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The power of certain heuristic rules is indicated by the relative reduction in 
the complexity of computations carried out, due to the use of the heuristics. 
A concept of complexity is needed to evaluate the performance of programs as 
they operate with a varying set of heuristic rules in use. We present such a 
complexity measure, which we have found useful for the quantitative evaluation 
of strategies in the context of a long-term research project on poker. We define 
our measure in terms of the level-complexity for decision trees and study the 
measure for the relevant class of decision trees with a fixed but  arbitrary number  
of levels, h, and k leaves (all at the last level). We determine the best and worst 
case distributions for the levels in this measure. We show, for instance, that  for 
the smallest value, Ln(k), and the largest value, Uh(k), which the level-complexity 
for such trees can have, lim~.~o L~(k)/log~(k) = 1 and lim~.~o Uh(k)/log(k) = 1. 
We show also that  the level-entropy assumes its maximum value of log(k) just  
when the path-entropy reaches its min imum value over all trees with k leaves 
but, in general, the values of either measure can vary in a rather unrelated 
manner.  We give a detailed example of how the complexity measure is used in 
evaluating the power of heuristic rules used in assessing the performance of the 
Quasi-Optimizer (QO), a program currently under  development. The  ob- 
jectives of the QO are explained, and the three main phases of operation of the 
program are described within the framework of the poker project. 

1. INTRODUCTION 

D e c i s i o n  t rees  are a c o n v e n i e n t  i n f o r m a t i o n  s t r u c t u r e  for  desc r ib ing  b o t h  

d e t e r m i n i s t i c  a n d  s tochast ic ,  mu l t i s t age  decis ion processes  (see, e.g., Burge ,  

1958; J a r d i n e  a n d  S ibson ,  197I ; Sal ton,  1968; a n d  Picard,  1965). S ta t ic  s t ra tegies  

fit th i s  r e p r e s e n t a t i o n  natura l ly ,  b u t  we show t h a t  dynamica l ly  evolving,  l e a rn ing  

s t ra tegies  can  also be  cha rac te r i zed  in  th i s  form.  
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Discrimination trees, which grow automatically as demanded by the task at 
hand, have been used to simulate various cognitive processes (see, e.g., Feigen- 
baum, 1961; Simon and Feigenbaum, 1964; Simon and Gilmartin, 1973). In 
a competitive environment, different strategies interact and affect each other. 
For example, human and machine players are pitted against each other in a 
complex large-scale program of draw poker, which Findler and his co-workers 
have used over the past few years in their studies on decision making under 
uncertainty and risk (Findler, 1973, 1977; Findler et al., 1972; Findler et al.,  

1973; Findler et al., 1974). Here, the short-term and long-term goals of some 
of the machine players are expressed in the form of decision trees. 

I t  is not relevant for our present purposes to discuss the objectives, the 
methodology, or the results of the above work. However, we outline in Section 3 
the conceptual framework of and the technical approach used in one of the sub- 
projects, the Quasi-Optimizer (QO), which is under development. This program 
would generate a normative theory (a quasi-optimum strategy) out of descriptive 
theories (the strategies used by individual players). In constructing the quasi- 
optimum strategy, the program makes use of certain heuristic rules which reduce 
the domain of search for some decision processes. In attempting to measure 
the effectiveness and power of the heuristics employed (cf. Simon and Kadane, 
1976), we were led to define a natural and plausible complexity measure for 
decision trees. We next investigate the theoretical limits on the complexity of 
decision trees, and show how the concept has practical relevance for the evalua- 
tion of our heuristic rules. 

2. THE LEVEL-COMPLEXITY OF DECISION TREES 

In the poker-playing application that motivated the results of this section, 
a program called the Quasi-Optimizer combines according to certain heuristic 
rules several trees representing individual game-playing strategies into a tree 
representing a composite strategy. Since the use of different heuristics may 
result in different composite trees, it is useful to measure the "power" of such 
heuristics by comparing the complexity of the input trees with that of composite 
tree. 

Let us assume that all trees are of equal height h (every decision criterion is 
considered by each input strategy; if necessary, by a nonbranching node). Let 
the number of nodes in the j th  level of a tree T be Kj (for 0 ~<j ~ h), and let 
the outdegree of the kth node from the left in this level be r3. k . Logarithms are 
always taken in base 2. 

