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Abstract 

In order to investigate thermochemical energy storage in larger scale, a test bench as well as a reactor containing around 20 kg of 
reaction material has been built and brought into operation. This investigation is based on the reversible decomposition reaction 
of calcium hydroxide, due to its wide availability, high reaction enthalpy and promising temperature range for CSP plants. 
Additionally, a developed simulation tool was used to analyze the experimental results. The comparison of the discharging 
processes showed a good agreement but also revealed thermal losses due to the experimental setup and the operation mode of the 
thermochemical storage. Therefore, first operation strategies of thermal energy storages based on chemical reactions can be 
derived.  
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1. Introduction 

Due to the wide availability at low cost and its favorable temperature range, the reversible decomposition reaction 
of calcium hydroxide is a promising candidate for thermochemical heat storage: 
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In literature and previous works, the material has been investigated in detail on a material or small scale basis and 

a complete reversibility and cycle stability of the reaction system has been demonstrated [1-5]. Besides that, the fast 
effective reaction kinetics, the high reaction enthalpy of 99.5 kJ/mol [1] and the adjustable temperature range 
between 410°C and 600°C make the system a promising candidate for an application in concentrated solar power 
plants. However, regarding the development of thermochemical storage reactors, physical bulk properties (e.g. gas 
permeability) and their impact on the operation characteristics of storage systems have to be investigated and 
understood. Since those effects can only be experimentally investigated with larger scale reactors and respective test-
bench equipment, a multifunctional test-bench for thermochemical energy storage has been developed and brought 
into operation.  

2. Experimental set up 

2.1. Reactor  

The plate heat exchanger shown in Fig. 1, left was designed to investigate thermochemical heat storage based on 
the CaO/Ca(OH)2 material. The heat transfer fluid (HTF), in this case air, is flowing inside ten thermo-shelves while 
the storage material is placed in the 20 mm wide channels between these plates. Due to the physical separation 
between the HTF and the reaction bed the pressure of the reaction gas is independent from the HTF. This indirectly 
operated reactor concept offers the possibility to investigate the thermochemical storage tank in various operation 
modes.  

 

  

Fig. 1. Left: Indirectly operated thermochemical storage reactor (top cover not shown); Right: Picture of multifunctional test bench 

 
The heat is transferred from or into the reaction material bulk along the 800 mm long shelves before the HTF 

leaves the reactor at the opposite side. The reaction gas, water vapor, enters the reactor from the top and is 
distributed in the whole reaction chamber due to a gap between the vapor inlet at the top cover (not shown in Fig. 1) 
and the bed surface. This cross flow arrangement between the HTF and the reaction gas was chosen to realize a 
large heat transfer area from the HTF to the bulk while the pressure drop of the reaction gas over the only 200 mm 
depth bed was minimized. A detailed description of the reactor and its geometry can be found in [6] 

 
The reactor can hold up to 25 kg of Ca(OH)2. Based on an assumed temperature difference of 200 K between the 

air in- and outlet, the heat transfer area of 4.25 m2 and a maximum volume flow of 150 Nm3/h, peak thermal power 
of 10 kW can be realized. High temperature alloys have been chosen to withstand temperatures of up to 600 °C. The 
reaction gas side can be exposed to pressures between 0 and 2.5 bar in order to analyse the influence on the 
operation characteristics. For the experiments given below, an amount of 20.03 kg of commercially available 
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Ca(OH)2 from the HeidelbergerCement Group was used. According to the supplier, the purity is around 97% and the 
particle size distribution is d50 = 5 μm. 

2.2. Test bench 

In order to be able to investigate different thermochemical reactors a multifunctional test bench has been 
designed and brought into operation at DLR (see Fig. 1, right and Fig. 2) [7]. The test bench can be divided into four 
functional parts: the HTF supply, the reaction gas supply, the storage reactor test track and the cooling unit. 

 

Fig. 2. Process flow diagram of the test bench with an integrated indirectly operated reactor 

 
HTF Supply Unit 

Ambient air, serving as HTF, is compressed and stored in the buffer tank at 10 bars. Optional, the CO2 content of 
the compressed air can be reduced by a CO2-adsorption dryer in case of directly operated reactors. The airflow is 
divided into two heating sections and each section is can be adjusted by mass flow controllers between 8 and 80 
Nm3/h at a maximum pressure of 5 bars. Three electrical heaters in each section are able to heat up the air flow to a 
maximum temperature of 1000 °C.  

