
 Procedia Computer Science 97 (2016) 73 – 83

Available online at www.sciencedirect.com

1877-0509 © 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the international conference on cloud forward:
From Distributed to Complete Computing
doi: 10.1016/j.procs.2016.08.282

ScienceDirect

Cloud Futures: From Distributed to Complete Computing, CF2016, 18-20 October 2016, Madrid,
Spain

User Involvement in Software Development Processes

Iosif Alvertisa, Sotiris Koussourisa,*, Dimitris Papaspyrosa, Evangelos Arvanitakisa,
Spiros Mouzakitisa, Sebastian Frankenb, Sabine Kolvenbachb, Wolgang Prinzb

aDecision Support Systems Laboratory, National Technical University of Athens, 9 Iroon Polytechneiou Str, 15780, Greece
bFraunhofer-Institut für Angewandte Informationstechnik FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany

Abstract

Costs of software development and deployment are decreasing due to numerous open source projects and novel Cloud-based
services (IaaS, PaaS, SaaS), but competition increases due to lowering entry barriers. The need to bring developers closer to their
customer becomes vital for success, especially involving users into the very early stages of software development. This allows
detecting flaws of conceptual and design nature, minimize unnecessary development costs, and warrant relevance for customers.
This paper presents the CloudTeams methodology and platform that aim to bridge this gap, based on an existing groupware
system supporting the notion of collaborative software development.
© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the organizing committee of the international conference on Cloud Futures: From Distributed
to Complete Computing.

Keywords: Cloud Platform; Collaboration; Software Development; User Engagement; Ideation; Crowdsourcing; Cloud Computing

1. Introduction

Software Development requires a large number of technical resources as well as stakeholders. Those are software
developers on the technical side, and potential users on the market side. The success factor of software heavily
depends on whether the software solution is able to fulfill the expectations of the addressed users. Software design
experience teaches us that it gets more and more expensive to remove conceptual flaws the later the process of
software development gets. Some authors postulate an exponential connection between the number of different

* Corresponding author. Tel.: +30-210-7723514; fax: +30-210-7723550.
E-mail address: skous@epu.ntua.gr

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer-review under responsibility of organizing committee of the international conference on cloud forward:
From Distributed to Complete Computing

CLOUD FORWARD: From Distributed to Complete Computing, CF2016, 18-20 October 2016, Madrid,
Spain

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81124301?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.282&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2016.08.282&domain=pdf

74 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

phases of software development and the costs for removing unresolved errors in these phases14. It is therefore crucial
to as early as possible align software with the expectations of stakeholders in the software development process to
avoid unnecessary costs and to speed up the development process.

The paper at hand showcases how the social collaborative development platform CloudTeams helps towards this
direction, as an approach to involve end users in every phase of the software development process. The aim is to
align software development with market expectations throughout the software development cycle. CloudTeams
provides the methodology and the necessary tools, as interface points of the methodology, that developers demand
for project management and team collaboration, software development, testing, deployment, and of course for
interaction with perspective end users. The platform itself consists of several technical components to offer the
required functionality to all stakeholders without re-implementing existing approaches. An existing groupware
system forms the basis for the collaboration platform for software development.

In this paper, the CloudTeams methodology and the technical platform are presented, with details on its
customisation to facilitate software developers and promote end user participation. In the next chapter, we present a
landscape analysis of related work for all relevant aspects of CloudTeams, while the third chapter introduces the
CloudTeams methodology. The fourth chapter describes the architecture and the current state of the CloudTeams
technical collaboration platform, while the fifth chapter provides an overview on the concept’s assessment
methodology based on diverse pilot installations. Finally, the paper concludes with an outlook.

2. Landscape Analysis

Bringing closer potential users and software developers during software development projects requires a
methodology and a technical implementation that will dictate how such interactions can take place, in order to
maximize the benefits of such communications, minimizing the risks of information overload and out-of-scope
feedback generation. This is undisputedly of major importance for any kind of software, however interaction with
large user bases and the ability to integrate the extracted knowledge is mostly concerning small and agile working
software teams that deliver consumer software products (such as mobile Apps) as development and success
evaluation are executed in very short cycles, in order to continuously improve the product and satisfy as many
customers as possible. Our analysis of related work identifies a range of systems that can contribute to the overall
process of software engineering with user participation. Such systems include social platforms, groupware systems,
software development models, local development environments, code repositories and code analysis, customer
participation, and social requirements engineering. We could derive deep insights into the set of required features by
conducting a semi-structured series of interviews with stakeholders of the platform2.