The  average number of comparisons at the kth node in level j is adequately 
measured by log rj7 ~ . Assuming that all nodes at level j have equal probability 
of being reached, it follows that at this level the program makes an average 
number of comparisons equal to 
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K~ 

Cj = Kj-I" 2 log r, k (1) 
/c=:t 

before it moves on to the ( j  @ 1)st level. If a specific probability distribution 
of the reachability of nodes (of the values of decision criteria) is known, then (1) 
becomes 

Kj 

C~ = ~ pj~ "logrjk,  (t ~) 
/,~=1 

where PJk denotes the probability that the game situation at the j th level in T 
is driven through the kth node from the left, and obviously 

Kj 

= 1. ( v ' )  
k=l  

We do not pursue that refinement here, and only consider the simplified un- 
certainty situations covered by (1). In poker, the particular probabilities are 
obtainable either mathematically (for example, the probability distribution o f  
possible hands) or from experience (for example, the type of games played 
against a given set of opponents). One could in fact approximate the probabilities 
to obtain various models, each with its own measure. We do not do so here and 
the measure of complexity is analyzed only when all pj~ are equal K [  1. 

The complexity of a decision tree may now be defined as the total number 
of comparisons par level a player makes on the average in progressing from 
the root downward to the leaf level. 

DEFINITION. The level-complexity of the tree T is 

h - 1  

cT= 2 cj. (2) 
j=0 

The concept of complexity is related to but is different from the concept of 
path-entropy introduced by Green (1973). One might call the quantity expressed 
in (2) the "level-entropy," and we explore below how it is substantially different 
from the path-entropy concept and in what sense it measures an entirely different 
distribution of decisions in a tree (see Section 2.3). 

We first explore the (asymptotic) lower and upper bounds of the leveI- 
complexity of decision trees, and investigate the theoretical limits of the measure. 

2.1. A Lower Bound for Level-Complexity 

We have to introduce a few more conventions before we can formally treat 
the level-complexity of a decision tree T. 
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T h e  decision trees we consider always have h levels (h ~ 1), with all leaves 
occurring in the hth (" the last") level (see Fig. 1). 

Such a tree may be characterized in part  by the number  of nodes in the various 
consecutive levels 

I = K o ~ < G ~ ' " ~ < K  h. 

T h e  generic notation for any tree with these level-characteristics is 

T[Ko , K1 .... , Kh]. 

I t  depends on the precise distribution of edges between the levels (thus on the 
rj~) what the complexity of T is. 

Level 0 

Level I 

Level 2 

Level 3 

FIG.  1. A decision tree with three levels (h = 3). 

At any level j  with Kj  = K~+,, we must  have r~  = 1 for 1 ~< k ~< K~., and it 
easily follows that such levels make a contribution of zero to the level-complexity 
of the tree. T o  get a meaningful analysis, we assume that Kj  @ K~-+I for 
all j throughout this section. 

DEFINITION. L ~ ( K )  = min{Cr ] T is a T[Ko, . . .  , Ka] with K0 = 1, Kn = K,  
and arbitrary K~ ,..., K~-I  with K0 < / £ 1  < "'" < K~}. 

Consider any such decision tree T. Level 0 always contributes log K1 .  We 
determine how to achieve the smallest possible contribution of t h e / t h  level 
( j  > 0), which solely depends on the distribution of the rj~'s. 

LEMMA 2.1.1. The minimum level-complexity of a decision tree with level- 

characteristics K o < K 1 < "" < Kt, is 

h--I 

log K ,  27 • 1£7 1" log(K,+, - -  K~. 27 1). (3) 
j=1 

Proof. The  j th  level contributes KT*" log rn  "'" r jxj .  T h e  product of r's 
must  be minimized under the assumptions: r j~/> 1 and r~l 27 ' "  27 r~x ~ = Kj+ 1 . 

T h e  min imum is achieved when all rj~'s are 1, except for one which must  be 
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Kj+ 1 - -  Kj  + 1. T o  show this, let us assume that the rj~'s were chosen so as to 
have a minimal product.  Le t  1 ~ l ~< K~. be such that rj~ = max{r~.~ I 1 
p ~ K~}. I f  rj~ = K~+~ - -  K~. + 1, we are done. Assume that rj~ < Kj+~ - -  
K ~ + I .  There  must  be a p :~ l ,  1 ~ p  ~ < K  s such that r ~  ~ 2  (whereas 
r~.~ ~ r~). Consider how the product of r's changes if we let rjv be r~-~ - -  1 and 
r~z be r~.~ + 1 (which keeps the sum of r's the same) 

( r~  - -  1)(rj, + 1) = rj,rj~ - -  (r~ - -  r~)  - -  1 < r ~  "rj~. 

