:R¥), 7% whi(0,7:L>(2;R%). (A7)
The uniqueness of the solution to (7) results from Proposition 1.

Third step. (_Zomputation of. We choose in6) test functionsy asv(x, y) = ¢ (x)v(y),
¢ € L2(2), v € L2(Y; R%), this leads to

curly ita(t, x, y) d . 0
— =—(L Vv, t,x, — A(O, .
<—Cur|yﬁ1(t,x,y) dt( (u + Vyi)(t, x,y)) — A, y)u"(x)
Itis easy to check that djvs (L(u + Vyir)) = 0 and 3 (L(u + Vyir)) € L®(0, T; L3(£2 x
Y)); hence, once: andi are computed, we get the expressionidfy using the relation
curly(curly it) = —Ayu since diy, u = 0. More precisely

—Ail
yi2@t,x, ) ) d curly L(u + Vyid) (1, x, y) — curly A0, y)u’(x), (A.8)
Ayui(t, x,y) dr

with
t
L(u+Vyu)(t,x,y) =A@, y)u(t, x) + / G(t,s, y)u(s,x)ds + ILO(I, y) uo(x).
0

As we did for the first corrector, we may compute the second corr@casra linear com-
bination ofu. O

Remarks. (i) When G(t,s) = B(s) + C(t — s) with B € WL1(0, T; L>°(£2; R%6)) and
C € W20, T; L°°(2; R%5)), we immediately find the definitions and regularities of the
effective matrices as follows:

A() = / AG.y)dy,  Bo)= / B, y) dy,
Y Y
d

C(I,S)Z/(C(I»S»)’)d% jOZE/LO(I’y)dyuO(x)v
Y

Y
Ae w20, T;R%),  Bewb(0,T;R%®),
Cew?l(s;R%), g% whri(o,T; L>(2; RY)), (A.9)
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with

At y) = A, y)(ex + Vy@A T, y),  Bi(t,y) = B(t, y)(ex + Vy W/ (t, ),
Cr(t,5,y) = C(t — $)(ex + VWA (s, y) + A(t, y)Vy Wk (2, 5, y)

+ [{(B(s1.y) + C(t — 51, ) Vy Wi (51, 5, ¥)) 1,
L(t, y) = A(t, )V w21, y) + fo B(s, )V (s, y) ds

+ fo C(t =5, )V 2(s, y) ds.

(ii) When, in addition the matriced and B are independent af we can take matrixC
in Wh1(0, T; L°(2; R%%)) and the correctors take a simpler form;* € Hjo(Y; R?)

is independent of, w® € W2(0, T: Hje(Y: R?)), and w € WH1(0, T; Hjo(Y; R?))
depends on only one variable. They solve the following variational problems satisfied for
all b € Hye((Y; R?):

. / AW (ex + Vy B () - Vy5() dy =0,
Y

t
. / AV, 8Os, y) - Vy3(y) + / / B()V, s, y) ds - V,5(y)
Y Y O

t
+//C(t—s,y)Vyw,9(s,y)ds'Vyf)(y)=/A(y)ek-Vyf)(y),
0

Y Y
t

. /(A(y)v)@k(t,y)+/B(y)Vywk(s,y)ds
Y

0
t

+/C(t—s,y)Vywk(s,y)ds) - Vyou(y)
0
—_ / (BO)(ex + Vo (0)) + C o y) (e + Vy T () - Vy i (),

Y
a.e.in(0, 7).

The difference with previous situation (i) is that néwe W11(0, T; R%6) reads:

Crt, y) = / CO)(ex + Vy @) + / AV, y)
Y Y

t
+//(B(y)+C(t—s,y))Vywk(s,y)ds. (A.10)
Yy O
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This case, with weaker regularity on matkik is the one we investigate by a frequency
approach.

A.5. Proof of Proposition 5

First we show that the sequeneé&(p, x) is uniformly bounded inL2(£2), for all
p > po, and then by writing:

Mu®(p, x) = (pA“ (x) + B(x) + pC*(p, 1)) A% (p, x) — j*(p, ) — A% ()u0(x),
we deduce that there exists> 0 such that| curli® (p)| L2y < ¢ forall p > po.
A.6. Proof of Lemma 6

The proof follows point by point that of Lemma 3.
A.7. Proof of Theorem 7

The first corrector is given by:

u(p, x,y) =wiMi(p, x) +wi (p, MuR(x) + wi(p, Vi (p, x),  (A11)

wherew? € Ho(Y; R?), w; € L®(po, 00; HpeY; R?)), w € L*(po, 00; Hyel(Y; R?))

are respectively the unique solution to the following variational problems posed for all
U € Hp(Y; R?):

. fA(ek + Vyw4) - V40 =0,
[

(pPA+ B+ pC)Vyw, - Vyi = —/(B + pC)(ex + Vyw?y) - Vo,
Y

N — N —

(pA+B+pC)Vyw? - V,o = / Aey - Vy.
Y

Hence we get the following expressions of #ffectivematrices and extra source:

A= [y A (er + Vywi (), Be= [y BO)(ex + Vywi (»),
Ce(p) = [y C(p, )(ex + Vywi ()

+ [y (AG) + 2B() + C(p, y) Vo (p, ),
TOp.x) = [,(pAG) + Bk + pC(p, y) Vywl(p, yuld(x),

(A.12)

with the regularityC € WL1(po, oo; R36), 70 € Wl1(po, oo; L2(£2; RS)).
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To establish the strong convergences, we first note that matrix) + 5“(p,x) is
uniformly coercive for almost allp, y) € 1po, +oo[ xY and next we follow the same steps
as in the time-formulation.

With assumptions of Theorem 7 it is easy to check that= w* and thatw?, w, 5 F0
are the Laplace transforms of respectivel§, w, C, 7°.
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