When it comes to social platforms, in professional business contexts these are systems that help enterprises
strengthen their social interaction and informal communication for both internal and external use5. Popular social
media platforms such as Yammer (www.yammer.com), Facebook (www.facebook.com), or Twitter
(www.twitter.com) are the ones that paved the way and outline the basic features that enterprises should use. In
opposition to this, social media platforms often offer just rudimentary groupware functions, e.g. they do not provide
advanced group and access management functions or sophisticated document management functions.

Classic groupware systems dominate the intra- and inter-company cooperation, while in some application
domains the use of groupware is not yet common1. Those are often complex tools with a broad palette of functions
for project and task management, and document management. In implementations such as Microsoft SharePoint
(http://office.microsoft.com/de-de/sharepoint/), one might notice the weak integration of lightweight social
networking and communication functionalities. The software classes of groupware and social software both offer
possibilities that support professional exchange as well as cooperation between locally distributed cooperation
partners. Each class of systems, groupware and social software, on its own cannot offer exhaustive support for the
full range of requirements of cooperative processes. Although groupware research has yielded a number of
productive and successful systems, it appears that social media is somewhat ruling out the traditional cooperation
systems such as cooperative document management or team room systems. Even if recent implementations aspire to

75 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

blend groupware systems and social media3,9, there is no support for software development and end user
involvement.

When it comes to the technical support of code development processes, local integrated development
environments (IDE’s) are as important as their cloud-based pendants. Supporting code development with local
means involves systems such as Eclipse, Komodo, NetBeans, Visual Studio, among many others. But modern
software engineering in geographically distributed teams cannot be imagined without collaboration among the
individual developers. As most modern software development processes are iterative and incremental, following the
agile development methods and seeking constantly for evolving user requirements, constant changes or
unforeseeable issues might be raised and have to be addressed by the development team. From the very early stages
of the development process towards software deployment and maintenance the developers need to communicate
within the team to share the knowledge and experiences, discuss potential solutions, agree on changes, and stay
informed on the on-going process. The communication tends to be rather asynchronous due to unavailability (over
the supported communication channels) of distributed team members or due to a significant difference in the time
zones between the working environments locations. Although the synchronous communication tools are in place, the
coordination of audio or visual calls can be time consuming. The distributed nature of such teams impacts the
product management work at the most, as the product vision communication, product design techniques and related
activities impact the time-to-market indicator if practiced asynchronously (thus, iteratively).

Modernisation of production is pushing towards work distribution, and the same applies for software
development. In this context, the above mentioned challenges are tackled by distributed teams through the
utilization of novel tools and platform such GitHub (www.github.com), which combines source code management
and distributed version control features. Parallel approaches are BitBucket (https://bitbucket.org/) or Kiln
(www.fogcreek.com/kiln/). Some of these platforms also allow team management or issue tracking, as well as code
analysis. Other platforms exclusively care about code analysis, such as SonarQube (www.sonarqube.org/) or Squale
(www.squale.org/). This multitude of systems exclusively for software development makes it hard to properly
interact with end users in software development processes. Furthermore, the software development process can be
aligned with several software development models, reaching from classical waterfall models towards more cyclic
and issue-driven SCRUM process models12.

At the same time with the above mentioned approaches for bringing development team members closer towards
increasing productivity and software quality, similar approaches are surfacing regarding customer integration. Social
media are being used as main communication vessels for bringing customers closer to intra-project developments.
Crowdsourcing approaches help gathering work results from interested customers. Platforms like Amazon
Mechanical Turk (www.mturk.com/mturk/welcome) offer the possibility to outsource tasks to users for
micropayments. Projects from various areas make use of this possibility, may it be for image classification, bird
voice recognition, or others. However, these approaches only work by extrinsic motivation aspects, as people work
for the money and not so much because they are interested in the project itself. On platforms like Kickstarter
(www.kickstarter.com/) or Indiegogo (www.indiegogo.com), users can explore projects they are explicitly interested
in, and back them with financial resources. In these cases, customers pay in advance for having the chance to get
one of the future products. The customer involvement in the development process stays moderate. A further
approach is social requirements engineering. This approach brings together the groups of end-users and developers
for negotiating requirements in mutual interest. Requirements Bazaar is a web-based solution for social
requirements engineering10,11. However, also this approach builds on a known base of users that has to be acquired
in advance.