T h e  product of r 's  decreases, contradicting that it was choosen to be minimal. 
T h e  min imum contribution of t he j t h  level is K7  ~. log(Kj+l - -  K;  + 1). [ 

Obviously L n ( K )  = log K for h = 1. For h ~> 2, one can have decision trees 
with K leaves of a much  smaller level-complexity because the branching behavior 
is averaged over more levels. I t  cannot be arbitrarily small for a fixed h, though. 

Let  log~O(x) denote the ith iterate of log(x) 

logC~(x) = log ".- log(x) (4) 
g 

LEMMA 2.1.2. One can construct a T [ K  o ,..., K~] tree wi th  K~ -~ K such 

that CT = logth)(K) + (9(h) for K ---> oo. 

Proof. We only need to consider K values large enough such that log(K), 
log~2)(K),..., logl~)(K) have strictly decreasing integral parts. 

Consider any decision tree with level-characteristics 

Kj  = [log{~-~)(K)] 

for 1 ~< j ~< h (with K o = 1 and defining log ~°~ K = K).  By Lemma  2.1.1, 
we may  arrange the tree such that the j th  level (1 ~<j  ~< h) contributes a 
min imum complexity of 

K=I  • l o g ( K j + l ,  - - /~ ' j  -+- 1) ~< K71 • log(Kj+l) 

[log~l~-J)(K)]-I • log log(h-~-l)(K) 

= [log~-~)(K)]-~ • log~h-J~(K) 

= (9(1) for K - +  oo. 

T h e  total level-complexity of the tree is 

log K 1 + (~(1) + -.. + (9(1) = log('~)(K) + (9(h) 

(h-1) t imes  

for K - +  oo. | 
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There  are numerous variants of the construction in L e m m a  2.1.2, but we 
prove that none of these alternative constructions can succeed in finding a 
decision tree of complexity substantially less than log(n)(K) as K--~  oe. I t  means 
that we found the order of magnitude for the min imum level-complexity for 
fixed h, as K -+  oo. 

TaEOREM 2.1.3. limK_,~o Lh(K)/log(~)(K) = 1. 

Proof. T h e  result is trivial for k = 1. Assume k >/-2. By L e m m a  2.1.2 
we know that L h ( K  ) <~ log(~)(K) q- 0(h) for K- -~  oe. T h e  result follows once 
we show that for no •, 0 < • < 1, there can be an infinite sequence of K-values 
for which Lh(K)  <~ • • 1og(~)(K). 

Suppose by way of contradiction that there was an •, 0 < • < 1, such that 
LI~(K) <~ • • loga)(K) for infinitely many K-values. I t  foUows that, for each 
such K-value, we can find a decision tree with level-characteristics K o < "" < K~ 
(and K~ = K )  such that 

log(Kj+ 1 - -  K s q- 1) ~< K s ' •  • log{h)(K) (5) 

for 1 ~ j  < h. Let  8(K) = 1/[4• • log(t°(K)]. We prove by induction, for j 
from h to 0, that for all K large enough 

K s / >  8(K)"  log(h-J)(K). (6) 

I t  is obviously true fo r j  = h (choose K so large that, for instance, log(~)(K) >/ 
1/4•). Suppose (6) holds for j @ 1. We claim that for K large enough 

K s / >  28(K) • log(K~.+l ) = log(Ks+l)/[2• • log(h)(K)]. (7) 

Suppose K s < log(Ks+x)/[2• • log(h)(K)]. By (5) we would have the following 
condition on Ks+l : 

Ks+ 1 - -  (Ks+~)I/2 q- 1 < log(Ks+~)/[2• • log(~)(K)]. 

As the induction hypothesis (6) holds fo r j  + 1, and Kj+I grows bigger and bigger 
as K gets larger, the inequality is violated for all sufficiently large K values. 

