
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 641 (2006) 286–293

www.elsevier.com/locate/physletb

D∗DsK and D∗
s DK vertices in a QCD sum rule approach

M.E. Bracco a,∗, A. Cerqueira Jr. a, M. Chiapparini a, A. Lozéa a,1, M. Nielsen b

a Instituto de Física, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, 20550-900 Rio de Janeiro, RJ, Brazil
b Instituto de Física, Universidade de São Paulo, C.P. 66318, 05389-970 São Paulo, SP, Brazil

Received 27 April 2006; received in revised form 20 July 2006; accepted 24 August 2006

Available online 12 September 2006

Editor: W. Haxton

Abstract

We calculate the strong form factors and coupling constants of D∗DsK and D∗
s DK vertices using the QCD sum rules technique. In each case

we have considered two different cases for the off-shell particle in the vertex: the lightest meson and one of the heavy mesons. The method gives
the same coupling constant for each vertex. When the results for different vertices are compared, they show that the SU(4) symmetry is broken by
around 40%.
© 2006 Elsevier B.V.

PACS: 14.40.Lb; 14.40.Nd; 12.38.Lg; 11.55.Hx

The knowledge of the form factors in hadronic vertices is of crucial importance to estimate hadronic amplitudes when hadronic
degrees of freedon are used. When all the particles in a hadronic vertex are on-mass-shell, the effective fields of the hadrons describe
pointlike physics. However, when at least one of the particles in the vertex is off-shell, the finite size effects of the hadrons become
important.

In this work we study the D∗DsK and D∗
s DK vertices, which are fundamental to the evaluation of the dissociation cross section

of J/Ψ by kaons when using effective Lagrangians. The suppression of charmonium production is one of the most traditional
signatures of the quark–gluon plasma (QGP) formation in relativistic heavy ion collisions [1]. The dissociation of charmoniums
in the QGP due to color screening would lead to a reduction of its production in such collisions. However, using the charmonium
suppression as a signature of QGP formation requires the understanding of J/Ψ production and absorption mechanisms in hadronic
matter, because this suppression may be due to the interactions with the comovers during the collision [2,3].

One of the approaches used to study the interaction of charmonium with the hadronic medium, mainly in the low energy region
(
√

s < 10 GeV), is based on effective SU(4) Lagrangians [4–9]. This technique, however, requires the detailed knowledge of the
form factors in the hadronic vertices. The calculated cross section may change by a factor of two if a soft, instead of a hard, form
factor is used in the vertices containing charmed mesons.

This situation gave us the motivation to start a program to calculate charmed form factors and coupling constants, using the
QCD sum rules approach [10]. We have been continuously working on this problem and computing different vertices [11–17]. An
interesting subproduct of such calculations [12–14,17], was the understanding of the behavior of the off-shell particle probing of
the vertex: heavier particles resolves better the structure of the vertex, while lighter particles are more suitable for measuring its
size. This conclusion is also supported in the present work.

As a part of this project we evaluate, in the present calculation, the form factors in the vertices D∗DsK and D∗
s DK , and compare

the results with the predictions from the exact SU(4) symmetry [9].

* Corresponding author.
E-mail address: bracco@uerj.br (M.E. Bracco).

1 Permanent address: Instituto de Física, Universidade Federal do Rio de Janeiro, C.P. 68528, 21941-972 Rio de Janeiro, RJ, Brazil.

Open access under CC BY license.
0370-2693 © 2006 Elsevier B.V.
doi:10.1016/j.physletb.2006.08.058

Open access under CC BY license.

https://core.ac.uk/display/81124317?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:bracco@uerj.br
http://dx.doi.org/10.1016/j.physletb.2006.08.058
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


M.E. Bracco et al. / Physics Letters B 641 (2006) 286–293 287
Fig. 1. Perturbative diagrams for K off-shell (left) and Ds off-shell (right) corresponding to the D∗DsK vertex.