From a business perspective, crowdsourcing has been characterised an “Open Source CRM”†, using “wisdom of
crowds to collect customers’ feedback, analyse their needs and identify market gaps that need to be fulfilled. Social
media have been lately another indirect crowdsourcing platform; social media are used to collect specific

† Crowdsourcing is an open source CRM. http://zurmo.org/features/open-source-crm-crowdsourcing

76 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

information as gender, age, geography or favourites activities of users in order to understand customers’ need and
better target them. Such information can be extracted using the API provided by each service, like Facebook Graph
API or Foursquare API. Users may authorise an application to retrieve information from their profiles, while storing
and processing data are addressed in the developers’ terms of use for the API. Some of the most popular services
that are based on the analysis of social media accounts and the storage of social activities to profile, categorise and
evaluate users are Klout and AddThis; Klout is connected with various accounts, like Facebook, Twitter, Google+
etc. to track users’ activity and social feedback, while AddThis offers a widget to share content from various web
pages to social media, and collects the activities to profile its users and target advertising. While social activities can
be measured through the usage of specific social media accounts, there are means to catalogue and track users’
habits even outside the web, using specific sensors or applications in devices that may document daily habits of their
users, implicitly or explicitly. FitBit, Nike+, Nike Fuelband, Fitocracy, Runkeeper or Expensify are such solutions
that can track users’ behaviour and allow them to insert specific characteristics of their lifestyle habits. Habits
patterns are extremely important factors for the success of a product, while it is difficult for the users themselves to
identify such patterns. Crowdsourcing platforms are not sufficient; results generated by them cannot be generalised
as they provide only incentives and need quantitative methods to be confirmed. But existing crowdsourcing
platforms do not try to establish solid relationships with the community; they act more like content aggregators.

The feedback process and generally the social collaboration in software life cycle should be explored in more
depth. In that direction, the IEEE 12207 standard for Systems & Software Life Cycle Standards‡ has issued the
relevant categories of Software Life Cycle; Three main categories are in the interest of social collaboration in
software engineering: (a) systems context (i.e. stakeholders requirements definition, acceptance support), (b)
software development (i.e. software requirements analysis, software quality testing), and (c) software support (i.e.
software quality assurance, software validation, software problem resolution). These categories may be summarized
in two phases, where social interactions with external interested parties (e.g. customers or clients) may be
established: (i) during the software development or maintenance to improve the analysis of software requirements,
as well as (ii) after the software is developed to ensure quality. No matter the methodology every software team may
choose, such social interactions exist both in rigid methods (i.e. Waterfall-Model, V-Model, Incremental Build
Model, Rational Unified Process, Spiral-Model) and in agile ones (i.e. eXtreme Programming, Scrum, Feature
Driven Development); what changes is the phase and the frequency such interactions take place.

The main focus of CloudTeams is on the development of workflows that may increase end-users’ input
(crowdsourcing in software engineering), in order to validate and improve quality and relevance of software. In this
quest, CloudTeams mainly targets consumer applications developed mostly by startups and small software teams
and that are addressing customers as a user group, thus are not being tailored to the needs and preferences of each
customer. Such teams do not possess the necessary resources to conduct extensive market analysis activities, not do
they possess a large user base and therefore the identification of likings and preferences of their target audience as a
whole is a critical success factor for their products, as well as the proper coordination, monitoring of software output
performance and rapid reaction to user feedback from the teams perspective.. However, during the project, also
other types of software are tested with CloudTeams, such as B2B software with the most notable example being a
ERP implementation that is quite popular amongst small enterprises. Various attempts have recently worked on that
direction: Stolee et al13, used Amazon Mechanical Turk as a crowdfunding platform for software engineering study;
Lim et al7 introduced StakeSource to crowdsource stakeholder analysis and reduce the effort from experts; Murray-
Rust et al8 described a conceptual model for combining process models with crowd-sourced teams to create software
artefacts in support of dynamic communities, via a Social Compute Unit (SCU) combining human workers with
social agents who order and prioritize requirements. This formalisation paves the way for increased intelligence to
be brought into crowd-sourced software development, creating a responsive, community-centred process.