 
Storage reactor test track 

Different storage reactors can be connected to the HTF supply unit via a flange connection. In order to monitor 
and balance the behavior of the reaction bed, temperatures and pressures at the reactor inlet and outlet are measured. 
Additionally, 21 thermocouples (type K; class 1; diameter 2 mm) inside the reaction bed can be connected to the 
monitoring unit. The thermocouples used below are all located in one channel at identical depth in the material bulk 
but different positions along the length of the reaction bed. 
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Reaction gas and conversion measurement 

In order to handle the reaction gas and to monitor the rate of reaction an evaporation/ condensation unit is 
connected. On the tube side of this heat exchanger, a thermo fluid tempered externally between 5-120°C is 
maintaining the water temperature and water vapor pressure, respectively. The vapor coming from the reactor thus 
condenses at the tubes and remains in the chasing. The change in the water level is continuously measured via a 
fluid level sensor and corresponds to the rate of reaction in the reactor. For the hydration reactions shown below, the 
temperature of the thermo fluid is set to different evaporation temperatures. As soon as the valve between the heat 
exchanger and the reactor is opened the reaction is initiated. 

 
Cooling and disposal of the HTF stream 

During the discharging process, the outlet temperature of the HTF can reach up to 600 °C. This hot gas stream is 
cooled down to around 200°C by a gas water heat exchanger before the control valves and the chimney. The two 
control valves offer the possibility to adjust the gas pressure of the HTF corresponding to the gas flow velocity in 
the storage test track. 

2.3. Experimental procedure 

At the beginning of a hydration cycle only CaO is present in the storage reactor. The set-up is preheated by the 
HTF until isothermal conditions are reached. The air mass flow and the inlet temperature are kept constant for the 
entire procedure. The reaction gas side is evacuated in order to remove inert gases and the respective steam pressure 
in the evaporator is adjusted. In order to initiate the hydration reaction the valve between the evaporator and the 
reactor is opened enabling the water vapor to enter the reaction chamber. The exothermic reaction starts and can be 
observed with the measured bed temperatures, the air outlet temperature and the rate of conversion. The vapor 
pressure is kept constant until the material has reacted completely resulting in a constant water level. Accordingly, 
the temperatures start to decrease until the whole system reaches the initial conditions of 340°C again and the 
discharge cycle is completed.  

In order to investigate the influence of the HTF mass flow on the reaction, two hydration procedures with 
different mass flows have been carried out. Additionally, the vapor pressure was changed to observe the influence 
on the reachable temperature in the reactor. 

2.4. Discharge of the storage reactor  

One discharging cycle was performed according to the procedure described in chapter 2.3. The HTF supply was 
adjusted to a mass flow to 50 Nm³/h and inlet temperature of 350 °C. An evaporation temperature of 98 °C 
corresponding to a vapor pressure of 0.9 bars was set in the heat exchanger (compare Fig. 2). These initial 
parameters are defined as operation mode 1 (indices: om1).  Fig. 3, left shows the water vapor pressure and the 
temperatures (T_1_om1; T_5_om1; T_11_om1; T_13_om1) inside the storage material bed along the HTF flow 
direction. As soon as the valve between reactor and evaporator was opened the pressure in the system equalizes. 
Simultaneously, with the presence of water vapor, the bed temperatures raise from 340 °C up to 490 °C. Due to 
better cooling at the entrance of the reactor, after 17 min most of the material in this area has already reacted 
indicated by the temperature decrease of T_1_om1. Along the flow direction of the HTF, a reaction front is formed 
that is visualized by the subsequent temperature drop at T_5_om1 and T_11_om1 drop (comp. Fig. 3, left). 
T_13_om1, directly at the outlet of the reactor, keeps the equilibrium temperature of 490°C for around 118 min until 
also in this area most of the material has reacted. After 240 min, the whole bed has cooled down to the initial 
temperature of 340°C again and the cycle is completed. 

