

brought to you by

Topology and its Applications 104 (2000) 237-253

www.elsevier.com/locate/topol

Tri-quotient maps become inductively perfect with the aid of consonance and continuous selections $\stackrel{\leftrightarrow}{\approx}$

Michel Pillot

12 traverse de Montporcher, 71200 Le Creusot, France Received 27 November 1997; received in revised form 18 June 1998

Abstract

Generalizing the result of Arhangel'skii that each open map with Čech-complete domain is compact-covering, it is proved that every tri-quotient map with consonant domain is harmonious, thus compact-covering, and its range is consonant. The latter constitutes a strong answer to a question of Nogura and Shakhmatov. Conditions for harmonious maps to be inductively perfect, or countable compact-covering and for countable compact-covering maps to be harmonious are given. They extend theorems of Just and Wicke. © 2000 Published by Elsevier Science B.V. All rights reserved.

Keywords: Inductively perfect; Tri-quotient; Harmonious; Compact-covering; Countable compact-covering; Consonance; Sieve-completeness; Monotonic p-space; Lower semicontinuous lifting

AMS classification: 54C10; 54E40

1. Introduction

In this paper, all the maps $f: X \to Y$ are continuous and onto.

Tri-quotient maps have been introduced in [13] by Michael in a study of the preservation of Čech-completeness and sieve-completeness. Open maps and perfect maps are triquotient, and every tri-quotient map is bi-quotient.

The same year, in [18, Theorem 1], Ostrovsky, in the proof of this theorem, uses three properties which put together a second definition of tri-quotient maps.

In [20], answering a question of Michael [13], Uspenskij proves that tri-quotient maps are preserved by infinite products. To this end, he uses a characterization of tri-quotient maps that is essentially a rewriting of the three properties given by Ostrovsky in [18]. A map $f: X \to Y$ is tri-quotient if and only if there exists a continuous mapping \mathcal{R} from Y to the set $\mathcal{D}(X)$ of compact families¹ (of open subsets of X) endowed with

^{*} This paper is a part of a PhD thesis written under the supervision of Professor S. Dolecki. I would like to thank him for many valuable suggestions.

¹ The notion of compact families is introduced by Dolecki, Greco, Lechicki in [7].

^{0166-8641/00/}\$ – see front matter © 2000 Published by Elsevier Science B.V. All rights reserved. PII: S0166-8641(99)00018-8

the Stone topology (similar to that usually considered on the set of all ultrafilters on *X*). Moreover, every compact families $\mathcal{R}(y)$ must be supported by $f^{-1}(y)$. Of special interest are compactly generated compact families that is, compact families generated by compact subsets. A tri-quotient map with a defining function \mathcal{R} valued in compactly generated compact families is called harmonious by Ostrovsky.

Michael [13], Just and Wicke [10,11], Debs, Saint Raymond [5,6], Ostrovsky [19,17] and others have studied the relationship between tri-quotient maps and inductively perfect maps, compact-covering maps, countable compact-covering and harmonious maps. In these papers, essentially in [5,6], it turns that these four last notions can be characterized by the existence of certain (possibly multivalued) mappings from some spaces of compact subsets of *Y* to the set of compact subsets of *X*.

 $f \ {\rm inductively \ perfect}$

$\Phi: Y \to \mathcal{K}_X$	\Leftrightarrow	$\Psi: \mathcal{K}_Y \to \mathcal{K}_X$
$f(\Phi(y)) = \{y\}$		$f(\Psi(K)) = K$
Φ continuous		Ψ continuous
\Downarrow		
f compact-harmonious	\Rightarrow	f compact-covering
$\Phi:\mathcal{K}_Y ightarrow \mathcal{K}_X$		${\pmb \Phi}\!:\!{\mathcal K}_Y ightarrow {\mathcal K}_X$
$\forall C \in \Phi(K) f(C) = K$		$\forall C \in \Phi(K) f(C) = K$
Φ lower semicontinuous		
\Downarrow		\Downarrow
f s-harmonious	\Rightarrow	f countable compact-covering
$\Phi: \aleph_0 \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$		$\Phi: leph_0 \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$
$\forall C \in \Phi(K) f(C) = K$		$\forall C \in \Phi(K) f(C) = K$
Φ lower semicontinuous		
\Downarrow		
f harmonious		
$\Phi:Y ightarrow \mathcal{K}_X$		
$f(\Phi(y)) = \{y\}$		
Φ lower semicontinuous		
\Downarrow		
f tri-quotient		
$\mathcal{R}: Y \to \mathfrak{D}(X)$		
$\mathcal{R}(y)$ supported by $f^{-}(y)$		
$\mathcal{R}(y)$ continuous		

The previous diagram, where f is a map from X to Y, gives such characterizations of the principal classes of maps studied in this paper. Denote \mathcal{K}_X (respectively $\aleph_0 \mathcal{K}_X$) the set of all nonempty compact subsets (respectively countable compact subsets) of X endowed with the upper Vietoris topology.