‡ https://standards.ieee.org/findstds/standard/12207-2008.html

77 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

3. Engaging Users in the Software Development Lifecycle – The CloudTeams methodology

CloudTeams provides an environment to support the whole lifecycle of software development with social
features, starting from the ideation phase and ending at the final market release of a software product. The
CloudTeams methodology provides a path to the development lifecycle and defines the points and ways of
interaction among the software teams and their prospective customers, as well as a set of recommended verification
and validation activities. It is not an obligatory process, but a recommended methodology to increase the
effectiveness of the tools of the CloudTeams platform, by following specific steps.

The goal of the methodology is to make the social interaction and feedback with customers easier and part of the
software development process. The CloudTeams methodology, which is depicted in Figure 1, is based on two
existing models: (i) the V-model§ , a modified version of the waterfall method incorporating verification and
validation processes, and (ii) the FITMAN V&V model6, which supports V&V in distributed software development
environments. In general, such a model is not the preference of software development teams that deliver software
products that are in the focus of the CloudTeams project, as small teams work in an agile manner, following LEAN
principles and do not usually follow strict validation and verification steps. As such, they are able to deliver results
fast, however failure is greatly attributed in many cases to the lack of proper structures for validation mostly (as
code verification is addressed adequately), where projects fail simply because they do not satisfy the needs of the
target audience. In this context, the authors believe that such a V-model inspired methodology which incorporates
many agile working principles, is in the position to change the mindscape of smaller development teams and alert
them about the importance of validation of outputs with customers, and therefore educate them on a systematized
manner to produce software.

§ http://www.waterfall-model.com/v-model-waterfall-model/

System Backlog
Definition/ Update

Regression &
Functional Testing

User Acceptance
Testing (UAT)

Ideation

User
Experience

Design and Visual
Modelling

Coding

Backlog
Verification

Model
Verification

Code
Verification

Sprint Backlog
Definition

Idea Validation

Scenarios
Validation

User Stories
Validation

Continuous
Integration

Testing

Automated
Unit Testing

Automated
Acceptance

Testing

Build Verification

Release Validation

Product Validation
Market Test

Sprint

User Acceptance Testing Plan

Testing Plan

C
us

to
m

er
s’

 p
op

ul
at

io
n

&
 p

ro
fil

e

Non-Technical
Skills

Technical Skills

D
ev

el
op

m
en

t
Te

am
 In

vo
lv

em
en

t

P
ro

du
ct

 M
an

ag
er

 In
vo

lv
em

en
t

78 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

Fig. 1. Elements and steps of the CloudTeams methodology.

The CloudTeams methodology goes far beyond these two models as it aims to provide an inclusive, yet flexible,
easy to understand procedure that can be used by software teams to deliver better products and services. In this
context, the methodology emphasises on the ideation phase and customers’ opinions utilisation, to drive
collaboration between Customers and Software Teams, but also internally among Software Team members.
Regarding the utilisation in software products development, the CloudTeams methodology is agile-oriented,
supporting popular agile-driven software methodologies, like Scrum, Kanban, Scrum-ban, etc. On the other hand,
this does not exclude teams that wish to follow the waterfall model, as long as the methodological steps in the grey
background are amended respectively. A high-level diagram of the methodology is available in Figure 1.

The methodology depicted above tries to specify the CloudTeams concept and the platform’s operation in a
standardized manner. It is based on the V-model and the FITMAN V&V framework, and works towards extending
it in specific, software-specific sections. The adoption of the CloudTeams methodology by the Software Teams
should not be obligatory, but it suggests better results if used properly with the CloudTeams toolkit; following the
suggested methodology will verify to teams and customers that the produced software is an outcome of a
collaborative, user-tested and validated process. In detail, the CloudTeams methodology provides an iterative
process of the following steps (Figure 1):