The air in- and out-let temperature as well as the change in the fluid level is shown in Fig. 3, right. The initiation 
of the reaction is indicated by the decrease of the water level in the evaporator. Simultaneously the air outlet 
temperature starts to increases until it reaches a peak of 430 °C around 42 min after initiation. At this point around 
62 % of the material has reacted already, indicated by the fluid level. Due to the chosen operation mode (initial 
temperature is lower than equilibrium temperature), the whole reaction bed is heat up by the chemical reaction. So a 
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part of the chemically storage thermal energy is actually transferred to a temperature increase of the sensible mass. 
This also leads to a difference between the air outlet temperature of 430°C and the much higher bed temperature of 
490°C (compare Fig. 3, left). However, a temperature difference of 150K between in- and outlet temperature was 
reached 15 min after initiation and was hold for more than 100 min. Since during this operation mode, the inlet 
temperature can be kept constant and is equal to the initial temperature, the chemically stored thermal energy can be 
properly measured. In case of a higher initial temperature, the sensible masses of the material as well as of the 
reactor also account for a heat release (sensible storage). 

 
  

Fig. 3. Left: bed temperatures and reactor pressure during hydration procedure in operation mode 1 (om1);  
Right: Reaction bed temperatures and conversion during the hydration procedure 

 

2.5. Influence of HTF mass flow on the reaction front 

In order to investigate the reaction front described above in detail, an hydration reaction with 75 Nm3/h (50% 
increase in comparison to chapter 2.4) was performed. Additionally, the water vapor pressure was adjusted to 1,985 
bars resulting in a higher equilibrium temperature in the bed. This setting is defined as operation mode two (indices: 
om2). The temperature and conversion trend is plotted in Fig. 4 (continuous lines) and for better comparison the 
values of the procedure described in 2.4 (indices: om1; dotted lines) are added. 

Since the applied vapor pressure during om2 is higher, the reaction bed temperatures reach a higher maximum 
temperature. However, only T_13_om2 located close to the HTF outlet can keep the corresponding equilibrium 
temperature of 540°C for around 60 min. So, due to the increased heat flux, most of the reaction bed does not reach 
equilibrium or only for a very short time span. Consequently, the cycle is already completed after 150 min The 
increased heat flux also has an impact on the reaction front visualized by the bed temperatures (T_1_om2; 
T_5_om2; T_11_om2). Even though, the evolution of the bed temperature correlates to the flow direction of the 
HTF, the evolution of the maximum temperatures indicate that most of the reaction bed is cooled by the HTF – 
already after 20 min. In contrast, in operation mode 1, the temperatures (T_1_om1; T_5_om1; T_11_om1) reach the 
corresponding equilibrium temperature of 490°C and stay constant before they decrease subsequently.  

The reaction front is experimentally indicated by the evolution of temperature signals only since a direct 
measurement of the local conversion is not possible. Additionally, it has to be stated that the development of this 
reaction front does not only depend on the HTF and the reaction gas pressure but also on geometric conditions, e.g. 
heat conduction distance within the bed. Since these impact factors are experimentally fixed, an analysis of the 
processes within the reaction bed has to be supported by simulation.  
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Fig. 4. Influence of HTF mass flow and reaction gas pressure on reaction front 

 

3. Model description 

In order to investigate the influence of crucial parameters on the performance of the thermochemical reactor, the 
system has been modeled using the finite element based, commercially available software COMSOL 
Multiphysics ®. Based on the assumption of a sufficiently high permeability of the bed, an impulse balance can be 
neglected and therefore, a 2D-Model is able to represent the important processes within the reaction bed. This 
assumption is valid as long as the reaction (after balancing of the pressure, compare chapter 2.3) is limited by heat 
transfer constrains and the reacted gas is compensated immediately.  

Based on this consideration, Fig. 5 shows a schematic of the implemented geometric model indicating its 
domains and boundaries. The modeling area is divided into three main parts: On the left and right side the channels 
for the heat transfer fluid (HTF) are modeled (flowing from bottom to top) and in the middle domain the reaction 
bed is represented. The governing equations, the thermodynamic equilibrium as well as the reaction kinetics for the 
hydration procedure can be found in [8]: 

The development of the reaction gas pressure at the inlet during the hydration is implemented by the measured 
values of the experiments (compare Fig. 3, left). Additionally, following important parameters are used: 

 
 

Bed porosity  
 

Heat conductivity within 
the bed  

 
Heat transfer coefficient  
(Reaction bed ↔ HTF):  
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Fig. 5. Schematic of the geometric model used for the simulation of the thermochemical storage 

 
The starting temperature T_Start is set to 350 °C, equivalent to the initial temperature of the experiment. An 

overall heat transfer coefficient of 150 W/m²K was estimated based on the heat transfer coefficient in small gaps and 
the contact resistance between a fine powder bulk and heat transfer surfaces. Based on the experimentally used mass 
flow rates, the velocities in the HTF channels are calculated. Thereby, properties of air are determined by the 
simulation software depending on the actual pressure and temperature data within the channel. Within the reaction 
bed, the positions of the thermocouples are adapted to the ones in the thermochemical reactor.  

