
Topology and its Applications 104 (2000) 237–253

Tri-quotient maps become inductively perfect with the aid of
consonance and continuous selections✩

Michel Pillot

12 traverse de Montporcher, 71200 Le Creusot, France

Received 27 November 1997; received in revised form 18 June 1998

Abstract

Generalizing the result of Arhangel’skii that each open map withČech-complete domain is
compact-covering, it is proved that every tri-quotient map with consonant domain is harmonious, thus
compact-covering, and its range is consonant. The latter constitutes a strong answer to a question of
Nogura and Shakhmatov. Conditions for harmonious maps to be inductively perfect, or countable
compact-covering and for countable compact-covering maps to be harmonious are given. They
extend theorems of Just and Wicke. 2000 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, all the mapsf :X→ Y are continuous and onto.
Tri-quotient maps have been introduced in [13] by Michael in a study of the preservation

of Čech-completeness and sieve-completeness. Open maps and perfect maps are tri-
quotient, and every tri-quotient map is bi-quotient.

The same year, in [18, Theorem 1], Ostrovsky, in the proof of this theorem, uses three
properties which put together a second definition of tri-quotient maps.

In [20], answering a question of Michael [13], Uspenskij proves that tri-quotient maps
are preserved by infinite products. To this end, he uses a characterization of tri-quotient
maps that is essentially a rewriting of the three properties given by Ostrovsky in [18].
A map f :X→ Y is tri-quotient if and only if there exists a continuous mappingR
from Y to the setD(X) of compact families1 (of open subsets ofX) endowed with

✩ This paper is a part of a PhD thesis written under the supervision of Professor S. Dolecki. I would like to thank
him for many valuable suggestions.
1 The notion of compact families is introduced by Dolecki, Greco, Lechicki in [7].
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the Stone topology (similar to that usually considered on the set of all ultrafilters onX).
Moreover, every compact familiesR(y) must be supported byf−1(y). Of special interest
are compactly generated compact families that is, compact families generated by compact
subsets. A tri-quotient map with a defining functionR valued in compactly generated
compact families is called harmonious by Ostrovsky.

Michael [13], Just and Wicke [10,11], Debs, Saint Raymond [5,6], Ostrovsky [19,17]
and others have studied the relationship between tri-quotient maps and inductively perfect
maps, compact-covering maps, countable compact-covering and harmonious maps. In
these papers, essentially in [5,6], it turns that these four last notions can be characterized
by the existence of certain (possibly multivalued) mappings from some spaces of compact
subsets ofY to the set of compact subsets ofX.

f inductively perfect

Φ :Y →KX ⇔ Ψ :KY →KX
f (Φ(y))= {y} f (Ψ (K))=K
Φ continuous Ψ continuous

⇓
f compact-harmonious ⇒ f compact-covering

Φ :KY ⇒KX Φ :KY ⇒KX
∀C ∈Φ(K)f (C)=K ∀C ∈Φ(K)f (C)=K
Φ lower semicontinuous

⇓ ⇓
f s-harmonious ⇒ f countable compact-covering

Φ :ℵ0KY ⇒KX Φ :ℵ0KY ⇒KX
∀C ∈Φ(K)f (C)=K ∀C ∈Φ(K)f (C)=K
Φ lower semicontinuous

⇓
f harmonious

Φ :Y ⇒KX
f (Φ(y))= {y}
Φ lower semicontinuous

⇓
f tri-quotient

R :Y →D(X)

R(y) supported byf−(y)
R(y) continuous
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The previous diagram, wheref is a map fromX to Y , gives such characterizations of
the principal classes of maps studied in this paper. DenoteKX (respectivelyℵ0KX) the set
of all nonempty compact subsets (respectively countable compact subsets) ofX endowed
with the upper Vietoris topology.

I have observed that in several theorems about the relationship between tri-quotient maps
and inductively perfect maps, the hypothesis provide that tri-quotient maps are harmonious
and therefore these results can be obtained with the aid of selection theorems for lower
semicontinuous multivalued mappings of Michael [14].

On the other hand, consonant spaces are exactly the spaces where all the compact
families are compactly generated, and it is known thatČech complete spaces are consonant
(see [8] of Dolecki, Greco and Lechicki). Therefore consonance is an essential condition
under which tri-quotient maps become harmonious or compact-harmonious.

In this paper I prove that tri-quotient maps with every consonant fiber are harmonious.
After Arhangel’skii that have proved that every open map from aČech-complete topology
is compact-covering [1, Theorem 1.2] and Bouziad in [3] that have generalized this result
to the effect that each open map from a consonant topology is compact-covering, I show
that every tri-quotient map with consonant domain is compact-harmonious hence compact-
covering. On the other hand, I prove that sieve complete spaces are consonant. Finally I
give the following result:

Theorem 1.1. Every harmonious mapf :X→ Y from a regular monotonic p-spaceX
onto a countable regular spaceY , is inductively perfect.

Theorem 1.1 extends the following theorems:

Theorem 1.2 (Michael [15, Theorem 1.4]).Every tri-quotient mapf :X→ Y from a
metric spaceX onto a countable regular spaceY , with eachf−1(y) completely metrizable,
is inductively perfect.

Theorem 1.3 (Just and Wicke [10, Theorem 3.1]).Every tri-quotient mapf :X→ Y

from a regular monotonic p-spaceX onto a countable regular spaceY , with eachf−1(y)

sieve complete subspace, is inductively perfect.

