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As one of the serial papers on suborbits of point stabilizers in clas-

sical groups on the last subconstituent of dual polar graphs, the

corresponding problem for orthogonal dual polar graphs over a

finite field of odd characteristic is discussed in this paper. We deter-

mine all the suborbits of a point-stabilizer in the orthogonal group

on the last subconstituent, and calculate the length of each subor-

bit. Moreover, we discuss the quasi-strongly regular graphs and the

association schemes based on the last subconstituent, respectively.
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1. Introduction

Let Fq be a finite field with q elements, where q is an odd prime power. Let F
n
q be the row vector

space of dimension n overFq. The set of allm×nmatrices overFq is denoted byMmn(Fq), andMnn(Fq)
is denoted byMn(Fq) for simplicity. For any matrix A = (aij) ∈ Mmn(Fq), we denote the transpose of

A by At .
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Let n = 2ν + δ, where ν is a non-negative integer and δ = 0, 1 or 2. Suppose

S2ν+δ,� =

⎛
⎜⎜⎜⎜⎜⎝

0 I(ν)

I(ν) 0

�

⎞
⎟⎟⎟⎟⎟⎠

, � =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ (disappear), if δ = 0,

(1) or (z), if δ = 1,

⎛
⎝1

−z

⎞
⎠ , if δ = 2,

where z is a fixed non-square element of Fq such that 1 − z is a non-square element. When δ = 1

or 2, � is definite in the sense that for any row vector x ∈ F
δ
q , x�xt = 0 implies x = 0. Note that

the set
{
T ∈ GL2ν+δ(Fq) | TS2ν+δ,�Tt = S2ν+δ,�

}

forms a subgroup of GL2ν+δ(Fq), called the orthogonal group of degree n = 2ν + δ with respect

to S2ν+δ,� over Fq, denoted by O2ν+δ,�(Fq). The group O2ν+δ,�(Fq) acts on F
2ν+δ
q by the matrix

multiplication.F2ν+δ
q togetherwith this action is called the (2ν+δ)-dimensionalorthogonal spaceover

Fq with respect to S2ν+δ,�. Amatrix representation of a subspace P is amatrixwhose rows forma basis

forP.When there is nodanger of confusion,weuse the samesymbol todenote a subspace and itsmatrix

representation. An m-dimensional subspace P of F
2ν+δ
q is called totally isotropic if PS2ν+δ,�Pt = 0. It

is well known that maximal totally isotropic subspaces of F
2ν+δ
q are of dimension ν .

Let G be a group acting transitively on a finite set X . For a fixed element a ∈ X , the stabilizer Ga is

not transitive on X in general. The orbits of Ga on X are said to be suborbits, and the number of such

suborbits is the rank of this action. Wei andWang [15–17] studied the suborbits of the transitive set of

all totally isotropic subspaces under finite classical groups. We discussed these problems in singular

classical spaces in [5,12].

Dual polar graphs are famous distance-regular graphs and have been well studied [1,2,10]. The

orthogonal dual polar graph � (on the orthogonal space F
2ν+δ
q ) has as vertices the maximal totally

isotropic subspaces; two vertices P and Q are adjacent if and only if dim(P ∩ Q) = ν − 1. It is well

known that � is of diameter ν . For any vertex P of �, the ith subconstituent �i(P) with respect to P is

the induced graph on the set of vertices at distance i from P in �. Munemasa [9] initiated the study of

the subconstituents of dual polar graphs in the orthogonal spaces, and characterized the first and last

subconstituents. Subsequently, Wang et al. [6,7,13,14] characterized all the subconstituents of dual

polar graphs under finite classical groups, and proved that for any vertex P of the dual polar graph �

in the (2ν + δ)-dimensional classical space (where δ = 0, 1 or 2), the mth subconstituent �m(P) is

isomorphic to
[
ν
m

]
q
· G(m,δ), where G(m,δ) is the graph with the vertex set consisting of the matrices

(X Z) such that

⎧⎪⎨
⎪⎩

X + X
t + ZI(δ)Z

t = 0 the unitary case,

X + Xt + Z�Zt = 0 the orthogonal case of odd characteristic,

where X ∈ Mm(Fq), Z ∈ Mmδ(Fq); and two vertices (X Z) and (X1 Z1) are adjacent if and only if

(X − X1 Z − Z1) is of rank 1. Note that the mapping

(X Z) �→ (X I(m) Z)

is an isomorphism from G(m,δ) to the last subconstituent of the corresponding dual polar graph in the

classical spaceF
2m+δ
q . Therefore, the study of subconstituents of a dual polar graphmay be reduced to

that of the last subconstituent. In [8] we studied the suborbits of a point-stabilizer in the unitary group
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on the last subconstituent of Hermitean dual polar graphs. In this paper we discuss the corresponding

problem for orthogonal dual polar graphs over a finite field of odd characteristic.

Let � be the orthogonal dual polar graph. It is well known that a point-stabilizer of P of � in

O2ν+δ,�(Fq) is transitive on the last subconstituent of �. In Section 2 we determine all the suborbits

of this action, and calculate the rank and the lengths of these suborbits. As two applications of our

results, in Sections 3 and 4, we discuss the quasi-strongly regular graphs and the association schemes

based on the last subconstitute of �, respectively.

2. Suborbits

Let � be the dual polar graph in the orthogonal space F
2ν+δ
q . Note that the last subconstituent �

is a coclique when δ = 0 (see [6]), and � is studied in [7] when δ = 1. So the case δ = 2 is the main

objective of this paper.