Using the induction hypothesis, it follows from (7) that 

K s >~ {1/[2e • logO~)(K)]} • {log(logl'-s-l(K)) --log('~+l)(K) - -  log 4E} 

= {logO~-~)(K)/[2e • log(~)(K)]} • {1 - -  (iog°~+l)(K) -t- log 4e)/log(h-J)(K)}. 

(8) 
By choosing K sufficiently large, we conclude (6) again. 

I t  follows that (6) holds for all 1 ~< j ~< h. T h e  lower bounds on the Kj imply 
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a lower bound on the level-complexity of any tree with these characteristics. 
Let  us consider just the contribution of level 1. It  is 

log K~ > log(8(K) log(h-i'(K)) 

= 1og(t~)(K) - -  log(t~+l)(K) - -  log 4• 

• {1 - -  l ° g ( ~ + ~ ) ( K )  + l o g  4 •  
log(~)(K) }" 

log(h)(K) 

(9), 

I t  is easily seen that the factor of log(~)(K) approaches 1 as K --~ oo and the 
total complexity must outgrow • - log(~)(K) for all sufficiently large K, contrary 
to our assumption. 

2.2 A n  Upper Bound for Level-Complexity 

We now establish a best possible upper bound on the level-complexity of  
decision trees with h levels• 

DEFINITION• gh(K_ ) = max{C r ] T is a T[Ko, . . . ,  Kh] with K 0 = 1, Kh = K, 
and arbitrary K1 ,..., Kh-1 with K 0 ~< "• ~< K~}. (Compared to the definition 
of Lt~(K), it is not necessary this time to demand that K;+I > Kj for allj.) 

The  first level of a decision tree always contributes log(K 0. We determine 
how to distribute the rj~ values in the ] th  so as to maximize the complexity of 
this level. 

We note that the level-complexity of a decision tree is minimal if in each 
level as many edges as possible are concentrated in a single node (Lemma 2.1.1). 
Exactly the opposite appears to be true in case we want to maximize complexity, 
and we prove that the contribution of each level is maximum when the edges 
leading to the next level are distributed over the K s nodes as uniformly as 
possible. 

LEMMA 2.2.1. 
characteristics K o ~ "'" ~ Kh is 

h--1 K 'l--eJ r g neJ 
I ;+1 I ! j+1 / l ogK,@-  ~ log - -  / - -  ' (10) 

j~l L K; 1 K; / 

where e; = (Kj+ 1 mod K;) /K;  for 1 <~ j < h. 

Pro@ As in Lemma 2.1.1, we must now maximize rjl "" rjK J 
conditions that r;~ >~ 1 and r~l + "" + r;K ~ = K~+ 1 . 

The  maximum is achieved just in case no two rj~'s differ by more than 1. 
To  show this, let us assume that there were p and q (1 ~ p ,  q <~ K s with 
p =/= q) such that rj~ - -  rjq ~ 2• Consider how the product of the r 's changes 

The maximum level-complexity of a decision tree with level- 

under the 
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if we let rj~ be rj~ - -  1 and riq be r~ -[- 1 (which does keep the sum of the r 's  
the same) 

(rj~ - -  1)(rjq + 1) = rj~ "rjq -+ (rj~ --r~q) - -  1 > rj~ "rj~. 

T h e  product has become larger, contrary to the assumption of maximality. 
I t  remains to be shown that the condition on the r~  indeed uniquely deter- 

mines the value of r a ".. rj,cj. 
I t  is easily seen that the rj~'s must be equal to [Kj+I/K~J or [Kj+I/Kj] (otherwise 

one could find two rj~'s more than 1 apart). Suppose sj of the rj-~'s are equal to 
[Kj+I/K~] = K~+I/K ~ -- ~ , and thus Kj+I/K j = [K~+I/K~] + 1 - -  e~. Strictly, 
it holds only for e 3. # 0 but the analysis yields the same final result if one takes 
E~. = 0. Let tj be such that 

Then  

I t  easily follows that 

s; + t; = K ; .  

s~LKj+x/KA + t j F g j ÷ ~ / K j ]  = g j +  1 . (11) 

s~ = (1 - ~ ) K ~ ,  

tj = EjK i , (12) 

and the complexity contributed by the j th  level is equal to 

K 7  ~ . logtKj+,/KjJ(*-~?K" [K~+~/KK~K, 

_ K ~J - l o g t K ; + l / & J  1 -~ , .  [K,.+I/ ;1 • I 

We can now derive the interesting result that the level-complexity of any 
decision tree (of the type we are considering) is bounded by the log of the number  
of leaves. 