2. Compact families

Throughout this paper, for every subsetA of a topological spaceX, we denote

O(A)= {U ∈OX: A⊂U}
whereOX is the family of all open subsets ofX, and

O(A)=
⋃
A∈A
O(A)
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for every family of subsets ofX. 2 A family S is compact provided that:
• O(S)= S,
• for everyQ⊂OX ,⋃

Q ∈ S⇒∃P ⊂Q (|P |<∞ and
⋃
P ∈A). (2.1)

I consider onD(X), the set of all compact familiesX, the topology generated by the
family {Ũ : U ∈OX}, whereŨ = {S ∈D(X): U ∈ S}. I call it theStone topologybecause
its definition is similar to the classical one on the set of all ultrafilters onX. It is clear that a
subsetK of X is compact if and only ifO(K) is compact. More generally, ifK is a family
of compact subsets ofX, thenO(K) is a compact family ofX.

We say that a compact familyA is compactly generatedif A=O(H) for someH⊂KX .
We will denoteDK(X) the set of all compactly generated compact families.

Throughout this paper, the setKX of all nonempty compact subsets ofX is endowed
with the upper Vietoris topology which is generated by the family{Ũ : U ∈OX} where

Ũ = {K ∈KX: K ⊂U}. (2.2)

Observe the following series of homeomorphic embeddings:

X→KX→KX→ 2KX→D(X),
where 2KX denotes the set of all subsets ofKX and is endowed with the lower Vietoris
topology relative to the upper Vietoris topology onKX . 3 It is known that a multivalued
mappingΦ :X⇒ Y between two topological spaces is lower semicontinuous if and only
if it is continuous as a map fromX to Y endowed with the lower Vietoris topology relative
toX. Notice thatDK(X) and 2KX , respectively endowed with the Stone topology and the
lower Vietoris topology are homeomorphic.

In the following proposition, the spaceY is considered as a subset ofD(Y ) endowed
with the Stone topology.

Proposition 2.1. Let X and Y two topological spaces. Each continuous mapR :Y →
D(X) has a continuous extensioñR :D(Y )→D(X) such that

R̃(A)=
⋃
A∈A

⋂
y∈A
R(y).

Proof. LetA be a compact family ofY . Consider the family

R̃(A)=
⋃
A∈A

⋂
y∈A
R(y).

The familyR̃(A) is compact inX.

2 For every filterF on a topological spaceX, we calladherenceof F the set adhF =⋂{clF : F ∈F}. A family
A meshesa family B (in symbolsA#B) if and only if A ∩ B 6= ∅ for everyA ∈A and everyB ∈ B. A family
S is compactoid(respectivelycompact) if and only if for every filterF onX that meshesS , one has adhF 6= ∅
(respectively adhF meshesS).
3 Let A# = {B ⊂ X: B ∩A 6= ∅}. If X is a topological space, then lower Vietoris topology on 2X relative to the
topology ofX is generated by the family{U#: U ∈OX}.
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Let U ⊂ V two open subsets ofX. If U ∈ R̃(A) then there exists anA ∈A such that
U ∈ R(y) for everyy ∈ A. ThusV ∈ R(y) for everyy ∈ A andv ∈ R̃(A) and hence,
O(R̃(A))= R̃(A).

Let E be a family of open subsets ofX. If
⋃
E ∈ R̃(A) then there exists anA ∈ A

such that
⋃
E ∈R(y) for everyy ∈ A. Let y ∈ A, by compactness ofR(y), there exists

a finite subfamilyEy ⊂ E with
⋃
Ey ∈ R(y). By continuity ofR, there exists an open

neighborhoodWy of y such that
⋃
Ey ∈R(w) for eachw ∈Wy . SinceO(R̃(A))= R̃(A),

the open set
⋃
y∈AWy is inA and thus, by compactness ofA, there exists a finite subsetA0

of A such thatW =⋃y∈A0
Wy ∈A. The set̃E = {E ∈ Ey : y ∈ A0} is a finite subfamily

of E . If w ∈ W , then there existsy ∈ A0 such thatw ∈ Wy thus,
⋃
Ey ∈ R(w). Hence⋃

Ẽ ∈R(w) for everyw ∈W and sinceW ∈A, then
⋃
Ẽ ∈ R̃(A).

The mapR̃ is continuous. IfR̃(A) ∈ Ũ , that isU ∈ R̃(A), then there existsA ∈ A
such thatU ∈ R(y) for everyy ∈ A. By continuity ofR, for everyy ∈ A, there exists
Vy ∈ O(y) with U ∈ R(v) for every v ∈ Vy . The open setV =⋃y∈A Vy ∈ A, that is

A ∈ Ṽ , andR̃(S) ∈ Ũ for everyS ∈ Ṽ . 2

3. Tri-quotient maps and others classes of maps

In [13] Michael introduces tri-quotient maps. The following definitions are written
verbatim.

Definition 3.1. A continuous and onto mapf :X→ Y is tri-quotient if there exists a map
t fromOX toOY such that:

(1) t (U)⊂ f (U);
(2) t (X)= Y ;
(3) U ⊂ V implies t (U)⊂ t (V );
(4) if y ∈ t (U) andW is a cover off−1(y)

⋂
U by open subsets ofX, then there is a

finiteF ⊂W such thaty ∈ t (⋃F).
The same year, in [18, Theorem 1], Ostrovsky, in the proof of this theorem, uses three

properties which put together a second definition of tri-quotient maps (see also [19]).

Definition 3.2. A continuous and onto mapf :X→ Y is tri-quotient if, for everyy ∈ Y ,
there exists a familyηy of open subsets ofX such thatX ∈ ηy and

(1) if U ∈ ηy andγ is a cover ofU ∩ f−1(y) by open subsets ofX, then there exists a
finite numberk of elements ofγ such that

⋃k
i=1Ui ∈ ηy ;

(2) if U ∈ ηy theny ∈ intf (U);
(3) if U ∈ ηy then there is a neighborhoodO(y) such thatU ∈ ηξ for everyξ ∈O(y).