In Fig. 6 different shapes of possible reaction fronts (red: reacted material; blue: unreacted material) are shown. 
The mass flow of the HTF flowing through the reactor is always reduced by 50% from the left to the right. It can be 
seen that the sharpness of the reaction front depends directly on the thermal power that can be removed by the HTF. 
Therefore, the main reason for the different temperature evolutions monitored by the experiments shown above is 
the low thermal conductivity within the bed that reduces the dynamics of the reaction with increasing conversion.  

 

Fig. 6. Reaction front during the hydration process; left: HTF volume flow of 75 Nm³/h; middle: HTF volume flow of 37.5 Nm³/h;  
right: HTF volume flow of 18.75 Nm³/h  
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4. Simulation results and comparison 

Figure 7 shows the temperature developments within the reaction bed of the simulation (dotted lines) as well as 
the experimentally monitored temperature curves of the reactor. It is obvious that the general trend of the respective 
temperature evolutions is very similar. However, the overall reaction time of the simulated hydration is much longer 
than in case of the experiments. Due to the chosen operation mode (compare chapter 2.4), the sensible mass of the 
reactor is below the equilibrium temperature. Therefore, any heat losses either to the ambient or to the reactor mass 
including insulation accelerate the conversion process since the reaction proceeds as soon as heat is released from 
the reacting material. Therefore, there is no difference for the rate of conversion whether the heat is removed by the 
HTF or if it is transfer to the sensible masses and to the ambient.  

 
 

Fig. 7. Comparison of temperature evolutions of the simulation and the experiment 

 
In order to consider these heat losses in the reaction bed, a mathematical term had to be implemented. But, by 

simply adding a constant value to the model, thermal energy is already released at the starting temperature. 
Therefore, the heat losses have to be integrated in form of a numerical dependency of the difference between the 
starting temperature that corresponds to the temperature of the sensible masses around the reaction bed and the 
current temperature of the material. For this purpose following QLoss expression is used:  

 
 

 
Heat losses in the reaction bed domain 
 

 

 
 
The constant αLoss is then adapted to the experimental results. Figure 8 shows the comparison with the included 

heat loss term. During the period of the highest temperature difference (350 °C to 525 °C), the heat losses 
accumulate to approximately 2 kW. This corresponds to the experimentally estimated value based on the change of 
the filling level and the effective power output determined by the temperature difference of the HTF before and after 
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the reactor. However, since the equilibrium temperature cannot be reached, this generic approach gives valuable 
information about the processes within the reaction bed for a given operation mode but needs to be optimized in 
order to account for local effects.  

 
 

Fig. 8. Comparison of temperature evolutions of the experiment and the simulation with included heat loss term  

 

5. Summary and conclusion 

 
Based on experimental results of a 10 kW scale reaction bed for thermochemical heat storage with the reaction 

material Ca(OH)2, one possible operation mode of thermochemical heat storage has been analyzed. Due to the 
release of thermal energy by the chemical reaction and a starting temperature that is below the equilibrium 
temperature of the reaction system, the temperature of the storage increases. Therefore, the temperature increase of 
the sensible masses of the reactor already consumes chemically stored thermal energy. This effect was analyzed by a 
developed simulation tool. It was shown that these losses can be estimated by implementing a loss term into the 
simulation and accounts for around 2 kW during the first minutes of the reaction. 

Additionally, the good agreement between the experimental and simulated results show that the reaction kinetics 
determined in micro-scale measurements as well as the known bed properties offer a sufficient representation of the 
effective conditions within the bed.  

Future work will therefore be concentrated on different operations modes and derived integration strategies for 
thermochemical heat storage systems, e.g. for CSP plants. 
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