THEOREM 2.2.2. For any decision tree T with h levels and K leaves we have 

C T ~ log(K) 

and equality holds i f  and only i f  K~ I K~+~for 0 ~ j < h (where K o .... , KT~ are the 
level-characteristics of T). 

Proof. The  maximum level-complexity a tree T can have is given in Lemma 

2.2.1. 
The  result is immediate for h = 1, so let us assume that h /> 2. Consider an 

arbitrary expression 

[Kj+/K~l t-~j " [gj+l/g~] ~'. 

I f  Kj  ] K3.+1 then it equals Kj+I/K j . 
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I f  K~ ¢ Kj+ 1 then Kj  < Ks+ 1 (strictly) and 0 < Ej < 1. Let  Ij = [Ks+I/K~.J, 
uj = [Ks+a/Ks], and observe that now us = ls + 1. By the generalized Bernoulli 
inequality (Mitrinovic, 1964), we have 

(1 + 1/lj) ", < 1 + ~j,,ls 

=> ls(1 + 1/ls) ~s < ls 47 es 

- -  l l-~j - ( l j  + 1) ~j < / 3 .  @ 9 - -  - j  (13) 

I t  follows that [K~+I/Kj] 1-~, " [Ks+,fK~l~s < [Ks+I/KjJ @ ej = Ks+I/K s . 
In  both cases the level-complexity may be estimated as 

log K 1 + log K2/K1 + "'" + log K~/K~,_I = log K 

b u t  equality holds only if Kj  I Ks+l for all relevant j 's .  | 

I t  is now easy to prove that the max imum complexity of decision trees with K 
leaves must always be "close" to log K even if we demand that K s < Ka.+l for 
all j. 

PROPOSITION 2.2.3. limK_,~o Uu(K)/log K = 1. 

Proof. By Theorem 2.2.2, we know that Uh(K) <~ log K. For each K this 
bound is achievable with a decision tree of level characteristics K o = 1, K1 = K, 
a n d K j  ~ - K j +  l fo r1  ~ j < h .  

I f  we require that Kj  < Kj+ 1 for 0 ~ j <~ h, then we can get arbitrarily close 
to log K (as K - ~  oo) by taking a decision tree with characteristics 
Kj = K - - h + j .  ! 

The  results of Theorem 2.1.3 and Proposition 2.2.3 completely determine 
(asympotically) the range of level-complexity for decision trees with h levels and 
K leaves. 

2.3. A Comparison of Level-Entropy and Path-Entropy 

T h e  concept of level-complexity as we defined it is by no means the only 
measure for decision trees that has been considered. Whereas we have attempted 
to find a meaningful global measure, Green (1973) introduced the concept of 
path-entropy to estimate the average number  of comparisons needed to reach 
a specific leaf. In  this section, we argue that level-complexity and path-entropy 
behave quite differently and measure entirely different kinds of distributions 
in a tree. 
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For any leaf I in a tree T, let ~q = s 1 ,..., s~ be the unique path from the root 
to 1. A measure for the number  of comparisons needed to reach I is 

H(~r 0 = ~ log degree(s~). 

Let  T contain K leaves l 1 .... , lK. 

K 
DEFINITION. T h e  path-entropy of T is H(T)  = ( l fK)  Z i= l  H(rq~). 
I t  is interesting to contrast our results for level-complexity with those of Green 

for path-entropy. For one thing, Green showed that 

log K ~ H(T)  <~ (K --  1)(K Jr  2) 
2 (14) 

for any tree T with K leaves. This  is completely disjoint from the range for 
level-complexity, which we established for our trees. In  fact, it appears that the 
level-complexity of a tree is maximal (see Theorem 2.2.2) just when the path ,  
entropy is the smallest! I t  is easy to see that 

level-complexity ~ path-entropy (15) 

for all trees, with equality holding only if both entities assume the value of log K.  
A "large" value of level-complexity was earlier an indication of a rather even 

distribution of effort at each level, which seems to concur with the fact that  
for such trees the path-entropy tends to be "small ."  I f  an even distribution is 
desired, the effectiveness of the QO may be measured by the increase of level- 
complexity towards log K. I t  is not true, though, that a rising value of the level- 
complexity through local reorganization of a tree means a falling value of the 
path-entropy (or conversely). 