The ideation phase of the methodology and ideation takes place via the CloudTeams ideation modules. This step
aims at connecting development teams to potential customersand at supporting the validation of given ideas (e.g.
through interviews or market analysis) on the basis of the customers’ opinions provided in a number of
alternative ways.
The second step focuses on user (customer) experience, in terms of collecting feedback from targeted customer
groups, represented by different personas in CloudTeams tools, leading to the specification of the complete
customer requirements list of the software to be developed. This process takes place initially by developing and
validating usage scenarios, together with mock-ups or videos showcasing, and later by collecting customers’
feedback on early releases of the product. A complementary outcome of this step is the definition of the User
Acceptance Testing (UAT) plan, to be used for validating the software before its release.
The third step targets at the definition of the functional and non-functional requirements of the software as user-
stories. An initial user story list is compiled and gets validated both from the development team, towards specific
criteria, and from the customers as far as it concerns the value of each user story from an end-user perspective.
With the responsibility of the Product Manager, the user-stories list is being filtered according to the validation
results and the stories are being classified in the System Backlog, considered as a registry of all approved
requirements with given priorities. After the finalisation of the System Backlog, a series of tests need to be
developed in order to support functional and regression testing of the different software builds.
The next steps of the methodology refer to core development of the software (grey box in the bottom of Figure 1)
and cover the sprints/iteration cycles required for the release of the software. CloudTeams adopts the FITMAN
V&V Method6 according to which testing is incorporated in each iteration in a standardised way, so that it can be
tracked and certified later. The exact flow within the sprints can be customized according to the exact
development methodology that a software development team follows, as long as (semi-)automated testing
processes – both in unit and in sprint output level – are incorporated to the overall process and monitored in each
cycle with the help of the CloudTeams platform.
After the completion of each build of the software, the CloudTeams methodology supposes functional/ regression
testing of the release, taking advantage of the testing plan delivered in the third step of the methodology. To
assure the quality of a product, automated tests incorporated in each sprint should be accompanied by a formal
verification process. The main reason for that is that even alterations to an application’s source code that seem
insignificant can ripple outward in surprising ways breaking functions that seem completely unrelated to the new
modification. Given that, the establishment of a regular testing process, according to a standard series of tests

79 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

which (re-)run after the completion of each build, is considered an important step of the CloudTeams
methodological approach.
Following the verification of each software build, the suggested methodology supposes the establishment of a
validation process, according to the User Acceptance Testing plan (UAT) delivered in the second step. Only if
the UAT completes successfully the software can be released to the market; else appropriate measures have to be
decided, getting back to the previous steps of the process.
The last step of the CloudTeams approach refers to identifying the Market Acceptance of each release in practice.
Monitoring and analysing redeems, mentions and comments regarding the software not only can reveal how the
market has welcomed the release, but can also provide useful insights for fine-tuning the software or even the
idea itself.
Considering the CloudTeams approach as a whole, going down through the steps of the methodology requires

more technical skills both regarding the customers and the software teams. Respectively, the role of the product
manager gets smaller as the process goes down while the role of the development team becomes more crucial.
Going up, following the verification and validation steps of the methodology, reverses the involvement of the
product manager and the developer team respectively, and at the same time allows more customers to participate in
the process even if they have limited technical skills or IT experience.

4. The CloudTeams Platform – Operational Scenario and System Architecture

4.1. How CloudTeams Works – Simple Operational Scenario

The CloudTeams platform comes as a tool that provides software teams with all tools for team collaboration,
software developing, testing and deployment, and also facilitates their interaction with customers, while enabling
them to follow the CloudTeams methodology. In a simple scenario of operation, Software developers set up their
software project (which is mostly a consumer application) and are provided with the necessary tools for project
management and collaboration within the software team and for the interaction with customers during the whole
software development process. In order for the platform to deliver its full potential, the presence of end-users (e.g.
customers) is necessary. In this context, perspective customers upload, synchronize, and manage their personal data
in order to analyze and visualize their daily activities, while they can give permissions to software teams to select
them to co-develop better software solutions under several rewards. The platform integrates and aggregates the most
important services and information relevant to project management and team collaboration, software development,
testing and deployment, while it also enables end users to connect their cloud-services, browse ongoing and follow
interesting software projects, and get notified of project invitations.