Following the QCDSR formalism described in our previous works [11–17], we write the three-point correlation function associ-
ated with the D∗DsK vertex, which is given by

(1)Γ (K)
μ (p,p′) =

∫
d4x d4y eip′·xe−i(p′−p)·y〈0|T {

jD∗
μ (x)jK †

(y)jD
†
s (0)

}|0〉

for K meson off-shell, where the interpolating currents are jD∗
μ = c̄γμd , jK = is̄γ5d and jDs = ic̄γ5s, and

(2)Γ (Ds)
μν (p,p′) =

∫
d4x d4y eip′·xe−i(p′−p)·y〈0|T {

jK
μ (x)jD

†
s (y)jD∗

ν

†
(0)

}|0〉

for Ds meson off-shell, with the interpolating currents jK
μ = ūγμγ5s, jDs = ic̄γ5s, jD∗

μ = ūγμc, with u, d , s and c being the up,
down, strange and charm quark fields, respectively. In both cases, each one of these currents has the same quantum numbers as the
corresponding mesons.

Using the above currents to evaluate the correlation functions (1) and (2), the theoretical or QCD side is obtained. The framework
to calculate the correlators in the QCD side is the Wilson operator product expansion (OPE). The Cutkosky’s rule allows us to
obtain the double discontinuity of the correlation function for each one of the Dirac structures appearing in the correlation function.
Calling ρi the spectral density for the Dirac structure i, we can write the correlation function as a double dispersion relation over
the virtualities p2 and p′2, holding Q2 = −q2 fixed. Therefore, the amplitudes Γi are given by:

(3)Γi

(
p2,p′2,Q2) = − 1

π2

s0∫
smin

ds

u0∫
umin

du
ρi(s, u,Q2)

(s − p2)(u − p′2)
,

where the spectral density ρi(s, u,Q2) equals the double discontinuity of the amplitude Γi(p
2,p′2,Q2). The amplitudes receive

contributions from all terms in the OPE. The leading contribution comes from the perturbative term, shown in Fig. 1. The phe-
nomenological side of the sum rule, which is written in terms of the mesonic degrees of freedom, is parametrized in terms of the
form factors, meson decay constants and meson masses. The QCD sum rule is obtained by matching both representations, using
the universality principle. The matching is improved by performing a double Borel transform on both sides.

The perturbative contribution for both Eqs. (1) and (2), written in terms of Eq. (3), is given by

ρ(K)
μ

(
s, u,Q2) = 3

2π
√

λ

{
pμ

[
A

(
m2

c − mcms − 2k · p + p · p′) + 2π
(
m2

c − k · p′)]

(4)+ p′
μ

[
B

(
m2

c − mcms − 2k · p + p · p′) + 2π
(−m2

c + mcms + k · p)]}

for K off-shell, and

ρ(Ds)
μν

(
s, u,Q2) = − 3i

2π
√

λ

{
gμν

[
π

(
ms

(
s − m2

c

) − mc

(
u − m2

s

)) + 2D(ms − mc)
]

+ (pμp′
ν + p′

μpν)
[
Amc − Bms + 2C(ms − mc)

]
(5)+ pμpν2

[
F(ms − mc) − Ams

] + p′
μp′

ν2
[
Bmc + E(ms − mc)

]}

for Ds off-shell. Here s = p2, u = p′2, t = −Q2, λ ≡ λ(s, t, u) = s2 + t2 +u2 − 2st − 2su− 2tu, k ·p = s+m2
c−m2

s

2 , p ·p′ = s+u−t
2 ,

k · p′ = u+m2
c , and A, B , C, D, E and F are functions of {s, t, u}, given by the following expressions:
2
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A = 2π√
s

(
k̄0 − |�̄k|p′

0

| �p′| cos θ̄

)
, B = 2π

|�̄k|
| �p′| cos θ̄ ,

C = πk̄2
0√

s| �p′|
[

2 cos θ̄ − p′
0

| �p′|
(
3 cos2 θ̄ − 1

)]
, D = πk̄2

0

(
1 − cos2 θ̄

)
,

E = πk̄2
0

| �p′|2
(
3 cos2 θ̄ − 1

)
, F = πk̄2

0

s

[
3 − 4p′

0

| �p′| cos θ̄ + p′2
0

| �p′|2
(
3 cos2 θ̄ − 1

) − cos2 θ̄

]
,

p′
0 = s + u − t

2
√

s
, | �p′|2 = λ

4s
,

where

k̄0 = s + m2
c − m2

s

2
√

s
, |�̄k| =

√
k̄2

0 − m2
c, cos θ̄ = 2p′

0k̄0 − m2
c − u

2| �p′||�̄k|
,

for K off-shell, and

k̄0 = s − m2
c

2
√

s
, |�̄k| = k̄0, cos θ̄ = 2p′

0k̄0 + m2
s − u

2| �p′||�̄k|
,

for Ds off-shell.
The phenomenological side of the vertex functions is obtained considering the contributions of the Ds and D∗ mesons to the

matrix element in Eq. (1) and the D∗ and K mesons to the matrix element in Eq. (2). We introduce the meson decay constants fK ,
fDs and fD∗ , which are defined by the following matrix elements:

(6)〈0|jK |K〉 = m2
KfK

ms + mq

,

(7)〈0|jDs |Ds〉 = m2
Ds

mc + ms

fDs ,

(8)〈0|jD∗
ν |D∗〉 = mD∗fD∗ε∗

ν ,

where εν is the polarization vector of the D∗ meson.
In principle, we can work with any Dirac structure appearing in the amplitude in Eqs. (1) and (2). However, there are some points

that one must follow: (i) the chosen structure must also appear in the phenomenological side and (ii) the chosen structure must have
a stability that guarantees a good match between the two sides of the sum rule. The structures that obey these two points are p′

μ, in
the case K off-shell, and p′

μp′
ν in the case Ds off-shell. The corresponding phenomenological amplitudes in these structures are

(9)Γ (K)ph(p2,p′2,Q2) = g
(K)
D∗DsK

(
Q2) fD∗fDs fKmD∗m2

Ds
m2

K

(mc + ms)ms(p2 − m2
Ds

)(p′2 − m2
D∗)(Q2 + m2

K)

(
1 + m2

Ds
+ Q2

m2
D∗

)

for the K off-shell, and

(10)Γ (Ds)ph(p2,p′2,Q2) = g
(Ds)
D∗DsK

(
Q2) (−2)ifD∗fDs fKmD∗m2

Ds

(mc + ms)(p2 − m2
D∗)(p′2 − m2

K)(Q2 + m2
Ds

)

for Ds off-shell.
In the case of K off-shell the contribution of the quark condensate vanishes after the double Borel transform. In the case of the

Ds off-shell, the quark condensate does not contribute to the chosen structure.
To write the sum rules we equate each phenomenological amplitude in Eqs. (9)–(10), with the expression obtained by substituting

the corresponding spectral density in Eqs. (4)–(5) into Eq. (3). The matching between both sides is improved by performing a double
Borel transformation [18] in the variables P 2 = −p2 → M2 and P ′2 = −p′2 → M ′2. We get then the final form of the sum rule,
which allow us to obtain the form factors g

(M)
D∗DsK

(Q2) appearing in Eqs. (9)–(10), where M stands for the off-shell meson.

We use Borel masses satisfying the constraint M2/M ′2 = m2
in/m2

out, where min and mout are the masses of the incoming and
outcoming meson respectively. In the case of the K meson off-shell, this constraint gives M2/M ′2 = m2

Ds
/m2

D∗ . For the Ds

meson off-shell, the relation should be M2/M ′2 = m2
D∗/m2

K . However, the small value of the K mass spoils the stability of the
Borel transformation. Thus, as is common in the literature, we change the K mass for the ρ mass. The resulting relation is then
M2/M ′2 = m2

D∗/m2
ρ .

The values of the parameters used in the calculation of the D∗DsK vertex are depicted in Table 1. The continuum thresholds
s0 and u0, appearing in Eq. (3), are given by s0 = (min + Δs)

2 and u0 = (mout + Δu)
2, where min and mout are the masses of the
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Table 1
Parameters used in the calculation of the QCD sum rule for the D∗DsK vertex. All quantities are in GeV

mq ms mc mK mDs mD∗ fK [20] fDs [21] fD∗ [22]

0.0 0.13 1.2 0.498 1.97 2.01 0.160 0.280 0.240

Fig. 2. Stability of g
(K)
D∗DsK

(Q2 = 1 GeV2), as a function of the Borel

mass M2.

Fig. 3. Stability of g
(Ds)
D∗DsK

(Q2 = 1 GeV2), as a function of the Borel

mass M2.

incoming and outcoming mesons respectively. For the K off-shell we have min = mDs and mout = mD∗ , and for the Ds off-shell we
have min = mD∗ and mout = mK (see Fig. 1).