Denote by [X1, X2, . . . , Xt] the block diagonal matrix whose blocks along the main diagonal are

matricesX1, X2, . . . , Xt , byA2r = [A2, . . . ,A2] the 2r×2rmatrix of rank2r inwhichA2 =
⎛
⎝ 0 1

−1 0

⎞
⎠,

and by (A B . . . C) the matrix whose block entries are A, B, . . . , C. Suppose I(m) denotes the identity

matrix of order m, and 0(p,q) denotes the zero matrix of order p by q or 0(p) when p = q.

We now study the suborbits of the stabilizer of each vertex P0 in O2ν+2,�(Fq) on �. Since O2ν+2,�

(Fq) acts transitively on the subspaces of the same type, we may choose P0 = (I(ν) 0(ν) 0(ν,2)).

By [6], � consists of subspaces of form (A I(ν) Z), where A ∈ Mν(Fq) and Z ∈ Mν2(Fq) satisfy

A + At + Z�Zt = 0. Let G0 be the stabilizer of P0 in O2ν+2,�(Fq). Then G0 consists of matrices of the

following form:

⎛
⎜⎜⎜⎜⎜⎝

T11 0 0

T21 (Tt
11)

−1 T23

−S�Tt
23T11 0 S

⎞
⎟⎟⎟⎟⎟⎠

,

where T11 ∈ GLν(Fq), T21 ∈ Mν(Fq), T23 ∈ Mν2(Fq), S ∈ O2×0+2,�(Fq) and

(Tt
11)

−1Tt
21 + T21T

−1
11 + T23�Tt

23 = 0.

It is well known that G0 acts transitively on �. For any P1 ∈ �, the suborbits of G0 are just the orbits

of the point-stabilizer of P1 in G0 on �. Let P1 = (0(ν) I(ν) 0(ν,2)) ∈ � and G01 be the stabilizer of P0
and P1 in O2ν+2,�(Fq). Then G01 consists of matrices of the following form:

[T, (Tt)−1, S], (1)

where T ∈ GLν(Fq) and S ∈ O2×0+2,�(Fq). The action of O2ν+2,�(Fq) on F
2ν+2
q induces an action

G01 on �:

� × G01 −→ �

((A I(ν) Z), [T, (Tt)−1, S]) �−→ (TtAT I(ν) TtZS).

Denote by Kn the set of all n× n alternate matrices over Fq. In order to determine the orbits of G01

on �, we need to introduce an action on Kν . For i = 1, 2, let Oi denote the set of all matrices of the

form
⎛
⎝ T11 0

T21 T22

⎞
⎠ , (2)
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where T11 ∈ GLi(Fq), T21 ∈ Mν−i,i(Fq) and T22 ∈ GLν−i(Fq). Then Oi is a subgroup of GLν(Fq), and
there is an action of Oi on Kν :

Kν × Oi −→ Kν

(X, T) �−→ TtXT .

Note that {0(ν)} is the trivial orbit of Oi on Kν for i = 1, 2.

Theorem 2.1. (i) The nontrivial orbits of O1 on Kν have the following representatives:

[0,A2r, 0
(ν−2r−1)] (1 � r � �(ν − 1)/2�), [A2r, 0

(ν−2r)] (1 � r � �ν/2�). (3)

(ii) The nontrivial orbits of O2 on Kν have the following representatives:

[0,A2r, 0
(ν−2r−1)] (1 � r � �(ν − 1)/2�), [0(2),A2r, 0

(ν−2r−2)] (1 � r � �(ν − 2)/2�),
[A2r, 0

(ν−2r)] (1 � r � �ν/2�), [K,A2r−4, 0
(ν−2r)] (2 � r � �ν/2�), (4)

where K =
⎛
⎝ 0 I(2)

−I(2) 0

⎞
⎠.

Proof. We only prove (ii), and (i) can be treated similarly. Let X ∈ Kν with rank 2r > 0. Write

X =
⎛
⎝ xA2 X12

−Xt
12 X22

⎞
⎠ ,

where X12 ∈ M2,ν−2(Fq) and X22 ∈ Kν−2. Then rank X22 = 2(r − i), i = 0, 1 or 2. Hence there is a

T11 ∈ GLν−2(Fq) such that Tt
11X22T11 = [A2(r−i), 0

(ν−2r+2i−2)]. Let

X12T11 =
⎛
⎝ 2r−2i ν−2r+2i−2

Y12 Y13

⎞
⎠ and T =

⎛
⎝ I(2)

T11

⎞
⎠

⎛
⎜⎜⎜⎝

I(2)

−A2(r−i)Y
t
12 I(2r−2i)

I(ν−2r+2i−2)

⎞
⎟⎟⎟⎠ .

Then T ∈ O2 and

TtXT =

⎛
⎜⎜⎜⎜⎜⎝

x1A2 0 Y13

0 A2(r−i) 0

−Yt
13 0 0(ν−2r+2i−2)

⎞
⎟⎟⎟⎟⎟⎠

,

where x1A2 = xA2 − Y12A2(r−i)Y
t
12.

Case 1: rank X22 = 2r. Then x1 = 0, Y13 = 0 and TtXT = [0(2),A2r, 0
(ν−2r−2)].