In such a scenario, a customer (named Joe) comes into the platform and connects some of the cloud-based
services for fitness tracking that he uses (e.g. Fitbit) to the platform, letting the platform collect data for this kind of
activity which is transformed into an appropriate activity ontology that matches those with data from similar
services. The customer is then also suggested with some projects that are already registered into the platform that
have to do with fitness tracking and health, which he visits and declares his interest. At the same time, a software
team (TeamY) that is working on a novel health monitoring application (HealthyApp) is seeking for users to
evaluate some new features that they are delivering. The team executes a query into the platform seeking for young
people that live in big cities, possess an iPhone and are running a lot, and is able to find users with the specific
characterizes; however, the platform presents these users with fake usernames (Joe is shown as userx43Y) and with
obfuscated activity data so no direct link to the real individuals is possible. The team then selects some of these
users and sends them a questionnaire, which they can answer, accompanied by a link for A/B testing that has been
auto-generated through the CloudTeams platform by using the appropriate connectors that allow to automatically
deploy sandboxed instances of the project’s code in cloud based infrastructures for performing testing. Joe gets a
notification that TeamY which delivers an application called HealthyApp is asking him to fill in a questionnaire and
perform an A/B testing; in return he will get a small reward by the team (3 free months of their App usage) in case
he is interested. He logs into the platform where he is presented with more information about the HealthyApp

80 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

project, as well as about TeamY, which, according to the information provided by the platform, has been since long
a team present in CloudTeams and is revealed to constantly take into serious consideration users feedback as the
platform indicated the number of interactions this team has initiated and the number of different deployments of its
project it has uploaded. Joe, thrilled by this opportunity and answers the questionnaire and at the end is able to
collect his award, which is provided in this case as a voucher send to him in a private message from the CloudTeams
platform. At the same time, the project manager of TeamY who is handling the account of the company in the
CloudTeams platform collects the anticipated feedback by a prospective customer (userx43Y) that he has selected in
the previous steps and most probably, based on his activity analytics, matches the profile of his company’s targeted
users and is able to extract new issues and feature requests, notifying his team of the new developments that
emerged through interaction with a prospective – anonymous- client.

4.2. The CloudTeams Platform Architecture

The overall CloudTeams platform is constructed by developing the platform components as extensions to
existing systems, and integrating the components as well as best practices from software development and user
participation under a unified platform using REST and XMLRPC APIs.

CloudTeams addresses the developer community and the end user community, it provides each community with
a tailored platform component and implements a central anonymization component as a broker between them. The
workflows for customers are implemented by the customer platform component. The workflows for development
teams are implemented by the team platform component. The persona builder component allows developers to
access customer data in a trustful and abstract way only. For scalability reasons most components are implemented
stateless and depend on input and output data. In CloudTeams business- and user-related data are stored in
databases. CloudTeams uses two main data storage facilities, one for customers and one for developers. Using this
strong separation allows us to better protect the customers' privacy and keep project data protected.

Data exchange happens between the team platform and the customer platform regarding project profile data
which has actively been published by the developers. Customer interactions with the software projects, such as
following a project, posting an idea or answering a questionnaire is mirrored from the customer platform to the team
platform. CloudTeams connects with many different cloud-based services. Customers may connect to different
social or activity tracking services (e.g. Runkeeper, Facebook, Fitbit, Twitter, YouTube etc.), while developers may
use services for software deployment, code management, or quality reviews.

GitHub
Connector

microservice

SonarQube
Connector

microservice

Team Platform

IGitHub
Connector

ISonarQube
Connector

Team
Frontend

Customer
Ideas

BSCW

Project
Team

Manage
ment

Team

Plat-
form

API

ITeam
Personas

Project

Campaign

Questionnaire

XML-
RPC
API

XML/JSON
Token links

Customer Platform

Persona Builder

ITeam
Customer

Oauth

Unified
Customer/

Basic
access
Authen-
tication

Customer
Dashboard

Instagram
Connector

Fitbit
Connector

Runkeeper
Connector

Twitter
Connector

YouTube
Connector

FourSquare
Connector

Facebook
Connector

Team
Dashboard

Application
Integration
Framework

Customer
Project

Manager
Project
Member

Widget
Interface

ICustomer
Team

IUsers Personas

Persona
Builder

Frontend

Open Colibri Engine
Activity
Tracker

Project
information
(projects,

campaigns,
documents,
personas)

Customer Document
Access Management

Notification Engine

Customer
Dashboard

REST API
Server

Customer

Platform

API

Persona
InformationSystem–used

Peronas

Persona
Management

Customer Data
Providers Customer Data

Anonymization
InterfaceAnonymization

modules

Persona Id
and name

81 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

Fig. 2. CloudTeams Architecture.