Using Δs = Δu = 0.5 GeV for the continuum thresholds and fixing Q2 = 1 GeV2, we found a good stability of the form factor
g

(K)
D∗DsK

, as a function of the Borel mass M2, in the interval 3 < M2 < 5 GeV2, as can be seen in Fig. 2. In the case of the form

factor g
(Ds)
D∗DsK

the interval for stability of the sum rule is 2 < M2 < 5 GeV2, as can be seen in Fig. 3. Fixing Δs = Δu = 0.5 GeV

and M2 = 3 GeV2, we evaluate the momentum dependence of both form factors. The results are shown in Fig. 4, where the squares
corresponds to the g

(K)
D∗DsK

(Q2) form factor in the interval where the sum rule is valid. The triangles are the result of the sum rule

for the g
(Ds)
D∗DsK

(Q2) form factor. In the case of the K meson off-shell, our numerical results can be parametrized by an exponential
function (dotted line in Fig. 4):

(11)g
(K)
D∗DsK

(
Q2) = 2.83 e− Q2

4.19 .

As in Ref. [13], we define the coupling constant as the value of the form factor at Q2 = −m2
M , where mM is the mass of the off-shell

meson. For the K off-shell case the resulting coupling constant is:

(12)g
(K)
D∗DsK

= 3.01.

In the case when the Ds meson is off-shell, our sum rule results can be parametrized by a monopole formula (solid line in Fig. 4):

(13)g
(Ds)
D∗DsK

(
Q2) = 9.01

Q2 + 6.86
,

giving the following coupling constant, obtained at the Ds pole:

(14)g
(Ds)
D∗DsK

= 3.02.

The parametrization of the form factors used in Eqs. (11) and (13) are not unique, the more common ones are the monopolar,
Gaussian and exponential parametrizations [19]. The better fit of our sum rules results are obtained with the exponential in the case
when the lighter meson is off-shell, and with the monopole parametrization when the heavier meson is off-shell. Comparing the
results in Eqs. (12) and (14) we see that the method used to extrapolate the QCDSR results in both cases, K and Ds off-shell, allows
us to extract values for the coupling constant which are in very good agreement with each other.

In order to study the dependence of this results with the continuum threshold, we vary Δs = Δu in the interval 0.4 � Δs = Δu �
0.6 GeV, as can be seen in Fig. 5. This procedure give us uncertainties in such a way that the final results for the couplings in each
case are: g

(K)
∗ = 3.02 ± 0.15 and g

(Ds)∗ = 3.03 ± 0.14.
D DsK D DsK
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Fig. 4. g
(K)
D∗DsK

(squares) and g
(Ds)
D∗DsK

(triangles) form factors as a

function of Q2 from the QCDSR calculation of this work. The solid
(dotted) line corresponds to the monopole (exponential) parametrization
of the QCDSR results for each case.

Fig. 5. Dependence of the form factor with the continuum threshold, for K

and Ds off-shell cases. The dotted line corresponds to Δs = Δu = 0.4 GeV,
the solid line corresponds to Δs = Δu = 0.5 GeV and the dashed one corre-
sponds to Δs = Δu = 0.6 GeV.

Now we study the D∗
s DK vertex. The treatment is similar to the previous case. The correlation functions are

(15)Γ (K)
μ (p,p′) =

∫
d4x d4y eip′·xe−i(p′−p)·y〈0|T {

j
D∗

s
μ (x)jK †

(y)j D̄
†
(0)

}|0〉

for K meson off-shell, where the interpolating currents are j
D∗

s
μ = c̄γμs, jK = iūγ5s and jD = ic̄γ5u, and

(16)Γ (D)
μν (p,p′) =

∫
d4x d4y eip′·xe−i(p′−p)·y〈0|T {

jK
μ (x)jD†

(y)jν
D∗

s
†
(0)

}|0〉

for D meson off-shell, with the interpolating currents jK
μ = ūγμγ5s, j

D∗
s

ν = c̄γνs, and jD = iūγ5c. See Fig. 6 for understanding the
perturbative contribution with these currents.

