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Liver regeneration
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In this ‘Snapshot’ article, we take a fresh look at the fundamentals
of liver regeneration in light of recent technical innovations.
While the mammalian response to partial hepatectomy (PH)
has been studied for decades [1,2], in recent years the use of
new experimental techniques has not only lead to a re-affirma-
tion of basic principles of regeneration initially described by
Nancy Bucher and others [3]; it also highlights remaining ques-
tions. PH leads to tightly synchronous rounds of replication,
and given that the remaining liver is uninjured, it offers a physi-
ological way to study both proliferative pathways in normal
hepatocytes and abnormal regeneration in genetically modified
mice. Liver regeneration after PH has provided a deeper under-
standing of mammalian cell proliferation in vivo, and may pro-
vide molecular insights into the interminable self-renewal of
mature cells, a property often ascribed exclusively to stem cells.
Hepatocytes appear to be cell autonomous in deciding their rep-
lication fate. This concept is based on an amalgam of work from
many laboratories, and has been well illustrated by Weglarz and
Sandgren [4]. These investigators transplanted mouse hepato-
cytes into a rat liver and then performed 2/3 PH. The mouse hepa-
tocytes divided at 40 h, in contrast to the surrounding rat
hepatocytes, which divided at 24 h. Each hepatocyte maintained
its own proliferative cadence despite similar endocrine and para-
crine influences. These findings are complemented by a recent
study by Wu et al., in which sequential injections of differently
labeled nucleotide analogs were used to determine the time
course of hepatocytes’ proliferation in different zones of the liver
lobule [5]. They demonstrated that there are three peaks of DNA
synthesis after PH, initially in zone 1, then in the mid-lobule
(Fig. 1A). Interestingly, 15% of pre-existing hepatocytes never
divide after PH, while 11% divide at least three times. Whether
this phenomenon is due to proximity to portal nutrients, contact
with specific non-parenchymal cells (NPCs), altered hemodynam-
ics, or purely intracellular events is yet unknown. How does a
hepatocyte that just has divided choose to exit the cell cycle,
while its sister proceeds through another round of proliferation?

Whether new hepatocytes in the regenerating liver are
derived from adult hepatocytes, intrahepatic stem cells, or circu-
lating stem cells is an ongoing controversy. Early experiments
suggested the former case, but in the current era of stem cell
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biology, many authors have favored the hypothesis of an expan-
sion of a progenitor cell population during regeneration and nor-
mal liver homeostasis, the so-called ‘streaming liver hypothesis’
[6]. Willenbring and colleagues have recently addressed this
question by developing a means of stably expressing enhanced
yellow fluorescent protein (EYFP) in adult hepatocytes [7]. This
system allowed them to ‘fate map’ these cells over time, and to
confirm that adult hepatocytes are the source of new cells during
normal liver homeostasis. Further, they found that after PH, the
vast majority (�99%) of new hepatocytes came from pre-existing
adult hepatocytes, confirming that progenitor cells do not play an
important role in normal liver homeostasis and regeneration. The
use of these innovative techniques, in conjunction with experi-
mental models of inflamed, fibrotic, or fatty livers undergoing
resection, will further increase our understanding of compro-
mised regeneration, as progenitor cells may play a more promi-
nent role in restitution of hepatocyte mass during liver injury [8].

In addition to hepatocyte-autonomous signals (Fig. 1B), endo-
crine and paracrine factors are critical to normal regeneration,
and extensive work has focused on the role of the liver microen-
vironment, i.e. NPCs and the extra-cellular matrix (ECM), in liver
homeostasis and regeneration [1,2,9] and (Fig. 1C). Recent studies
from Shahin Rafii’s laboratory have focused on the role of endo-
thelial cells in supporting normal hepatocyte proliferation and,
more predictably, in restoring functional vasculature to the
regenerating liver [10]. Other NPCs, such as Kupffer cells, stellate
cells, and intrahepatic lymphocytes also provide critical signals to
hepatocytes during regeneration [8], (Fig. 1B); we predict that
these intercellular interactions would be even more crucial dur-
ing regeneration in livers with an altered microenvironment
[9,11]. For example, do steatosis, inflammation and fibrosis
shorten the self-renewal capacity of hepatocytes? Would para-
crine signaling pathways override the hepatocyte cell kinetics
or the indefatigable capacity to replicate? In elegant experiments
aimed at addressing the role of the abnormal microenvironment
in affecting hepatocyte function and proliferation, Liu et al. iso-
lated primary hepatocytes from normal rats and from rats with
compensated or decompensated cirrhosis [12]. They then per-
formed repopulation experiments with those cells, and found
that hepatocytes from normal rats or compensated cirrhotics
were immediately able to engraft and proliferate in the normal
microenvironment of the recipient liver. Interestingly, though
the hepatocytes from rats with decompensated cirrhosis initially
did not expand (or produce albumin), after two months in the
recipient, their function was re-established. It would be fascinat-
ing to know how these cells would respond to a proliferative
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stimulus at this later time point. Our hope and anticipation is that
the use of innovative approaches, such as those outlined above,
will lead to a deeper understanding of liver regeneration, so that
therapies will soon be available for patients with acute and
chronic liver failure, and will facilitate liver resection in patients
who would not otherwise have been considered as surgical can-
didates [11].
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