4.3. Customer platform

As the customer platform we refer to the platform which is accessible by end-users and acts as a showroom of the
development teams’ work. Users are able to browse ongoing projects, read project news in the project blog, and find
running campaigns, which software developers have published to the customer platform. Further interaction with
software projects and the participation in campaigns requires the users to register for a CloudTeams customer
account. This account offers the possibility to reveal some information about oneself, for example the region of
origin, favored devices or companies, and connections to social media services. This data is analyzed and
anonymized by CloudTeams and gets published to the software developers by the persona builder, the tool for
developers to invite end users matching the target audience.

Once customers discover an interesting project, they can decide to follow the project, post ideas to the project
teams or comment on the software team blog posts. Once following a project, users get notified about ongoing
campaigns, in which software teams ask for user participation. If users are willing to offer help to software
developer teams, they can participate in the campaigns, and can e.g. give feedback on shared documents or
participate in the questionnaires the software team has created for the campaign. Software teams have the possibility
to reward participating users for their work, e.g. by early prototypes or free licenses.

4.4. Team platform

Software developers register for an account on the team platform to create and manage their software projects or
may get invited into an existing project. In their personal dashboard, software developers find an overview of their
ongoing projects which they have created themselves or which they were invited in. The team dashboard reveals
whether a project has been published to the CloudTeams customer platform and shows notifications about the most
recent activities in the projects. Furthermore, it allows setting up a developer profile, searching for projects, or
filtering the project list by their categories. In general developers own in a project either the role of a project
manager or project member. The project manager has advanced access right, e.g. inviting team members to a
project, publishing a project and starting a campaign.

The detailed project page reveals all relevant information for a single software project. It includes information
about statistical numbers of the software project, such as the numbers of campaigns or team members, and
information about the visibility of the project and the user’s role within the project. It shows the project logo, gives
an overview of the project’s draft, open, and closed campaigns, and shows the project developer team. Moreover,
the developer team is enabled to manage and share project documents. In order to provide the developer team with
customer feedback, customer ideas posted to the project are listed in the project page as well. The campaigns are the
major areas for the interaction with end users. With the persona builder developers define and invite the target user
group (persona) for a campaign. Then developers can share information (e.g. tutorials, videos etc.) and develop and
run questionnaires with customers that either follow a project or match the persona. As the CloudTeams
methodology combines software engineering and collaboration features in one unified platform, the team platform
supports retrieving information through API calls from different third-party services (such as GitHub for code
collaboration management and issue tracking and SonarQube for code quality assurance). This enriches the software
engineering and collaboration features needed for using and evaluating the suggested methodology through a single,
unified platform. These service connectors are implemented and integrated as widgets to the team platform.

82 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

4.5. Persona builder

Data that users are willing to share about themselves is anonymized and passed to the persona builder. This is a
component located between the customer and the software team platform and manages the users’ data. The persona
builder collects information about user characteristics that may be interesting for the software developers. Instead of
waiting for users to follow a project, software teams are able to define a persona by configuring a set of desirable
user characteristics. The persona builder matches the user-defined criteria with the user base and reveals how many
CloudTeams users match these criteria. When the software developers are satisfied with the amount of possible
users, they can invite the persona to their campaign. Connecting a persona to a campaign means anonymously
inviting users with the desired characteristics to the campaign. Therefore, personas are a means for acquiring a user
crowd which is potentially interested in the development and is there-fore likely to help the software developers.

5. Evaluation through diverse real-life pilots

The evaluation of the platform is done by a number of startup software companies using CloudTeams for their
projects, while being guided by project partners. These are provided with the task to incorporate the project’s results,
including the proposed methodology into their current production and business processes extending its use to other
business areas or products. The effectiveness of CloudTeams will be confirmed though the comprehensive testing
and validation by users that represent the pilot partners and also external users that can represent customers. The
pilots will benefit by the usage of CloudTeams platform and methodology with the possible improvement of the
development process and their software products.