Case 2: rank X22 = 2(r−1). Then rank Y13 = 0 or 1. If rank Y13 = 0, then x1 �= 0, T1 = [x−1
1 , I(ν−1)] ∈

O2 and Tt
1T

tXTT1 = [A2r, 0
(ν−2r)]. If rank Y13 = 1, then there exists a T12 ∈ GL2(Fq) and T13 ∈

GLν−2r(Fq) such that

T12Y13T13 =
⎛
⎜⎝

0 0(ν−2r−1)

1 0(ν−2r−1)

⎞
⎟⎠ .
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Let x2A2 = x1T12A2T
t
12 and

T2 =

⎛
⎜⎜⎜⎝

Tt
12

I(2r−2)

T13

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

I(2)

0 I(2r−2)

1 0

I(ν−2r−1)

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1

x2 1

I(ν−3)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then TT2 ∈ O2 and (TT2)
tX(TT2) = [0,A2r, 0

(ν−2r−1)].
Case 3: rank X22 = 2(r − 2). Then rank Y13 = 2; and so there exists a T14 ∈ GLν−2r+2(Fq) such that

Y13T14 = (I(2) 0(2,ν−2r)). Let

T3 =
⎛
⎜⎝

I(2r−2)

T14

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

I(2)

0 I(2r−4)

I(2) 0

I(ν−2r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

1

−x1 1

I(ν−3)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Then TT3 ∈ O2 and (TT3)
tX(TT3) = [K,A2(r−2), 0

(ν−2r)].
Note that matrices of difference ranks can not be in the same orbit. Now we show that any two

distinctmatrices in (4) cannot fall into the sameorbit ofO2.Otherwise, thereexists a T ∈ O2,which is of

the form (2), carrying [0,A2r, 0
(ν−2r−1)] to [0(2),A2r, 0

(ν−2r−2)], then Tt
22[0,A2(r−1), 0

(ν−2r−1)]T22
= [A2r, 0

(ν−2r−2)], which is impossible since T22 is nonsingular. Similarly, the left cases may be

handled.

By above discussion, the desired result follows. �

To determine the orbits of G01 on �, we need the following two lemmas.

Lemma 2.2. Let a, b ∈ Fq with (a, b) �= (0, 0). Then there exists a T ∈ O2×0+2,�(Fq) such that the

subspace (a, b)T has the matrix representation of the form (1, 0) or (1, 1) corresponding to a2 − zb2 is a

square element or not, respectively.

Proof. Note that (a, b) is of type (1, 1, 0, 1) or (1, 1, 0, z) in F
2×0+2
q corresponding to a2 − zb2 being

a square element or not, respectively. The result follows from [11, Theorem 6.4]. �

Lemma 2.3. Any element of O2×0+2,�(Fq) has one of the following forms

⎛
⎝ x y

yz x

⎞
⎠ ,

⎛
⎝ x y

−yz −x

⎞
⎠ , (5)

where x2 − y2z = 1.

Proof. Let T ∈ O2×0+2,�(Fq) and write

T =
⎛
⎝ x y

u v

⎞
⎠ ,

where x2 − y2z = 1, xu − yvz = 0 and u2 − v2z = −z. If xyuv �= 0, then u = x−1yvz and v2 = x2,

i.e., v = ±x and u = ±yz. Then T has one of the form (5) with x2 − y2z = 1. If xyuv = 0, then T has

one of the following forms
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±I(2), ±
⎛
⎝ 1

−1

⎞
⎠ ,

⎛
⎝ 0 y

y−1 0

⎞
⎠ ,

⎛
⎝ 0 y

−y−1 0

⎞
⎠

with −y2z = 1, which are of the form (5). �

Pick a fixed subset � of F
∗
q such that {�, −�} to be a partition of F

∗
q , where −� = {−a|a ∈ �}.

Let Ei denote the ν-dimensional column vector having 1 as its i-entry and other entries 0’s. Similar to

[6, Theorem4.1], anyelementof� is of the form (X−2−1Z�Zt I(ν) Z),whereX ∈ Kν andZ ∈ Mν2(Fq).
Note that {ϕ0} = {P1} is the trivial orbit of G01 on �. We have

Theorem 2.4. The nontrivial orbits of G01 on � have the following representatives:

ϕ1(r) = ([A2r, 0
(ν−2r)] I(ν) 0(ν,2)), (1 � r � �ν/2�), (6)

ϕ2(r, a) = ([−2−1(1 − za2),A2r, 0
(ν−2r−1)] I(ν) (E1 aE1)), (0 � r � �(ν − 1)/2�), (7)

ϕ3(r, a) = ([A2r, 0
(ν−2r)]

+[−2−1(1 − za2), 0(ν−1)] I(ν) (E1 aE1)), (1 � r � �ν/2�), (8)

ϕ4(r) = ([0,A2r, 0
(ν−1−2r)]

+[−2−1�, 0(ν−2)] I(ν) (E1 E2)), (1 � r � �(ν − 1)/2�), (9)

ϕ5(r) = ([Y,A2r−2, 0
(ν−1−2r)]

+[−2−1�, 0(ν−2)] I(ν) (E1 E2)), (1 � r � �(ν − 1)/2�), (10)

ϕ6(r) = ([−2−1�,A2r, 0
(ν−2r−2)] I(ν) (E1 E2)), (0 � r � �(ν − 2)/2�), (11)

ϕ7(r, b) = ([bA2 − 2−1�,A2r−2, 0
(ν−2r)] I(ν) (E1 E2)), (1 � r � �ν/2�), (12)

ϕ8(r) = ([K,A2r−4, 0
(ν−2r)] + [−2−1�, 0(ν−2)] I(ν) (E1 E2)), (2 � r � �ν/2�), (13)

where a ∈ {0, 1}, b ∈ �,

Y =

⎛
⎜⎜⎜⎜⎝

0 0 1

0 0 1

−1 −1 0

⎞
⎟⎟⎟⎟⎠

,

and K is given by Theorem 2.1. Moreover the rank of G0 on � is

(q + 7)/2 · �ν/2� + 4 · �(ν − 1)/2� + �(ν − 2)/2� + 3.