In [13] Michael shows that tri-quotient maps are preserved by finite products and
asks whether tri-quotient maps are preserved by infinite products. In [20, Proposition 1],
Uspenskij answers in the affirmative. In that paper, he rewrites the characterization of tri-
quotient maps of Ostrovsky [18,19] in terms ofQ-systems. TheseQ-systems are precisely
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compact families in our definition [8]. A familyS of open subsets ofX is supportedby a
family E of subsets ofX wheneverU ∈ S, U ∩E = V ∩E for someE ∈ E , thenV ∈ S.
This amounts toU ∈ S if and only if there existsE ∈ E such thatU ∩ E ∈ S|E , where
S|E = {U ∩E: U ∈ S}.

Definition 3.3 [20, Proposition 1]. A mapf :X→ Y is tri-quotient if and only if there
exists a continuous mapR :Y → D(X) such that for everyy ∈ Y the familyR(y) is
supported byf−1(y).

Actually, the assignmentt and the mappingR are related by:

U ∈R(y)⇔ y ∈ t (U). (3.1)

If f is a map fromX toY andA a family of subsets ofY , I denotef−(A)= {f−1(A): A ∈
A}. Here is a third characterization of tri-quotient maps.

Proposition 3.4. A mapf :X→ Y is tri-quotient if and only if there exists a continuous
mapR :D(Y )→ D(X) such that for everyA ∈ D(Y ) the familyR(A) is supported by
f−(A).

Proof. If there exists a continuous mapR :D(Y )→D(X) such that for everyA ∈D(Y )

the familyR(A) is supported byf−(A), its restriction toY satisfies the condition of
Proposition 3.3.

Let f :X→ Y be a tri-quotient map and letR :Y →D(X) be a corresponding map in
the characterization of Proposition 3.3. By Proposition 2.1, the mapR has a continuous
extension toD(Y ).

Let U andV two open subsets ofX. If there existsA ∈ A such thatU ∩ f−1(A) =
V ∩ f−1(A) and U ∈ R(A), then for everyy ∈ A, U ∩ f−1(y) = V ∩ f−1(y) and
U ∈R(y). ThereforeV ∈R(y) for everyy ∈A that isV ∈R(A). Hence the familyR(A)
is supported byf−(A). 2

Here are two examples of tri-quotient maps given by Michael in [13, Theorem 6.5] with
their t-assignment and the mapR :Y →D(X).

Example 3.5.
(1) Each open map is tri-quotient. In this case,t (U)= f (U) for every open subsetU

and for everyy ∈ Y ,R(y)= f−1(y)#= {U ∈OX: U ∩ f−1(y) 6= ∅}.
(2) Each perfect map is tri-quotient. Putt (U) = f (Uc)c for every open subsetU and
R(y)= {U ∈OX: f−1(y)⊂U} for everyy ∈ Y .

In these examples, each familyR(y) is compactly generated[21] by compact subsets of
f−1(y). As we have seen in Section 2, the existence of a continuous mapR :Y →DK(X)

amounts to the existence of a lower semicontinuous multivalued mappingΦ :Y ⇒KX . As
in [5], a multi-valued mappingΦ :Y ⇒ 2X is a lifting for the mapf :X→ Y if

∅ 6=
⋃
Φ(y)⊂ f−1(y) for everyy ∈ Y.
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In [17], Ostrovsky introduces harmonious maps.

Definition 3.6. A continuous and onto mapf :X→ Y is harmoniousif, for everyy ∈ Y ,
there exists a non-empty familyµy of open subsets ofX such that:

(1) if U ∈ µy then there is a non-empty compact setB ⊂ f−1(y) ∩ U such that, for
everyV ⊃ B, we haveV ∈ µy ;

(2) if U ∈µy then there is an open setO(y) 3 y such thatU ∈ µw for everyw ∈O(y).

When KX is endowed with the upper Vietoris topology, we have the following
characterization of harmonious maps.

Proposition 3.7. A map f :X → Y is harmonious if and only if there is a lower
semicontinuous lifting4 Φ :Y ⇒KX for f .

Proof. Let f :X → Y be an harmonious map. It is clear thatµy = O(µy) for every
y ∈ Y . The first part of condition (1) induces a multivalued mappingΦ :Y ⇒ KX such
thatB ⊂ f−1(y) andµy ⊂ O(Φ(y)) for everyy ∈ Y . The conditionV ∈ µy for every
V ⊃ B amounts toO(Φ(y))⊂ µy for everyy ∈ Y and hence,O(Φ(y))= µy .

LetU be an open subset ofX. We have to prove that

V = {y ∈ Y : Φ(y)∩ Ũ 6= ∅}
is an open subset ofX. A pointy ∈ V if and only if there isB ∈Φ(y) such thatB ∈ Ũ that
is,B ⊂U . This amounts toU ∈O(Φ(y)). HenceU ∈ µy and by condition (2), there is an
open setO(y) 3 y such thatU ∈ µw for everyw ∈O(y) that isU ∈O(Φ(w)) for every
w ∈O(y). Therefore,O(y)⊂ V .

Conversely, iff :X→ Y is an harmonious map with a lower semicontinuous lifting
Φ :Y ⇒KX , the familyµy =O(Φ(y)) is suitable for the definition. 2

This characterization amounts to Property A introduced by Just and Wicke in [11,
Definition 3.0] for maps with a metric space as domain.

Proposition 3.8. A mapf :X→ Y is harmonious if and only iff is tri-quotient and the
definingR(y) is compactly generated by a family of subsets off−1(y).

Proof. If f is harmonious withΦ :Y →KX a lower semicontinuous lifting, let

R(y)= {U ∈OX: ∃K ∈Φ(y) K ⊂U}.
ThenR :Y →D(X) is continuous and supported byf−1(y) for everyy ∈ Y .