PROPOSITION 2.3.1. CT1 < Cr 2 ¢~ H ( T  0 > H(T2) 

Proof. 
Consider the tree T1 in Fig. 2, and calculate the change of measure if we move 

node z to a new father y (in T~). 
Calculating how the contributions in the formulas change, we obtain 

1 
Cr~ - -  Cr2 = - ~  [log a -t- log b - -  log(a - -  1) - -  log(b @ 1)] 

1 ab 
- -  log 

K 1 a b - } - a - - b - - 1  
Thus,  

(i) 
(ii) 

the level-complexity increases if a > b + 1, 

the level-complexity decreases if a ~ b -]- 1. 
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root 

/ \ 

x TI 

I ~  / 
i I tt I I "~ 

Fro. 2. 

root 

T 2 

x 

A change in the tree results in a change in the complexity measure. 

T h e  change in path-entropy is harder  to compute. Le t  us identify x, y,  and z 
with their  weights, i.e., the number  of nodes (in tree T1) in the subtree of each 
of these nodes. Then  

H(T1) - -  H ( T D  

1 
- ~ -  Ix log a + y log b - -  (x - -  z) 1og(a - -  1) - -  (y  + z) log(b + 1)] 

[ 1 x log  a - -  1 ----- ~ - -  - -  y log  1 + ~j  - z aog a - ~ T -  1 ] '  
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where we have to assume (obviously) that x > z. The freedom in choosing the 
parameters gives us the desired conclusion: 

(i) Assume a > b + 1, thus the level-complexity increases. Fixing z, 
it depends on the relative values of x andy  whether H(T1) > H(T2) or H(T1) < 
H(T2) 

(ii) Assume a < b + 1, thus Crl > Cr2. Again, a similar conclusion 
follows. | 

The proof of Proposition 2.3.1 shows that level-complexity and path-entropy 
can differ for quite unrelated reasons. As we are not directly interested in the 
complexity of reaching a leaf but rather want to measure the distribution of 
decisions throughout the tree, level-complexity is the more advantageous 
criterion for our present purposes. 

3. THE QUAsi-OPTIMIZER 

We discuss the QO program in a general context first. Consider an environ- 
ment in which several organizations compete to achieve some identical goal. 
We may assume, for the sake of generality, that a goal vector is specified whose 
components need not be orthogonal in real-life situations. Each organization 
perceives the task environment by observing and measuring certain relevant 
parameters. Each organization has a strategy for interpreting its observations, 
resulting in a course of action leading to goal achievement. At any moment in 
time, the rules of the competition and the past and current actions of the 
participants determine the next state of the environment. 

One must bear in mind that the environment as perceived by each organization 
is unclear, because some information may be unavailable, missing (risky or 
uncertain--whether or not the relevant probability distributions are known, 
respectively), or obscured by noise. The latter may be caused by latent environ- 
mental factors or deliberate obfuscation by competitors. Further, conflicts and 
biases within the organizations can also lead to erroneous measurements. I f  the 
decisions based on such information are less correct than those of the compe- 
titors, resources will be wasted and goal attainment will be further removed. 

Let us now consider the situation where a new organization wants to enter the 
competition. In  trying to construct a strategy for itself, it observes the environ- 
ment and the actions by other organizations. I t  will, in fact, build models of their 
strategies and extract the components which appear to be the best under 
particular conditions. An appropriate combination of such components should 
result in a "quasi-optimum" strategy which is normative against the given set 
of competitors. 

We now describe the major phases of the QO program. Although its goals can 
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be described in the above general context, we use the conceptual framework of 
poker for the sake of the following discussion [see Findler (1977) for details of 
tile project]. 

3.1 Gaming Experiments with Input Strategies 

Input strategies of competing players are provided in terms of impenetrable 
"black box" programs. In order to analyze and process the information embedded 
in them, one must represent the inferred strategies in the form of some uniform 
structure. The two obvious choices are Production Systems [see, e.g., Waterman 
(1970)] and Decision Trees. In view of our experience with the latter in the poker 
project, we have chosen decision trees. Decision trees are relatively easy to 
to generate, compare, and modify, both in terms of structure and contents. 