Proof. Suppose P ∈ � \ {P1}. Then P = (X − 2−1Z�Zt I(ν) Z), where rank (X − 2−1Z�Zt Z) > 0.

If Z = 0, then rank X = 2r > 0, which implies that there exists a T ∈ GLν(Fq) satisfying

TtXT = [A2r, 0
(ν−2r)]. Observe [T, (Tt)−1, I(2)] ∈ G01 carries P to (6).

If Z �= 0, then rank Z = 1 or 2. We distinguish the following two cases.

Case 1: rank Z = 1. Then there exists an S ∈ GLν(Fq) such that StZ = (xE1 yE1), where (x, y) �= (0, 0).

By Theorem2.1 there exists a T ∈ O1, which is of the form (2), such that Tt(StXS)T is 0(ν) or of form (3).

By Lemma 2.2, there exists an S11 ∈ O2×0+2,�(Fq) such that TtStZS11 = b(E1 aE1), where a ∈ {0, 1}
and b ∈ F

∗
q . Observe

(ST)t(Z�Zt)ST = (TtStZS11)�(St11Z
tST) = b2(E1 aE1)�(E1 aE1)

t = [b2(1 − za2), 0(ν−1)].
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Let T1 = [b−1, I(ν−1)]. Then [STT1, ((STT1)t)−1, S11] ∈ G01 carries P to

((STT1)
t(X − 2−1Z�Zt)STT1 I(ν) (STT1)

tZS11).

Note that rank((STT1)
t(X − 2−1Z�Zt)STT1 (STT1)

tZS11) = rank(X − 2−1Z�Zt Z).

If (ST)tX(ST) = 0(ν), then [STT1, ((STT1)t)−1, S11] carries P to (7) for r = 0.

If (ST)tX(ST) = [0,A2r, 0
(ν−1−2r)], then [STT1, ((STT1)t)−1, S11] carries P to (7) for r > 0.

If (ST)tX(ST) = [A2r, 0
(ν−2r)], then [STT1, ((STT1)t)−1, S11] carries P to

([b−1A2,A2r−2, 0
(ν−2r)] + [−2−1(1 − za2), 0(ν−1)] I(ν) (E1 aE1)).

Suppose T2 = [1, b, I(ν−2)]. Then [STT1T2, ((STT1T2)t)−1, S11] carries P to (8).

Case 2: rank Z = 2. Then there exists an S ∈ GLν(Fq) such that StZ = (E1 E2). By Theorem 2.1, there

exists aT ∈ O2,which isof the form(2) satisfyingTt(StXS)T is 0(ν) orof form(4). LetT1 = [T−1
11 , I(ν−2)].

Then [STT1, ((STT1)t)−1, I(2)] ∈ G01 carries P to

((STT1)
t(X − 2−1Z�Zt)STT1 I(ν) (E1 E2)).

Observe

(STT1)
t(Z�Zt)STT1 = (Tt

1T
tStZ)�(ZtSTT1) = [�, 0(ν−2)]

and

rank((STT1)
t(X − 2−1Z�Zt)STT1 (E1 E2)) = rank(X − 2−1Z�Zt Z).

If (ST)tX(ST) = 0(ν), then [STT1, ((STT1)t)−1, I(2)] carries P to (11) for r = 0.

If (ST)tX(ST) = [0,A2r, 0
(ν−1−2r)], then [STT1, ((STT1)t)−1, I(2)] carries P to

([Yu,v,A2r−2, 0
(ν−1−2r)] + [−2−1�, 0(ν−2)] I(ν) (E1 E2)),

where

Yu,v =

⎛
⎜⎜⎜⎝

0 0 u

0 0 v

−u −v 0

⎞
⎟⎟⎟⎠ ,

⎛
⎝ u

v

⎞
⎠ = (T−1

11 )t

⎛
⎝ 0

1

⎞
⎠ .

Take T2 = [I(2), v−1, I(ν−3)] or [I(2), u−1, I(ν−3)] according to u = 0 or not, respectively. Then

[STT1T2, ((STT1T2)t)−1, I(2)] carries P to (9), or
([

Y1,c,A2r−2, 0
(ν−1−2r)

]
+

[
−2−1�, 0(ν−2)

]
I(ν) (E1 E2)

)
,

where c = u−1v. When c2 − z is a square element, we may choose an s ∈ F
∗
q such that c2 − z = s2.

Let A = [A11, s
−1, I(ν−3)], where

A11 = s−1

⎛
⎜⎝

c −z

−1 c

⎞
⎟⎠ .

By Lemma 2.3, At
11 ∈ O2×0+2,�(Fq), and [A, (At)−1, (At

11)
−1] ∈ G01 carries

([Y1,c,A2r−2, 0
(ν−2r−1)] + [−2−1�, 0(ν−2)] I(ν) (E1 E2))

to (9). When c2 − z is a non-square element, we may choose an s ∈ F
∗
q such that s2(c2 − z) = 1 − z.
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Let B = [B11, s, I(ν−3)], where

B11 = 1

s(c2 − z)

⎛
⎜⎜⎝

c − z z(c − 1)

c − 1 c − z

⎞
⎟⎟⎠ .

By Lemma 2.3, Bt11 ∈ O2×0+2,�(Fq), and [B, (Bt)−1, (Bt11)
−1] ∈ G01 carries

([Y1,c,A2r−2, 0
(ν−1−2r)] + [−2−1�, 0(ν−2)] I(ν) (E1 E2))

to (10).