Conversely, iff is tri-quotient and the familyR(y) is compactly generated by a family
of compact subsets off−1(y), thenΦ :Y → KX whereΦ(y) is the family of compact
subsets off−1(y) that generatesR(y) is a lower semicontinuous lifting off . 2
4 In [5], Debs and Saint Raymond say that the map has quasi-upper semicontinuous lifting.
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Ostrovsky also introduces compact-harmonious maps and s-harmonious maps. Denote
ℵ0KY the set of all nonempty countable compact subsets ofY . A map f :X→ Y is
compact-harmonious(respectivelys-harmonious) if there exists a multi-valued lower
semicontinuous mappingΦ :KY ⇒ KX (respectivelyΦ :ℵ0KY ⇒ KX) with f (B) =
K for every K ∈ KY (respectivelyK ∈ ℵ0KY ) and for everyB ∈ Φ(K). Note that
every compact-harmonious map (respectively s-harmonious map) is compact-covering
(respectively countable compact-covering).5 In [17, Lemma 1], Ostrovsky proves that
every compact-covering map between two separable metrizable spaces is compact-
harmonious.

4. Consonance

We have seen that harmonious maps are those tri-quotient maps for which a defining
mapR consists of compact families that are compactly generated. A topology is said to be
consonantif every compact family is compactly generated [8].6 It is known that regular
Čech-complete topologies are consonant.

We have immediately that

Proposition 4.1. Each tri-quotient map with consonant fibers, onto an Hausdorff space is
harmonious.

Proof. For everyy ∈ Y , the family

R(y)|f−1(y) =
{
U ∩ f−1(y): U ∈R(y)}

is a compact family off−1(y). SinceR(y) is supported byf−1(y), an open subsetU of
X is inR(y) if and only ifU ∩ f−1(y) is inR(y)|f−1(y). And sincef−1(y) is consonant,
there exists a familyΦ(y) of compact subsets off−1(y) such thatU ∈R(y) if and only
if there existsK ∈Φ(y) included inU . 2

As consonance is hereditary for closed subsets, each tri-quotient map from a consonant
space onto an Hausdorff space is harmonious.

Arhangel’skii proved that every open map from aČech-complete topology is compact-
covering [1, Theorem 1.2]. Bouziad in [3] generalizes this result to the effect that each open
map from a consonant topology is compact-covering. Here I give a double reinforcement
of the above result of Bouziad: by relaxing the hypothesis on maps and spaces, and by
strengthening the conclusion.

5 Recall that a continuous mapf fromX ontoY is compact-covering (respectively countable compact-covering)
if and only if every compact (respectively countable compact) subset ofY is the image of a compact subset ofX.
6 In [8], consonant spaces are introduced by Dolecki, Greco and Lechicki as spaces where the upper Kuratowski
topology and the co-compact topology coincide onF(X), the family of all closed subsets ofX. Theco-compact
topologyonF(X) has the family{A ∈ F(X): A∩K =∅}, whereK ranges over compact subsets ofX, for a base
of open sets while a subsetA of F(X) is open in theupper Kuratowski topologyif and only ifAc is a compact
family of X. For a given familyA of subsets ofX, denoteAc = {Ac : A ∈A}.
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Theorem 4.2. If f :X→ Y is tri-quotient,Y is Hausdorff andf−1(K) is consonant
for every compact(respectively countable compact) subsetK of Y , thenf is compact-
harmonious(respectively s-harmonious).

Proof. Let K be a compact (respectively countable compact) subset ofY . By Proposi-
tion 3.4 the familyR(K) is a compact family ofX supported byf−1(K). SinceR(K)
is compact andf−1(K) consonant, there existsΦ(K) a family of compact subsets of
f−1(K) such thatU ∈R(K) if and only if there existsC ∈ Φ(K) such thatC ⊂ U . For
everyC ∈Φ(K), K is a subset off (C). Supposey /∈ f (C), thenC ⊂ f−1(y)c and then
f−1(y)c ∈R(K) andK ⊂ t (f−1(y)c)⊂ f (f−1(y)c). Hence,y is not inK.

At last, Φ :KY ⇒ KX (respectivelyΦ :ℵ0KY ⇒ KX) is lower semicontinuous. If
Φ(K) ∩ Ṽ 6= ∅, then there existsC ∈Φ(K) such thatC ⊂ V , that is,V ∈R(y) for every
y ∈ K. Hence for everyy ∈ K, there exists a neighborhoodUy of y such thatV ∈R(z)
for everyz ∈ Uy . LetU =⋃y∈K Uy . ThenŨ is a neighborhood ofK and ifL ∈ Ũ , then

V ∈R(z) for everyz ∈ L thusΦ(L) ∩ Ṽ 6= ∅. 2
As consonance is hereditary for closed subsets, each tri-quotient map from a consonant

space onto a Hausdorff space is compact-harmonious.
In [16, Theorem 8.2] Nogura and Shakhmatov show that continuous open maps

are consonance-preserving and Bouziad in [2] proves that perfect maps also preserve
consonance. The following result embraces these two cases.

Theorem 4.3. Tri-quotient maps preserve consonance.

Proof. As X ∈ R(y) andR(y) is supported byf−1(y) for every y ∈ Y , every open
subset ofX which includesf−1(y) is in R(y). Hence, for every open subsetW of Y ,
the statementy ∈W amounts tof−1(W) ∈R(y).

Let A be a compact family ofY . By Proposition 3.4 the familyR(A) is a compact
family of X. SinceX is consonant, there existsC ⊂ KX with R(A) = O(C). Note
that f (C) = {f (C); C ∈ C}. Now we claim thatA = O(f (C)). Indeed,W ∈ A if and
only if f−1(W) ∈ R(A) if and only if C ∈ f−1(W) for someC ∈ C that amounts to
f (C)⊂W . 2

5. Monotonic spaces

Recall that asieveon a topological spaceX is a sequence of open covers{Uα : α ∈An}n
of X (with disjointAn) together with functionsπn :An+1→ An such that for alln ∈ N
andα ∈An,

Uα =
∨{

Uβ : β ∈ π−1
n (α)

}
.