The QO program is first given the set of all possible decision criteria (levels 
of discrimination on the trees) and the maximum range of each criterion. The 
-values of the decision criteria can be numerical (e.g., "the number of players 
still alive is three"), in the form of rank numbers (e.g., "the player who has 
just raised is the most easy to outbluff"), or symbolic (e.g., "the games played 
so far are on the conservative side"). The objective of this phase of the QO is 
to construct decision trees which characterize the strategy of every machine 
player through a simulated question-answer technique ("what would you do 
if the game-situational and opponent-personality variables assume such-and- 
such value combinations ?"). The information initially given about all decision 
criteria and their ranges makes sure that the experiments span the whole game 
space. Whenever some variable has no effect of discrimination in a strategy, 
the program inserts nonbranching nodes at the appropriate level. Thus every 
decision tree will be of equal height. 

3.2 The Construction of a Super Tree 

The next phase of the QO program aims at building a "Super Tree", which 
carries all the necessary information contained in the individual decision trees. 
The  output of phase one, the descriptive theories of player strategies, provides 
the input for this second phase. The Super Tree must be as little redundant as 
possible so that the final, optimization phase may be within manageable limits. 

A crude version of the Super Tree would be simply the "join" of the input 
trees (see later). We need some heuristic rules to eliminate much of its redun- 
dancy, provided the rules are computationally inexpensive and effective. We 
describe the adopted heuristic in detail in the next section. After optimizing in 
a top-down manner, the QO must finally reach the leaf level. Specific game 
actions, as the result of discrimination decisions, are attached to the leaf nodes 
of the Super Tree. As different strategies may and often do recommend different 
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actions, some leaves may be populated by several conflicting actions. I t  is left 
to the third phase of the QO program to eliminate this inconsistency. 

The third phase has two objectives: (a) selection Of the best of possibly several 
decisions at the leaf level, and (b) further simplification of the Super Tree by 
possibly merging levels of decision criteria. The latter could be accomplished 
by chunking some variables together. We are not concerned with such a process 
in the present paper. 

4. THE POWER OF THE HEURISTICS USED FOR SIMPLIFYING THE 
CRUDE SUPER TREE AND A NUMERICAL EXAMPLE 

The QO program explained in the previous section takes as input a collection 
of decision trees of varying complexities, and forms a crude Super Tree as the 
"join" of these trees. I t  then attempts to optimize the tree by some heuristic 
rules. We pick up the actions of the QO as it forms the Super Tree. Consider 
the three input trees in the top part of Fig. 3 as an example. 

8 Actions 

Input Tree A 

Input Tree B 

Input Tree C 

The Super Tree 

~0 

~c ' n 

FIG. 3. The construction of the Super Tree from three input trees. 
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The crude version of the Super Tree is the "join" of the input trees. I t  means 
that the number of branches emanating from a node of the crude Super Tree is 
the algebraic sum of the branches (discounting identical subranges) emanating 
from the equivalent nodes of every input tree. Figure 4 illustrates this idea by 
showing the first level of a crude Super Tree computed from the levels one of 
the three input trees. The result seems to contain not only all the necessary 
information but much more. We now describe in detail the adopted heuristic 
for eliminating much of the redundancy. 

0 50 100 

0 30 70 100 

J ' 1 
0 60 100 

Level 1 of Input Tree I 

Level I of Input Tree 2 

Level 1 of Input Tree 3 

i , , I 1 Level I of the crude 
0 30 50 60 70 100 

i Super Tree; MOR=I00-70=30t 
MIR=30/2=15 

i' I f l 
0 30 60 100 Level 1 of the Super Tree 

FIG. 4. Computations leading to the level 1 values of the Super Tree. 

Let us first convert rank numbers and values of symbolic discrimination 
criteria to numerical ranges. (This is no problem as they were obtained from 
numerical comparisons in the first place). Next we can define for each level 
a Maximum Input Resolution (MIR). I t  is the shortest distance on any input 
tree between any two adjacent demarkation points (DPs)--that is, the smallest 
subrange which belongs to any branch coming to this level. (This is 30 from 
Input Tree B on Fig. 1). The Maximum Output Resolution (MOR)-- that  is, 
the shortest distance between any two adjacent DPs at this level of the Super 
Tree-- is  taken to be one-half of 1VfIR (15 in our example on Fig. 4). There is 
no need to use a more refined mode of discrimination. Our reason for halving 
the M I R  is that DPs are fuzzy because (i) the strategies of players are fuzzy, 
(ii) the models themselves are error-prone and not completely consistent. We 
have assumed that the extent of fuzziness of a DP on the input trees is one-quarter 
of the adjacent subranges, pointing both ways into the subranges (see Fig. 5). 
What is left "certain," one-half of MIR, is chosen to be MOR. 