If (ST)tX(ST) = [0(2),A2r, 0
(ν−2−2r)], then [STT1, ((STT1)t)−1, I(2)] carries P to (11).

If (ST)tX(ST) = [A2r, 0
(ν−2r)], then [STT1, ((STT1)t)−1, I(2)] carries P to ϕ7(r, b), where (T−1

11 )tA2

T
−1
11 = bA2 for some b ∈ F

∗
q . Note that [−1, I(ν−1), −1, I(ν−1), −1, 1] ∈ G01 carries ϕ7(r, b) to

ϕ7(r, −b). So we may choose b ∈ �.

If (ST)tX(ST) = [K,A2r−4, 0
(ν−2r)], then [STT1, ((STT1)t)−1, I(2)] carries P to

([U,A2r−4, 0
(ν−2r)] + [−2−1�, 0(ν−2)] I(ν) (E1 E2)),

where

U =
⎛
⎜⎝

0 (T−1
11 )t

−T
−1
11 0

⎞
⎟⎠ .

Pick T3 = [I(2), Tt
11, I

(ν−4)]. Then [STT1T3, ((STT1T3)t)−1, I(2)] carries P to (13).

What is left to show that no two subspaces in (6)–(13) can fall into the same orbit. As an example,

we show that any two distinct ϕ2(r, a) and ϕ2(r, a
′) can’t fall into the same orbit, and the rest cases

may be handled in a similar way. If there exists an element of G01 of form (1) carrying ϕ2(r, a) to

ϕ2(r, a
′), then T is of the form

T =
⎛
⎜⎝

t 0

T21 T22

⎞
⎟⎠ ,

where t(1, a)S = (1, a′). By [11, Theorem 6.4], the subspaces (1, a) and (1, a′) is of the same type.

Since a, a′ ∈ {0, 1}, we have a = a′, a contradiction.

Therefore, the desired result follows. �

For each vertex Q of �, the symbol Q denotes the suborbit containing Q . Denote by Sp2ν(Fq) the

symplectic group of degree 2ν with respective toA2ν over Fq, i.e., Sp2ν(Fq) = {T ∈ GL2ν(Fq)|TA2νT
t

= A2ν}. By [11, Theorems 1.6, 3.16, and 6.21], we have

|GLν(Fq)| = qν(ν−1)/2
ν∏

i=1

(qi − 1),

|Sp2ν(Fq)| = qν2 ν∏
i=1

(q2i − 1),

|O2ν+2,�(Fq)| = qν(ν+1)
ν∏

i=1

(qi − 1)
ν+1∏
i=0

(qi + 1).
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Theorem 2.5. The nontrivial orbits of G01 on � have lengths as following:

|ϕ1(r)| = |GLν(Fq)|
|Sp2r(Fq)| · |GLν−2r(Fq)| · q2r(ν−2r)

,

|ϕ2(r, a)| = (q + 1)|GLν(Fq)|
|Sp2r(Fq)| · |GLν−2r−1(Fq)| · 2q(2r+1)(ν−2r−1)

,

|ϕ3(r, a)| = (q + 1)|GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r(Fq)| · 2q2r(ν−2r)+2r−1

,

|ϕ4(r)| = (q + 1)|GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r−1(Fq)| · 2q(2r+1)(ν−2r)−2

,

|ϕ5(r)| = (q + 1)|GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r−1(Fq)| · 2q(2r+1)ν−4(r2+1)

,

|ϕ6(r)| = |GLν(Fq)|
|Sp2r(Fq)| · |GLν−2r−2(Fq)| · q(2r+2)(ν−2r−2)

,

|ϕ7(r, b)| = 2 |GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r(Fq)| · q2r(ν−2r)

,

|ϕ8(r)| = |GLν(Fq)|
|Sp2r−4(Fq)| · |GLν−2r(Fq)| · q2r(ν−2r)+4r−5

.

Proof. We only calculate |ϕ3(r, a)| and |ϕ7(r, b)|. The length of other suborbits may be computed in

a similar way.

Let G3(r, a) be the stabilizer of ϕ3(r, a) in G01, and let [T, (Tt)−1, S] be any element of G3(r, a).
Then

Tt([A2r, 0
(ν−2r)] − [2−1(1 − za2), 0(ν−1)])T = [A2r, 0

(ν−2r)] − [2−1(1 − za2), 0(ν−1)]
and Tt(E1 aE1)S = (E1 aE1), which imply that μ(1 a)S = (1 a) and

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2r−2 ν−2r

μ 0 0 0

t μ −μTt
31A2r−2T33 0

T31 0 T33 0

T41 T42 T43 T44

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1

1

2r−2

ν−2r

,

where μ2 = 1 and Tt
33A2r−2T33 = A2r−2. By Lemma 2.3, μ(1 a)S = (1 a) implies that S is one of

the following forms
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μI(2), μ

⎛
⎜⎝

1 0

0 −1

⎞
⎟⎠ if a = 0,

μI(2),
μ

1−z

⎛
⎜⎝

1 + z 2

−2z −(1 + z)

⎞
⎟⎠ if a = 1.
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Hence |G3(r, a)| = |Sp2r−2(Fq)| · |GLν−2r(Fq)| · 4q2r(ν−2r)+2r−1 and

|ϕ3(r, a)| = [G01 : G3(r, a)] = (q + 1)|GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r(Fq)| · 2q2r(ν−2r)+2r−1

.