A π -chainfor such a sieve is a sequence(αn)n such thatαn ∈An andπn(αn+1)= αn for
all n. The sieve iscompleteif (αn)n is compactoid for everyπ -chain(αn)n.
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For a sequence(Bk)k , note thatB = {Bk: k ∈ N}. In [4] Chaber,Čoban and Nagami
called a sequence(Bk)k an

(1) md-sequenceif for everyx ∈⋂B, the familyB is a base atx.
(2) mp-sequenceif

⋂
B 6= ∅ and if the familyB is compactoid.

(3) mc-sequenceif the family B is compactoid.
If m is any of the propertiesmd , mp, mc, a sequence(Bn)n of bases is called anm-

sequenceof bases if every closurewise decreasing7 sequence(Bn)n, whereBn ∈ Bn for
everyn ∈N, has the propertym.

A spaceX is said to be amonotonic p-spaceif it has anmp-sequence of bases, and is
said to have abase of countable orderif it has anmd-sequence of bases.

It was proved in [4, Lemma 1.1] that a space has anmc-sequence of bases if and only if
it has a complete sieve.

Dolecki, Greco and Lechicki have shown that everyČech-complete topology is
consonant [8, Theorem 4.1]. A slight modification of their proof yields

Theorem 5.1. Every regular sieve-complete topology is consonant.

Proof. Let (An)n be a finitely additive complete sieve onX. LetD be a compact family
andQ0 ∈O(D). Since the space is regular, the family

U0=
{
U ∈OX: ∃A ∈A1 clU ⊂A∩Q0

}
is an open cover ofQ0. Thus by compactness ofD, there exists a nonempty setQ1 ∈O(D)
andA1 ∈A1, such that clQ1⊂Q0 andQ1⊂A1. Now, the family

U1=
{
U ∈OX: ∃A ∈ π−1

1 (A1) clU ⊂ A∩Q1
}

is an open cover ofQ1. Hence, there exists a nonempty open setQ2 ∈ O(D) and
A2 ∈ π−1

1 (A1), such that clQ2⊂Q1 andQ2⊂A2. Similarly, we can construct aπ -chain
(An)n and a sequence(Qn)n of nonempty open sets such that, for everyn, Qn ∈O(D),
clQn+1 ⊂Qn andQn ⊂ An. If G is the filter base{Qn: n ∈ N}, then adhG ⊂Q0. Every
filter F that meshesG, meshes theπ -chain(An)n. Hence, by sieve-completeness ofX,
adhF 6= ∅ and therefore,G is compactoid. By regularity, this implies that adherence of
G is compact and every open setO ⊃ adhG belongs toG [8, Proposition 2.1] and thus
belongs toO(D). The consonance is proved.2

In fact, we have a shorter indirect proof of Theorem 5.1. From [4, Theorem 3.7], it
is known that a regular space is sieve-complete if and only if it is an open image of
a paracompacťCech-complete space. Since everyČech-complete space is consonant [8]
and open maps preserve consonance, it follows that every regular sieve-complete space is
consonant.8

7 A sequence(Bn)n is closurewise decreasingif cl Bn+1⊂Bn for everyn ∈N.
8 Uspenskij has brought to my attention that, in January 1993, thinking about Michael’s problem on infinite
products of tri-quotient maps, quite independently of other people, he came to the definition of consonant spaces
(he called them for himself “Q-complete”) and proved that regular sieve-complete spaces are consonant.
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As a consequence of Proposition 4.1, we have

Corollary 5.2. Each tri-quotient map with sieve-complete fibers onto an Hausdorff space
is harmonious.

On the other hand, Proposition 4.2 implies that

Corollary 5.3. Each tri-quotient map from a regular sieve-complete space to a Hausdorff
space is compact-harmonious.

6. Harmonious maps, countable compact-covering maps and inductively perfect
maps

Recall that a continuous and onto mapf :X→ Y is perfectif and only if f is closed and
each fiber is compact. Note thatf is perfect if and only if each fiber is compact and the
mapΦ :Y → KX with Φ(y) = f−1(y) is continuous. This amounts to the compactness
of f−1(K) for every compact subsetK of Y together with the continuity of the map
Ψ :KY →KX such thatΨ (K)= f−1(K).

A mapf :X→ Y is calledinductively perfectif there existsZ ⊂X such thatf (Z)= Y
andf |Z is perfect. Thusf is inductively perfect if and only if there exists a continuous
mapΦ :Y → KX such thatΦ(y) is a compact subset off−1(y) for everyy ∈ Y . This
amounts to the existence of a continuous mapΨ :KY → KX such thatf (Ψ (K)) =
K. Therefore it appears that the relation between compact-harmonious or harmonious
maps and inductively perfect maps is essentially a problem of selection for a lower
semicontinuous multivalued mapping.

In [15, Theorem 1.4] Michael has proved that every tri-quotient mapf :X→ Y , with
completely metrizable fibers, from a metrizable space onto a countable regular space
Y is inductively perfect. Just and Wicke extended this result to tri-quotient maps, with
sieve-complete fibers, from regular monotonic p-spaces to countable regular spaces [10,
Theorem 3.1]. Note that in the two cases the hypothesis imply that a mapf has consonant
fibers thus is harmonious. The proofs of these two theorems use the following result of
Michael:

Theorem 6.1 [14, Theorem 1.1].If Φ :Y → 2Z is lower semicontinuous, withY a
countable regular space andZ first-countable, then there exists a continuous mapg :Y →
Z such thatg(y) ∈Φ(y) for all y ∈ Y .