For each correlation function, Eqs. (15) and (16), the corresponding perturbative spectral density which enters Eq. (3) is:

ρ(K)
μ

(
s, u,Q2) = 3

2π
√

λ

{
pμ

[
A

(
m2

c + mcms − 2k · p + p · p′) + 2π
(
m2

c − mcms − k · p′)]

(17)+ p′
μ

[
B

(
m2

c + mcms − 2k · p + p · p′) + 2π
(
k · p − m2

c

)]}

for K off-shell, where k · p = s+m2
c

2 and k · p′ = u+m2
c−m2

s

2 , and

ρ(D)
μν

(
s, u,Q2) = − 3i

2π
√

λ

{
gμν

[
2π

(
m2

s (mc − ms) + ms(k · p + k · p′ − p · p′) − mck · p) − 2mcD
]

+ pμp′
ν

[
A(mc + ms) + Bms − 2Cms − 2πms

] + p′
μpν

[
A(mc − ms) − Bms − 2Cms + 2πms

]
(18)− pμpν2mcF + p′

μp′
ν2mc(B − E)

}

for D off-shell, where k · p = s+m2
s −m2

c

2 and k · p′ = u+m2
s

2 . The definitions of the other quantities are the same as for the D∗DsK

vertex, with

k̄0 = s + m2
c

2
√

s
, |�̄k| =

√
k̄2

0 − m2
c, cos θ̄ = 2p′

0k̄0 + m2
s − m2

c − u

2| �p′||�̄k|
,

for K off-shell, and

k̄0 = s + m2
s − m2

c

2
√

s
, |�̄k| =

√
k̄2

0 − m2
s , cos θ̄ = 2p′

0k̄0 − m2
s − u

2| �p′||�̄k|
,

for D off-shell.
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Fig. 6. Perturbative diagrams for K off-shell (left) and D off-shell (right) corresponding to the D∗
s DK vertex.

Fig. 7. Stability of g
(K)

D∗
s DK

(Q2 = 1 GeV2), as a function of the Borel

mass M2.

Fig. 8. Stability of g
(D)

D∗
s DK

(Q2 = 1 GeV2), as a function of the Borel

mass M2.

The phenomenological side of the vertex functions are obtained by considering the contributions of the D and D∗
s mesons to the

matrix element in Eq. (15) and the D∗
s and K mesons to the matrix element in Eq. (16). We introduce the decay constants fD and

fD∗
s
, which are defined by the following matrix elements:

(19)〈0|jD|D〉 = m2
D

mc + mq

fD,

(20)〈0|jD∗
s

ν |D∗
s 〉 = mD∗

s
fD∗

s
ε∗
ν ,

where εν is the polarization vector of the D∗
s meson. The fK decay constant was already defined in Eq. (6). Again we have to

choose a Dirac structure for each case in Eqs. (17)–(18). Following the points discussed before, the chosen Dirac structures are p′
μ

for the off-shell K , and p′
μp′

ν for the off-shell D. The corresponding phenomenological amplitudes in these structures are

(21)Γ (K)ph(p2,p′2,Q2) = g
(K)
D∗

s DK

(
Q2) fD∗

s
fDfKmD∗

s
m2

Dm2
K

mcms(p2 − m2
D)(p′2 − m2

D)(Q2 + m2
K)

(
1 + m2

D + Q2

m2
D∗

s

)

for K off-shell, and

(22)Γ (D)ph(p2,p′2,Q2) = g
(D)
D∗

s DK

(
Q2) (−2)ifD∗

s
fDfKmD∗

s
m2

D

mc(p2 − m2
D∗

s
)(p′2 − m2

K)(Q2 + m2
D)

for D off-shell. As in the case of the D∗DsK vertex, the quark condensate does not contribute to the sum rule for these structures.
The procedure to obtain the QCD sum rule is the same used in the case of the D∗DsK vertex studied before. In this case we use

the following relations between the Borel masses: M2/M ′2 = m2
D/m2

D∗
s

for K off-shell and M2/M ′2 = m2
D∗

s
/m2

ρ for D off-shell.
The values of the parameters used in the calculation of the D∗

s DK vertex are given in Table 2, where we have used the relation
fD∗

s
= fD∗fDs /fD and the value of fDs /fD from Ref. [23] in order to obtain the D∗

s decay constant.
Using Δs = Δu = 0.5 GeV for the continuum thresholds and fixing Q2 = 1 GeV2, we found a good stability of the sum rule for

g
(K)
D∗

s DK , as a function of the Borel mass M2, in the interval 2 < M2 < 5 GeV2, as can be seen in Fig. 7. In the case of g
(D)
D∗

s DK , the

interval for stability is also 2 < M2 < 5 GeV2, as can be seen in Fig. 8.
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Table 2
Parameters used in the calculation of the QCD sum rule for the D∗

s DK vertex. All quantities are in GeV

mq ms mc mK mD mD∗
s

fK [20] fD [24] fD∗
s

0.0 0.13 1.2 0.498 1.87 2.11 0.160 0.200 0.330

Fig. 9. g
(K)

D∗
s DK

(squares) and g
(D)

D∗
s DK

(triangles) form factors as a func-

tion of Q2 from the QCDSR calculation of this work. The dashed (solid)
line corresponds to the exponential (monopole) parametrization of the
QCDSR results for each case.