Let G7(r, b) be the stabilizer of ϕ7(r, b) in G01. Then G7(r, b) consists of matrices [T, (Tt)−1,
(Tt

11)
−1], where

T =
⎛
⎝

2 2r−2 ν−2r

T11 0 0

0 T22 0

T31 T32 T33

⎞
⎠

2

2r−2

ν−2r

,

Tt
11 ∈ O2×0+2,�(Fq),T

t
11A2T11 = A2 andT

t
22A2r−2T2 = A2r−2. ByLemma2.3, thematrixTt

11 satisfying

Tt
11 ∈ O2×0+2,�(Fq) and Tt

11A2T11 = A2 is of the form

Tt
11 =

⎛
⎝ x y

yz x

⎞
⎠ ,

where x2 − y2z = 1. By [11, Lemma 1.28], the number of solutions of the equation x2 − y2z = 1 is

q + 1. Hence |G7(r, b)| = |Sp2r−2(Fq)| · |GLν−2r(Fq)| · (q + 1)q2r(ν−2r) and

|ϕ7(r, b)| = [G01 : G7(r, b)] = 2 |GLν(Fq)|
|Sp2r−2(Fq)| · |GLν−2r(Fq)| · q2r(ν−2r)

. �

3. Quasi-strongly regular graphs

As a generalization of strongly regular graphs, quasi-strongly regular graphs were discussed by

Golightly, Haynworth and Sarvate [4] and Goldberg [3]. Let c1, c2, . . . , cp be distinct non-negative

integers.Aconnectedgraphofdegreekonnvertices isquasi-strongly regularwithparameters (n, k, λ; c1,
c2, . . . , cp) if any two adjacent vertices have λ common neighbors, and any two non-adjacent vertices

have ci common neighbors for some i (1 ≤ i ≤ p).
Since � is a regular near polygon, the induced subgraph on � is edge regular, denoted by the same

symbol �. Therefore, � is quasi-strongly regular. In this section we compute all the parameters of �.

Let�(P)be thesetofneighborsofP in�. Clearly, |�(P)∩�(Q)| = 0wheneverdim (P+Q) > ν+2.

Note that for the vertex P1 in � as in Section 2, the subspace Q ∈ � satisfying dim (Q + P1) = ν + 2

lies in the set

ϕ1(1) ∪ ϕ6(0)
⋃

a∈{0,1}
ϕ3(1, a)

⋃
b∈�

ϕ7(1, b).

To study |�(P) ∩ �(Q)| for any two vertices P and Q with dim (P + Q) = ν + 2, by Theorem 2.4,

it suffices to consider |�(P1) ∩ �(Q)|, where Q ∈ {ϕ1(1), ϕ3(1, a), ϕ6(0), ϕ7(1, b)}, a ∈ {0, 1} and
b ∈ �.

Lemma 3.1. For any vertex R = (A − 2−1C�Ct I(ν) C) of �, the neighborhood of R is

�(R) = {(A − 2−1(C�Ct + D�Dt + 2D�Ct) I(ν) C + D) |D ∈ Mν2(Fq), rank D = 1}.

Proof. Note that �(R) consists of matrices with the form (A − 2−1C�Ct + X I(ν) C + D), where

X ∈ Mν(Fq), D ∈ Mν2(Fq), rank (X D) = 1 and X + Xt + C�Dt + D�Ct + D�Dt = 0. It follows that

rankD = 1. SowemaywriteD = D0(x y) and X = D0W
t , where 0 �= D0 ∈ Mν1(Fq), (x, y) �= (0, 0)

andW ∈ Mν1(Fq). Let C = (C1 C2) and TD0 = E1 for some T ∈ GLν(Fq). Then
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E1(T(W+xC1−yzC2))
t+T(W+xC1−yzC2)E

t
1+(x2 − y2z)E1E

t
1 = 0.

It follows that T(W + xC1 − yzC2) = −2−1(x2 − y2z)E1. So W = −2−1(x2 − y2z)D0 − xC1 + yzC2
and X = −2−1(D�Dt + 2D�Ct). The desired result follows. �

Note that when ν = 1, any element of� is of the form (−2−1(a2 − zb2) 1 (a b)), where a, b ∈ Fq.

Then � is a clique with q2 vertices.

Lemma3.2. Let P andQ be any two vertices of�withdim (P+Q) = ν+2. Ifν � 2, then |�(P)∩�(Q)|
is equal to 0, q or q + 1.

Proof. For any Q ∈ {ϕ1(1), ϕ3(1, a), ϕ6(0), ϕ7(1, b)}, it suffices to show that |�(P1) ∩ �(Q)|
= 0, q2, q2 − 1 or q2 + q. We only compute |�(P1) ∩ �(ϕ3(1, a))|, and the others can be treated

similarly.

Let R ∈ �(P1) ∩ �(ϕ3(1, a)). From R ∈ �(P1) and Lemma 3.1 we know that R is of the form

R = (−2−1D�Dt I(ν) D), where D ∈ Mν2(Fq) and rankD = 1. Again from R ∈ �(ϕ3(1, a)) and

Lemma 3.1 we know that

R = ([A2, 0
(ν−2)]−[2−1(1−za2), 0(ν−1)]−2−1(D1�Dt

1+2D1�(E1 aE1)
t) I(ν) (E1 aE1)+D1),

where D1 ∈ Mν2(Fq) and rankD1 = 1. Therefore, D = (E1 aE1) + D1 and

−2−1D�Dt = [A2, 0
(ν−2)] − [2−1(1 − za2), 0(ν−1)] − 2−1(D1�Dt

1 + 2D1�(E1 aE1)
t).