Using this theorem withZ = KX which is first-countable ifX is metric, asf is
harmonious, the proof of [15, Theorem 1.4] of Michael is immediate.

I show that the result of Just and Wicke [10, Theorem 3.1] remains true if we assume
thatf is only harmonious.

At first, I give two propositions that generalize Lemma 2.0 and Theorem 3.0 of Just and
Wicke in [10].
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Proposition 6.2.
(1) If X is a regular monotonic p-space, then for every compact subsetK ofX and for

every neighborhood̃U ofK, there exists a compact setC having a countable base
of neighborhoods such thatK ⊂ C andC ∈ Ũ .

(2) Moreover, ifF is aGδ-subset ofX andK ⊂ F , thenC can be chosen to also satisfy
C ⊂ F .

Proof. LetK be a compact subset ofX andU be an open subset ofX. Recall thatK ∈ Ũ
amounts toK ⊂U . Consider(Bn)n anmp-sequence of bases andU =⋃B′0 for aB′0⊂ B0.
Then there is a finiteU0⊂ B′0 such thatK ⊂⋃U0. DenoteU0=⋃U0. If F is aGδ-subset
of X such thatK ⊂ F , thenF =⋂n∈NHn elseHn = Y for everyn ∈ N. The family
B ′1= {B ∈ B1: B#K,∃D ∈ U0 clB ⊂D∩H1} is an open cover ofK, then there is a finite
U1 ⊂ B′1 such thatK ⊂ ⋃U1. DenoteU1 = ⋃U1. Similarly, we construct a sequence
(Un)n of finite families ofBn for everyn ∈ N, a sequence(Un)n of open sets that include
K such that

Un ⊂ clUn ⊂
⋂
i6n

Hi and Un ⊂ clUn ⊂Un−1,

for everyn ∈N. Now, letU the filter composed on the filter base(Un)n andG a filter that
meshesU . ThenMn = {B ∈ Un: B#G} is nonempty and, for everyn ∈N if B ∈Mn, then
there isC ∈Mn−1 such that clB ⊂ C. Since eachMn is finite, by Kunig’s Lemma9 there
exists a closurewise decreasing sequence(Bn)n such thatBn ∈Mn for everyn ∈N. Since
(Bn)n meshesK,⋂

n∈N
Bn =

⋂
n∈N

clBn 6= ∅

and thusG clusters inX and thereforeU is compactoid. By [8, Proposition 2.1], adhU =⋂
n∈NUn is a compact subsetC of F and for every open setU ⊃ C there existsUn ⊂

U . 2
Corollary 6.3. If X is a regular monotonic p-space, then the set of compact subsets with
a countable base of neighborhoods is dense inKX .

Proposition 6.4. Letf :X→ Y be a harmonious map with a lower semicontinuous lifting
Φ and letX be a regular monotonic p-space.

(1) If every point ofY is aGδ-subset, then there exists a lower semicontinuous liftingΨ

such thatO(Ψ (y))=O(Φ(y)) for everyy ∈ Y and everyL ∈ Ψ (y) has a countable
base of neighborhoods inKX .

(2) If Y is regular, thenY is of pointwise countable type.
(3) Moreover ifX has a base of countable order, thenY is first countable.

Proof. (1) A compact setL ∈ Ψ (y) if and only if L is a compact subset off−1(y)

with a countable base of neighborhoods and if there existsK ∈ Φ(y) such thatK ⊂
9 Every tree of heightω with finite levels has an infinite branch.
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L. By Proposition 6.2.1,Ψ (y) is non-empty for everyy ∈ Y . We have to show that
V = {y ∈ Y ; Ψ (y) ∩ Ũ 6= ∅} is an open subset ofY , for every open subsetU of X. If
Ψ (y)∩ Ũ 6= ∅ then there isL ∈ Ψ (y) such thatL⊂U . SinceL ∈Ψ (y), there isK ∈Φ(y)
such thatK ⊂ L ⊂ U that is,Φ(y) ∩ Ũ 6= ∅. SinceΦ is lower semicontinuous, there
exists an open setO(y) 3 y such thatΦ(w) ∩ Ũ 6= ∅, for everyw ∈ O(y). Hence, for
everyw ∈O(y), there isKw ∈Φ(w) such thatKw ⊂ U . By Proposition 6.2.1, for every
w ∈O(y), there exists a compact setCw having a countable base of neighborhoods such
thatKw ⊂ Cw ⊂ U . The setCw ∈ Ψ (w) ∩ Ũ for everyw ∈ O(y), henceO(y)⊂W and
therefore,Ψ is lower semicontinuous.

Since every point ofY is aGδ-subset,f−1(y) is aGδ-subset ofX and by Proposi-
tion 6.2.2 whereF = f−1(y), the mappingΨ is a lifting for f .

(2) Lety ∈ Y andK ∈Φ(y). By Proposition 6.2.1, there exists a compact subsetL⊃K
of X with a countable base(Ũn)n∈N of neighborhoods. SinceK ∈ Φ(y), we have that
y ∈ t (U0) and sinceY is regular, there exists an open setV0 ⊂ Y such thaty ∈ V0 and
clV0⊂ t (U0). If we denoteW1 = f−1(V0) ∩U1, thenW1 ∩ f−1(y)= U1 ∩ f−1(y), thus
y ∈ t (W1) and by the isotonicity oft , we have cl(t (W1))⊂ t (U0). Similarly, we construct
a sequence(Wn)n∈N such that cl(t (Wn+1)) ⊂ t (Wn) andy ∈⋂n∈N t (Wn). Let G be the
filter generated by(t (Wn))n∈N. If a filter F meshesG, sincet (Wn) ⊂ f (Wn), the filter
f−(F)meshes(Wn)n∈N thus it meshes(Un)n∈N. Therefore adhf−F is nonempty and by
the continuity off , the filterF clusters inY . Thus the filterG is compactoid and by [8,
Proposition 2.1], adhG =⋂n∈N t (Wn) is a compact subset ofY that has a countable base
of neighborhoods inKY and such thaty ∈ adhG.