As the platform offers two entry points (one for customers and one for software teams), it is important to validate
it from the viewpoint of both stakeholders. From the software development team viewpoint feedback must be
provided by developers, project managers and members of a software team. From the customer viewpoint feedback
should be provided by external users who are current of potential customers of the actual pilots’ applications. The
pilot’s feedback will raise new requirements to even further target the platform towards its customers.

6. Outlook and Conclusions

This contribution presents the results of the first year of the EU-funded CloudTeams project. Building upon the
results of a first round of interviews with stakeholders2, we developed the CloudTeams methodology and realized
the three main components of CloudTeams which seamlessly work together for integrating end-users into software
development projects. The next release will provide extended functionality such as further connectors to third-party
services, gamification, and rewarding end users for their participation in campaigns. Moreover we expect feedback
from our pilots that helps refining the existing functionality to extend the platform with new features. The current
version of CloudTeams is released under http://www.cloudteams.eu.

Acknowledgements

CloudTeams received funding from the EU’s H2020 programme under grant agreement No. 644617.

References

1. Franken S, Jeners N. Challenges of Social Software in Clinical Environments. Supplementary Proceedings of the 12th European Conference
on Computer Supported Cooperative Work. Aarhus; 2011.

2. Franken S, Kolvenbach S, Prinz W, Alvertis I, Koussouris S. CloudTeams: Bridging the Gap between Developers and Customers during
Software Development Processes. Procedia Computer Science 2015;68. p. 188-195.

3. Franken S, Kolvenbach S, Prinz W. Social Media Integrated into Groupware. Adjunct proceedings of the 13th European Conference on
Computer Supported Cooperative Work. Paphos; 2011.

83 Iosif Alvertis et al. / Procedia Computer Science 97 (2016) 73 – 83

4. Franken S, Prinz W, Jeners N. Making groupware Social – The Case of a Cooperative Platform for Surgeons. Proceedings of the 6th

International Conference on Intelligent Networks and Collaboratibve Systems 2014. p. 49-56.

5. Koch M, Richter A. Enterprise 2.0 – Planung, Einführung underfolgreicher Einsatz von Social Software in Unternehmen. Oldenbourg
Publishers; 2007.

6. Lampathaki F, Panopoulos D, Kokkinakos P, Bompa C, Koussouris S, Askounis D. Infusing Verification and Validation in ICT Solutions in
Manufacturing: The FITMAN V&V Method. In: Mertins K, Bénaben F, Poler R, Bourrières JP, editors. Enterprise Interoperability VI.
Springer International Publishing 2014;7. p. 307-317.

7. Lim SL, Quercia D, Finkelstein A. StakeSource: harnessing the power of crowdsourcing and social networks in stakeholder analysis. ICSE
'10 Proceedings of the 32nd ACM/IEEE International Conference on Software Engineering 2010;2. p. 239-242.

8. Murray-Rust D, Scekic O, Truong HL, Robertson D, Dustdar S. A collaboration model for community-based Software Development with
social machines. 10th IEEE/EAI International Con-ference on Collaborative Computing 2014

9. Prinz W, Kolvenbach S. From Groupware to Social Media – Extending an Existing Shared Workplace System with Social media Features.
Information Technology 2012;54. p. 228-234.

10. Renzel D , Klamma R, Jarke M. Requirements Bazaar: Experiences, Added-Value and Acceptance of Requirements Negotiation between
End-Users and Open Source Software Developers. Software Engineering and Management 2015. p. 122-123.

11. Renzel D, Behrendt M, Klamma R, Jarke M. Requirements Bazaar: Social Requirements Engineering for Community-Driven Innovation.
Proceedings of the 21st IEEE International Requirements Engineering Conference. Rio de Janeiro 2013. p. 326-327.

12. Schwaber K, Beedle M. Agile Software Development with SCRUM. Prentice Hall; 2001.

13. Stolee K, Elbaum S. Exploring the Use of Crowdsourcing to Support Empirical Studies in Software Engineering. Proceedings of the 2010
ACM-IEEE International Symposium on Empirical Software Engineering and Measurement; 2010

14. Westland JC. The cost of errors in software development: Evidence from industry. The Journal of Systems and Software 2002;62. p.1-9.