It follows that −2−1(E1 aE1)�Dt
1 = [A2, 0

(ν−2)] − 2−1D1�(E1 aE1)
t . Hence

D1 =
⎛
⎜⎝

c zad2 − 2 0 · · · 0

d1 d2 0 · · · 0

⎞
⎟⎠

t

and D =
⎛
⎜⎝

1 + c zad2 − 2 0 · · · 0

a + d1 d2 0 · · · 0

⎞
⎟⎠

t

,

where cd2 = d1(zad2 − 2) and d2 = a(zad2 − 2). Observe the number of (c, d1, d2) satisfying

cd2 = d1(zad2 − 2) and d2 = a(zad2 − 2) is q, i.e., |�(P1) ∩ �(ϕ3(1, a))| = q. �

Theorem 3.3. Let ν � 2. Then � is a quasi-strongly regular graph with parameters

(qν(ν+3)/2, (qν − 1)(q + 1), q2 − 2; 0, q, q + 1).

Proof. Since� consists of the vertices as the form (X −2−1Z�Zt I(ν) Z), where X is a ν ×ν alternate

matrix, and Z ∈ Mν2(Fq), we have n = qν(ν+3)/2. By Theorem 2.5,

k = |ϕ2(0, 0)| + |ϕ2(0, 1)| = 2|ϕ2(0, 0)| = (qν − 1)(q + 1).

Note that ϕ2(0, a) ∈ �(P1). In order to compute the parameter λ, it suffices to compute the size of the

common neighbors of P1 andϕ2(0, a). Let R ∈ �(P1)∩�(ϕ2(0, a)). Similar to the proof of Lemma 3.2,

we deduce that R is of the form R = (−2−1D�Dt I(ν) D), where

D =
⎛
⎜⎝

1 + c 0 · · · 0

a + d 0 · · · 0

⎞
⎟⎠

t

satisfies (c, d) �= (0, 0) and (1 + c, a + d) �= (0, 0). Observe the number of (c, d) satisfying (c, d) �=
(0, 0) and (1 + c, a + d) �= (0, 0) is q2 − 2, i.e., λ = |�(P1) ∩ �(ϕ2(0, a))| = q2 − 2. The rest

parameters of � are listed in Lemma 3.2. �
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4. Association schemes

In this section we discuss the association scheme based on � when ν = 2.

A d-class association scheme X is a pair (X, {Ri}0�i�d), where X is a finite set, and each Ri is a

nonempty subset of X × X satisfying the following axioms:

(i) R0 = {(x, x) | x ∈ X};
(ii) X × X = R0 ∪ R1 ∪ · · · ∪ Rd, Ri ∩ Rj = ∅ (i �= j);

(iii) tRi = Ri′ for some i′ ∈ {0, 1, . . . , d}, where tRi = {(y, x) | (x, y) ∈ Ri};
(iv) for all i, j, k ∈ {0, 1, . . . , d}, there exists an integer pkij = |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| for

every (x, y) ∈ Rk .

The integers pkij are called the intersection numbers of X, and ki (= p0
ii′) is called the valency of Ri.

Furthermore, X is called symmetric if i′ = i for all i. As for more information concerning association

schemes, the readers may consult [1,2].

Let G be a transitive permutation group on a finite set X , and R0, R1, . . . , Rd be the orbits of the

induced action of G on X × X . It is well known that (X, {Ri}0�i�d) is an association scheme [1, Section

2.2].

Note that the action of G0 on � × � determines an association scheme. We shall discuss the

association scheme in the case ν = 2.

In the rest we always assume that ν = 2. By Theorem 2.4, the orbits of G01 on� have the following

representatives:

ϕ0, ϕ1(1), ϕ2(0, a), ϕ3(1, a), ϕ6(0), ϕ7(1, b),

where a ∈ {0, 1}, b ∈ �. For the action of G0 on � × �, let R0, R1, R2a , R3a , R4, R5b denote the orbits

containing (ϕ0, ϕ0), (ϕ0, ϕ1(1)), (ϕ0, ϕ2(0, a)), (ϕ0, ϕ3(1, a)), (ϕ0, ϕ6(0)), (ϕ0, ϕ7(1, b)), respec-
tively. Then R0, R1, R2a , R3a , R4, R5b are all the orbits of the action of G0 on � × �.

LetGϕ1(1) be the stabilizer ofϕ1(1) inG01. ThenGϕ1(1) consists ofmatriceswith the form [T, (Tt)−1,

S], where Tt ∈ Sp2(Fq) and S ∈ O2×0+2,�(Fq). So

|Gϕ1(1)| = |Sp2(Fq)| · |O2×0+2,�(Fq)| = 2q(q − 1)(q + 1)2.

In order to discuss the association scheme based on �, we need the following lemmas.

Lemma 4.1. The orbits of Gϕ1(1) on � have the following representatives:

φ1x = (xA2 I(2) 0(2)),

φ2x,a = (
xA2 + [− 1

2
(1 − za2), 0] I(2) (E1 aE1)

)
,

φ3x,c = (
xA2 + [− 1

2
c2, 1

2
z] I(2) [c, 1]),

where a ∈ {0, 1}, x ∈ Fq and c ∈ �.

Proof. The proof is similar to that of Theorem 2.4, and is omitted. �

Lemma 4.2. Let c ∈ �. Then the number of (T, S) satisfying Tt ∈ Sp2(Fq), S ∈ O2×0+2,�(Fq) and

Tt[c, 1]S = [c, 1] is q + 1.