If X has a base of countable order, the proof goes through verbatim the proof of [10,
Theorem 3.0(b)]. 2

Now, I am in position to give the following result.

Theorem 6.5. Let f :X→ Y be a harmonious map. IfX is a regular monotonic p-space
andY is a countable regular space, thenf is inductively perfect.

Proof. If Y is countable and regular then every point ofY is aGδ-subset. Sincef is an
harmonious map, there exists a lower semicontinuous lifting forf , Φ :Y ⇒KX . SinceX
is a regular monotonic p-space and{y} is aGδ-subset ofY for eachy ∈ Y , by Proposi-
tion 6.4.1, there exists a lower semicontinuous lifting forf , Ψ :Y ⇒ KX such that, for
everyy ∈ Y , all compact sets ofΨ (y) have a countable base of neighborhoods inKX .
Now, if in Theorem 6.1, the spaceZ is the subspace ofKX of all elements which admit
a countable base of neighborhoods, thenΨ has a continuous selection and therefore, the
mapf is inductively perfect. 2
Corollary 6.6. Every tri-quotient map with consonant fibers from a regular monotonic
p-space onto a countable regular spaceY is inductively perfect.

Corollary 6.7. Every tri-quotient map from a regular sieve-complete space onto a
countable regular spaceY is inductively perfect.



250 P. Pillot / Topology and its Applications 104 (2000) 237–253

Proof. Every sieve-complete space is a monotonic p-space and by Theorem 5.1,X is
consonant. Sincef−1(y) is closed,f−1(y) is consonant for everyy ∈ Y . Now the
conclusion follows from Corollary 6.6.2
Corollary 6.8. Letf :X→ Y be a harmonious map. IfX is a regular monotonic p-space
andY is Hausdorff, thenf is countable compact-covering.

The proof is the same one given in [10, Theorem 3.2]. I give it verbatim. Just before,
note that it is easy to see that harmonious map are hereditar on closed subsets.

Proof. Let f,X andY be as in assumptions, and letZ be a compact, countable subspace
of Y . We show that there exists a compact cover ofZ. LetW = f−1(Z). The spaceW is
a closed subspace ofX, and thus a regular, monotonic p-space. Therefore, the restriction
of f to W satisfies the assumptions of Theorem 6.5. It follows that there is a subspace
W ′ ⊂W that is mapped byf ontoZ and such thatf |W ′ is perfect. Since inverse images
of compact spaces under perfect maps are compact,W ′ is a compact cover ofZ.

Corollary 6.9. If f :X→ Y is a tri-quotient map with consonant fibers from a regular
monotonic p-spaceX onto a Hausdorff spaceY , thenf is countable compact-covering.

In [11] Just and Wicke have shown that

Theorem 6.10. If X is a metric space,Y a first-countable zero-dimensional space, and
f a countable compact-covering surjection such that every fiber is separable, thenf is
harmonious.

I am in a position to refine Theorem 6.10.

Theorem 6.11.Let X be a regular monotonic p-space. LetY be a Hausdorff first-
countable space. Iff :X→ Y is a countable compact-covering map with every fiber
second countable, thenf is harmonious.

7. Proof of Theorem 6.11

Proof. Note that iff−1(y) is second countable, thenKf−1(y) is also second countable,
and therefore by [9, Theorem 1.1.14], every open cover of every subspace ofKf−1(y) has
a countable subcover.

For everyy ∈ Y , letΦ(y) be the family of allK ∈KX such that
(1) K ⊂ f−1(y),
(2) K has a first countable base of neighborhoods inKX ,
(3) for every countable compact subsetE of Y there exists a compactC ⊂X such that

C ∩ f−1(y)⊂K andf (C)=E.
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DenoteωKf−1(y) the family of all compact subsets off−1(y) which have a countable
base of neighborhoods inKX .

Let E be a compact, countable subset ofY , let y ∈ Y , and letK ∈ ωKf−1(y). We say
thatE eliminatesK if there is no compactC ⊂X with f (C)=E andC ∩ f−1(y)⊂K.

Note thatΦ(y) is the family of allK ∈ ωKf−1(y) such that no countable, compactE ⊂ Y
eliminatesK. 2
Proposition 7.1.

(1) If E eliminatesK ∈ ωKf−1(y), theny ∈E.
(2) If E eliminatesK ∈ ωKf−1(y), andU is a neighborhood ofy in Y , thenE ∩ clU

also eliminatesK.
(3) If E ⊂ F are countable, compact subsets ofY , and ifE eliminatesK, then so does

F .
(4) If E eliminates someK ∈ ωKf−1(y), then there is a neighborhood̃V ofK such that

E eliminates everyL ∈ Ṽ ∩ ωKf−1(y).

Proof. (1) Let E be a countable compact subset ofY , sincef is countable compact-
covering, then there exists a compact subset ofX such thatf (C) = E. If y is not inE,
thenC ∩ f−1(y)= ∅. HenceE does not eliminateK.

(2) E ∩ clU andE ∩ Uc, closed ifU is open, are countable compact subsets ofY . If
C andD are compact subsets ofX such thatf (C)= E ∩ clU andf (D)= E ∩Uc, then
C ∪D is a compact set ofX with f (C ∪D)=E, and(C ∪D) ∩ f−1(y)= C ∩ f−1(y).

(3) If C is compact withf (C) = F , thenD = C ∩ f−1(E) is also compact with
f (D)=E andD ∩ f−1(y)= C ∩ f−1(y).