Fig. 10. Dependence of the form factor with the continuum threshold, for K

and D off-shell cases. The dotted line corresponds to Δs = Δu = 0.4 GeV,
the solid corresponds to Δs = Δu = 0.5 GeV and the dashed corresponds to
Δs = Δu = 0.6 GeV.

Fixing Δs = Δu = 0.5 GeV and M2 = 3 GeV2 in both cases, we calculate the momentum dependence of the form factors which
are shown in Fig. 9. The squares corresponds to the g

(K)
D∗

s DK(Q2) form factor in the interval where the sum rule is valid. The triangles

are the result of the sum rule for the g
(D)
D∗

s DK(Q2) form factor. In the case when the K meson is off-shell, our numerical results can
be parametrized by an exponential function (dashed curve in Fig. 9):

(23)g
(K)
D∗

s DK

(
Q2) = 2.69e− Q2

4.39 .

The coupling constant was obtained as the value of the form factor at Q2 = −m2
K . In this case the resulting coupling constant is

(24)g
(K)
D∗

s DK = 2.87.

In the case when the D meson is off-shell, the sum rule results are represented by the triangles in Fig. 9, and they can be parametrized
by a monopole formula (solid line in the figure):

(25)g
(D)
D∗

s DK

(
Q2) = 7.78

Q2 + 6.34
,

giving the following coupling constant, obtained at the D pole:

(26)g
(D)
D∗

s DK = 2.72.

Studing the dependence of our results with the continuum threshold, for Δs,u varying in the interval 0.4 � Δs,u � 0.6 GeV,
as can be seen in Fig. 10, we obtain the following values, with errors, for the couplings in each case: g

(K)
D∗

s DK = 2.87 ± 0.19 and

g
(D)
D∗

s DK = 2.72 ± 0.31.
Concluding, we have studied the form factors and coupling constants of D∗DsK and D∗

s DK vertices in a QCD sum rule
calculation. For each case we have considered two particles off-shell, the lightest and one of the heavy ones: the K and Ds mesons
for the D∗DsK vertex, and the K and D mesons for the D∗

s DK vertex. In the two situations, the off-shell particles give compatible
results for the coupling constant in each vertex. The results are:

(27)gD∗DsK = 3.02 ± 0.14,

(28)gD∗
s DK = 2.84 ± 0.31.
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In a similar calculation, this time on the light cone [25], the same coupling constants were obtained, with the results gD∗DsK =
2.02+0.84

−0.56 and gD∗
s DK = 1.84+0.91

−0.63. Although somewhat larger, our values are compatible with the ones from that reference.
We can compare our result with the prediction of the exact SU(4) symmetry [5,7,9], which would give the following relation

among these numbers [9]: gD∗DsK = gD∗
s DK = 5. Eqs. (27) and (28) show that the coupling constants in the vertices D∗DsK and

D∗
s DK are consistent one with the other, but that they are relatively far from the value given by the SU(4) symmetry in the cited

reference. Therefore, we conclude that the SU(4) symmetry is broken by approximately 40% in the calculation performed here. We
can also extract the cutoff parameter, Λ, from the parametrizations in Eqs. (11) and (23) for K off-shell, Eq. (13) for Ds off-shell
and Eq. (25) for D off-shell. We get Λ ≈ 2.07 GeV for the K meson off-shell, Λ ≈ 2.61 GeV for the Ds meson off-shell, and
Λ ≈ 2.51 GeV for the D meson off-shell. Comparing the values of the cutoffs, we see that the form factor is harder if the off-shell
meson is heavier, implying that the size of the vertex depends on the mass of the exchanged meson: the heavier is the meson, the
more as a point like particle is its behavior when probing the target, as observed in Refs. [12–14,17].
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