Proof. Since Tt[c, 1]S = [c, 1], by Lemma 2.3,

T =
⎛
⎝ μ c−2sz

s μ

⎞
⎠ , S =

⎛
⎝ μ −c−1s

−c−1sz μ

⎞
⎠ ,
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where μ, s, c ∈ Fq and μ2 − c−2s2z = 1. By [11, Lemma 1.28], the number of (μ, c) satisfying

μ2 − c−2s2z = 1 is q + 1, as desired. �

Lemma 4.3. The representatives φ1x, φ2x,a, φ3x,c listed in Lemma 4.1 satisfy

(ϕ0, φ10) ∈ R0, (φ10, ϕ1(1)) ∈ R1,

(ϕ0, φ11) ∈ R1, (φ11, ϕ1(1)) ∈ R0,

(ϕ0, φ1d) ∈ R1, (φ1d, ϕ1(1)) ∈ R1,

(ϕ0, φ20,a) ∈ R2a , (φ20,a, ϕ1(1)) ∈ R3a ,

(ϕ0, φ21,a) ∈ R3a , (φ21,a, ϕ1(1)) ∈ R2a ,

(ϕ0, φ2d,a) ∈ R3a , (φ2d,a, ϕ1(1)) ∈ R3a ,

(ϕ0, φ30,c) ∈ R4, (φ30,c, ϕ1(1)) ∈ R5εc−1 ,

(ϕ0, φ31,c) ∈ R5εc−1 , (φ31,c, ϕ1(1)) ∈ R4,

(ϕ0, φ3d,c) ∈ R5ε1c
−1d

, (φ3d,c, ϕ1(1)) ∈ R5ε2c
−1(1−d)

,

where d ∈ Fq\{0, 1}, ε, ε1, ε2 ∈ {1, −1}, εc−1, ε1c
−1d, ε2c

−1(1 − d) ∈ �.

Proof. We only show (ϕ0, φ30,c) ∈ R4 and (φ30,c, ϕ1(1)) ∈ R5εc−1 . The left cases may be treated sim-

ilarly, and will be omitted. Note that [c−1, 1, c, 1, I(2)] ∈ G0 carries ϕ0 and φ30,c to ϕ0 and ϕ6(0), re-

spectively, so (ϕ0, φ30,c) ∈ R4. Let ε = 1 or−1 according to c−1 ∈ � or−c−1 ∈ �, respectively. Then

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−c−1 0

0 −ε
1
2
c 0 −c 0 −c 0

0 − 1
2
εz 0 −ε 0 −ε

−1 0 1 0

0 εz 0 ε

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ G0

carriesφ30,c and ϕ1(1) to ϕ0 and ϕ7(1, εc
−1), respectively, which implies (φ30,c, ϕ1(1)) ∈ R5εc−1 . �

Theorem 4.4. The configuration X = (�, {R0, R1, R2a , R3a , R4, R5b}a∈{0,1},b∈�) is a symmetric associa-

tion scheme with class (q + 11)/2, whose non-zero intersection numbers p1ij are given by

p101 = p110 = 1, p111 = q − 2, p12a,3a = p13a,2a = (q − 1)(q + 1)2/2,

p13a,3a = (q − 2)(q − 1)(q + 1)2/2, p14,5b = p15b,4 = p15b,5εbd−1(1−d)
= 2q(q2 − 1),

where d ∈ Fq\{0, 1}, ε ∈ {1, −1} and εbd−1(1 − d) ∈ �.

Proof. By Theorem 2.4, X forms an association scheme of class (q + 11)/2.
Now we prove X is symmetric. Since

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

0 −1

0 1 1 0

1 0 0 −1

I(2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ G0
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interchanges ϕ1(1) and ϕ0,
tR1 = R1. The left cases can be treated similarly, and will be omitted.

In order to compute non-zero intersection numbers p1ij of X, we need consider the cases listed in

Lemma 4.3. Here we only calculate p12a,3a and p14,5b by the way of examples.

Let Gφ20,a be the stabilizer of φ20,a in Gϕ1(1). By Lemma 4.3, p12a,3a = [Gϕ1(1) : Gφ20,a ], the index of

Gφ20,a in Gϕ1(1). Note that Gφ20,a consists of matrices [T, (Tt)−1, S], where

Tt ∈ Sp2(Fq), Tt[1, 0]T = [1, 0], S ∈ O2×0+2,�(Fq) and Tt(E1 aE1)S = (E1 aE1).

It follows that

T =
⎛
⎝ μ 0

t μ

⎞
⎠ , S = μI(2) or S = μ

1 − za2

⎛
⎝ 1 + za2 2a

−2za −(1 + za2)

⎞
⎠ ,

where μ2 = 1. Therefore, |Gφ20,a | = 4q and

p12a,3a = [Gϕ1(1) : Gφ20,a ] = |Gϕ1(1)|/|Gφ20,a | = (q − 1)(q + 1)2/2.

Let Gφ30,c be the stabilizer of φ30,c in Gϕ1(1), where c ∈ �. Then Gφ30,c consists of matrices

[T, (Tt)−1, S], where

Tt ∈ Sp2(Fq), Tt[c2, −z]T = [c2, −z], S ∈ O2×0+2,�(Fq) and Tt[c, 1]S = [c, 1].
Note that Tt[c, 1]S = [c, 1] implies Tt[c2, −z]T = [c2, −z]. By Lemma 4.2, |Gφ30,c | = q + 1; and by

Lemma 4.3,

p14,5εc−1
= [Gϕ1(1) : Gφ30,c ] = |Gϕ1(1)|/|Gφ30,c | = 2q(q2 − 1),

which is independent of choices of c ∈ �. Hence p14,5b = 2q(q2 − 1). �

Remarks. All the valencies of X are given by Theorem 2.5. By a similar method in this section, all the

intersection numbers pkij of X can be calculated.
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