(4) Suppose (4) is false, and letK ∈ ωKf−1(y) andE that eliminatesK. Let (Ṽn)n∈N a
base of neighborhoods ofK in KX . For everyn ∈N, there exists a compact subsetLn ∈ Ṽn
of f−1(y) such thatE does not eliminateLn. Hence for everyn ∈N there exists a compact
subsetCn of X such thatf (Cn)=E andCn ∩ f−1(y)⊂ Ln. Therefore, for everyn ∈ N,
there exists a compact subsetCn of X such thatCn ∩ f−1(y) ∈ Ṽn.

Lemma 7.2. Let (Uk)k∈N be a base of neighborhoods ofy. For eachn ∈ N, there exists
Ukn such thatCn ∩ f−(clUkn) ∈ Ṽn.

Proof. Assume it is false. If there existsn ∈N such that for everyk ∈N,Cn∩f−(clUk) /∈
Ṽn, that amounts toCn ∩ f−(clUk) 6⊂ Vn, then there iswk in Cn ∩ f−(clUk) such that
wk /∈ Vn. Cn is compact, then the sequence(wk)k∈N clusters inCn at some pointw. Since
f is continuous and

⋂
k∈N clUk = {y}, the pointw is in f−1(y). Butw is not inVn, hence

Cn ∩ f−1(y) /∈ Ṽn. 2
Continuation of the proof of Proposition 7.1. By Lemma 7.2, we find a base(Un)n∈N of
neighborhoods ofy such thatCn ∩ f−(clUn) ∈ Ṽn for everyn ∈N. Let

C =
⋃
n∈N

(
Cn ∩ f−1((clUn) \Un+1

))∪K.
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C is compact [11, Claim 1.4] andf (C) = E ∩ clU0 = E′. By Proposition 7.1.2,E ∩
clU0=E′ eliminatesK ∈ ωKf−1(y) hencey ∈E′. If x ∈ Cn ∩ f−1((clUn) \Un+1), then
f (x) ∈ clU0 and sincef (Cn) = E for everyn, thenf (x) ∈ E. If z ∈ E′ \ {y}, then for
everyn ∈ N, there existsxn ∈ Cn such thatf (xn)= z and sincez ∈ clU0, there isnz ∈N
such thatz ∈ (clUnz) \Unz+1 andxnz ∈Cnz ∩ f−1(clUnz) \Unz+1). 2

Note that by Proposition 7.1.4, the familyΦ(y) is closed.

Proposition 7.3. If y ∈ Y andG ⊂ Φ(y)c, then there is a countable compact set that
eliminates all the elements ofG∩ωKf−1(y).

Proof. Let K ∈ G ∩ ωKf−1(y) andK /∈ Φ(y), then there exists a countable compact
setEK and a neighborhoodVK of K such thatEK eliminates all the compact subsets
L ∈ VK ∩ ωKf−1(y).

The family(Vk)k is an open cover ofG∩ωKf −1(y) and by [9, Theorem 1.1.14], there is
a sequence(Kn)n∈N such that for every compact subsetL ∈G of f−1(y), there existsEKn
that eliminates L. Let(Un)n∈N be a base of neighborhoods ofy. E =⋃n∈N(EKn ∩ clUn)
is a countable compact set that eliminates all compact subsetsL ∈G∩ωKf−1(y). 2
Proposition 7.4. For everyy ∈ Y , the familyΦ(y) is nonempty.

Proof. If Φ(y) is empty, thenωKf−1(y) ⊂ Φ(y)c and by Proposition 7.3, there exists a
countable compact set that eliminates all elements ofωKf−1(y). But this is impossible
because for every compact subsetC of X such thatf (C) = E, E does not eliminate the
compact setsL ∈ ωKf−1(y) such thatC ∩ f−1(y)⊂ L. 2

Now we are in a position to prove thatΦ is lower semicontinuous. Suppose that
Φ :Y → ωKX is not lower semi-continuous.Then

∃K ∈Φ(y) ∃Ṽ ∈N (K) ∀U ∈N (y) ∃y ′ ∈ U Φ(y ′)∩ Ṽ = ∅.
Let (Un)n∈N be a base of neighborhoods ofy. Then we can find a sequence(yn)n∈N

such thatyn ∈ Un for every n ∈ N andΦ(yn) ∩ Ṽ = ∅. Passing to a subsequence if
necessary, assume thatyn ∈ Un \ Un+1. By the Proposition 7.3, for everyn ∈ N we may
choose a countable compact subsetEn of Y that eliminates all elements of̃V ∩ωKf−1(yn)

.
HenceGn = En ∩ clUn eliminates all compact subsetsL ∈ Ṽ ∩ ωKf−1(yn)

. The set
E = ⋃n∈NGn ∪ {y} is countable and compact. LetC be a compact subset ofX with
f (C)=E. For everyn ∈N, the setE eliminates all elements of̃V ∩ωKf−1(yn)

, hence by
Proposition 6.2,C ∩ f−1(yn) /∈ Ṽ . Therefore for everyn ∈N, there iswn ∈ C ∩ f−1(yn)

such that{wn} /∈ Ṽ . SinceC is compact the sequence(wn)n∈N clusters at some point
w ∈ C. By the continuity off and{y} =⋂n∈NUn, the pointw is in f−1(y). Sincewn /∈ V
for everyn ∈N, the pointw is not inK. ThereforeE eliminatesK. 2



P. Pillot / Topology and its Applications 104 (2000) 237–253 253

References

[1] A.V. Arhangel’skii, Open and near open mappings. Connections between spaces, Trans.
Moscow Math. Soc. 15 (1966) 204–250.

[2] A. Bouziad, Borel measures in consonant spaces, Topology Appl. 70 (1996) 125–132.
[3] A. Bouziad, Consonance and topological completeness in analytic spaces, Proc. Amer. Math.

Soc., to appear.
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