The program now locates groups of DPs at level one of the crude Super Tree 
so that within each group, adjacent DPs are closer than the MOR (DPs 50, 60, 
and 70 in the example). A new DP will be fixed at the arithmetic average of the 
values of DPs within each group. (This happens to be the "new" DP 60 on the 

643/4o[I-2 
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exemplary Super Tree.) The DPs which are within :hMOR of the new point 
are now eliminated (DPs 50 and 70 in the example). To generate the next and 
later levels of the crude Super Tree and, from these, the levels of the Super Tree, 
we introduce some more concepts. 

Let us define a Path Vector (PV) on a decision tree, starting at the root and 
ending at a level desired. The nodes passed through represent its components. 
A particular PV on the Super Tree has one or several Equivalent Path Vectors 

subranges 

. . .  \ \ \ X  ~\\\~ ~ \ \ \ '  ,~\\\~, ~\\\\' ~\\~ ... 
, \ \ \ \  \ \ \ 4  ~ \ \ ~  ~\~l  X\\~ X\\\  

_ x Q _  x/2 ~ ~/"L Y/"& y/2 _ 7/ .  _: 

Fic. 5. The fuzzy and the certain parts of subranges. 

(EPVs) on each input tree because of partially or totally overlapping subranges. 
(For example, the subrange 30-60 of level 1 on the Super Tree corresponds to 
two subranges, 0-50 and 50-100, on Input Tree A.) 

The  second (and further) levels of the crude Super Tree are established by 
forming the union of the sets of nodes at the end of all EPVs which correspond 
to a given PV on the Super Tree constructed so far. To illustrate the method, 
we have shown the computations step by step with three input trees and the 
final Super Tree on Fig. 3 and in Table I. The numbers in the nodes represent 
the values of the upper DPs of the corresponding subranges. The total range 
of the value of each decision variable has been "normalized" to between 0 and 
100. 

We define the power of a heuristic rule as the relative reduction in the complexity 
of computations, due to the use of the heuristic in question. Therefore, the 
power of the heuristic applied to the crude Super Tree can be defined as 

C~b __ C 8 
P = c *  ' (16) 

where C* and C s are the level-complexity of the crude Super Tree and of the 
Super Tree, respectively. C s has to be computed the same way as the complexity 
of input trees using Equations (1) [or (1')] and (2). However, we can derive 
a reasonable upper bound of the complexity C* of the crude Super Tree. The  
worst case occurs when at any level, there are no identical subranges of decision 
criterion values between input trees. The number of nodes at levelj of the crude 
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Super Tree is the algebraic sum of the nodes at this level of input trees ("join" 
was chosen to be the name for the operation on nodes), 

N 

K,* = E (17) 
i=i 

Here and later, the asterisk refers to crude Super Tree variables. Instead of 
just one, there are now N path vectors which belong to a given game situation. 
To get the j th  component of each PV, the program would make 

N Ki9 N 

c t  = Z ,, Z logr,, k = L C,, (18) 
/ = I  £=1 /-=1 

comparisons. In other words, for each level the upper bound of the level- 
complexity of the crude Super Tree is equal to the sum of the corresponding 
level-complexities of the input trees. Thus we may estimate the level-complexity 
C* of the crude Super Tree by 

h 
C* = Z C*. (19) 

j=0 

We give the results of the computations performed by the program, using 
the input trees specified in Fig. 3. The total level-complexity of the three input 
trees is 3.44, 3.99, and 3.41, respectively. The sum of these, that is, the theoretical 
upper bound of the total level-entropy of the crude Super Tree, is 10.84. 
However, because the rang e of every decision criterion is normalized to between 
0 and 100, the extreme DPs coincide and the actual total level-complexity of 
the crude Super Tree is only 4.87. The Super Tree itself has a total level-entropy 
of 2.02. The power of the heuristics used can, therefore, be calculated as (4.87- 
2.02)/4.87 = 0.58. 

We parenthetically note that in order to calculate the power of heuristics, the 
program can always use the actual complexity of the crude Super Tree rather than 
the theoretical upper bound. 
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