I have observed that in several theorems about the relationship between tri-quotient maps and inductively perfect maps, the hypothesis provide that tri-quotient maps are harmonious and therefore these results can be obtained with the aid of selection theorems for lower semicontinuous multivalued mappings of Michael [14].

On the other hand, consonant spaces are exactly the spaces where all the compact families are compactly generated, and it is known that Čech complete spaces are consonant (see [8] of Dolecki, Greco and Lechicki). Therefore consonance is an essential condition under which tri-quotient maps become harmonious or compact-harmonious.

In this paper I prove that tri-quotient maps with every consonant fiber are harmonious. After Arhangel'skii that have proved that every open map from a Čech-complete topology is compact-covering [1, Theorem 1.2] and Bouziad in [3] that have generalized this result to the effect that each open map from a consonant topology is compact-covering, I show that every tri-quotient map with consonant domain is compact-harmonious hence compact-covering. On the other hand, I prove that sieve complete spaces are consonant. Finally I give the following result:

Theorem 1.1. Every harmonious map $f: X \to Y$ from a regular monotonic p-space X onto a countable regular space Y, is inductively perfect.

Theorem 1.1 extends the following theorems:

Theorem 1.2 (Michael [15, Theorem 1.4]). Every tri-quotient map $f: X \to Y$ from a metric space X onto a countable regular space Y, with each $f^{-1}(y)$ completely metrizable, is inductively perfect.

Theorem 1.3 (Just and Wicke [10, Theorem 3.1]). Every tri-quotient map $f: X \to Y$ from a regular monotonic p-space X onto a countable regular space Y, with each $f^{-1}(y)$ sieve complete subspace, is inductively perfect.

2. Compact families

Throughout this paper, for every subset A of a topological space X, we denote

$$\mathcal{O}(A) = \{ U \in \mathcal{O}_X \colon A \subset U \}$$

where \mathcal{O}_X is the family of all open subsets of X, and

$$\mathcal{O}(\mathcal{A}) = \bigcup_{A \in \mathcal{A}} \mathcal{O}(A)$$

for every family of subsets of X.² A family S is compact provided that:

- $\mathcal{O}(\mathcal{S}) = \mathcal{S},$
- for every $\mathcal{Q} \subset \mathcal{O}_X$,

$$\left(\begin{array}{c} \mathcal{Q} \in \mathcal{S} \Rightarrow \exists \mathcal{P} \subset \mathcal{Q} \quad (|\mathcal{P}| < \infty \text{ and } \bigcup \mathcal{P} \in \mathcal{A}). \end{array} \right)$$

$$(2.1)$$

I consider on $\mathfrak{D}(X)$, the set of all compact families *X*, the topology generated by the family $\{\widetilde{U}: U \in \mathcal{O}_X\}$, where $\widetilde{U} = \{S \in \mathfrak{D}(X): U \in S\}$. I call it the *Stone topology* because its definition is similar to the classical one on the set of all ultrafilters on *X*. It is clear that a subset *K* of *X* is compact if and only if $\mathcal{O}(K)$ is compact. More generally, if \mathcal{K} is a family of compact subsets of *X*, then $\mathcal{O}(\mathcal{K})$ is a compact family of *X*.

We say that a compact family \mathcal{A} is *compactly generated* if $\mathcal{A} = \mathcal{O}(\mathcal{H})$ for some $\mathcal{H} \subset \mathcal{K}_X$. We will denote $\mathfrak{D}_K(X)$ the set of all compactly generated compact families.

Throughout this paper, the set \mathcal{K}_X of all nonempty compact subsets of X is endowed with the upper Vietoris topology which is generated by the family $\{\widetilde{U}: U \in \mathcal{O}_X\}$ where

$$\widetilde{U} = \{ K \in \mathcal{K}_X \colon K \subset U \}.$$
(2.2)

Observe the following series of homeomorphic embeddings:

$$X \to \mathcal{K}_X \to \mathcal{K}_X \to 2^{\mathcal{K}_X} \to \mathcal{D}(X),$$

where $2^{\mathcal{K}_X}$ denotes the set of all subsets of \mathcal{K}_X and is endowed with the lower Vietoris topology relative to the upper Vietoris topology on \mathcal{K}_X .³ It is known that a multivalued mapping $\Phi: X \rightrightarrows Y$ between two topological spaces is lower semicontinuous if and only if it is continuous as a map from X to Y endowed with the lower Vietoris topology relative to X. Notice that $\mathfrak{D}_K(X)$ and $2^{\mathcal{K}_X}$, respectively endowed with the Stone topology and the lower Vietoris topology are homeomorphic.

In the following proposition, the space *Y* is considered as a subset of $\mathfrak{D}(Y)$ endowed with the Stone topology.

Proposition 2.1. Let X and Y two topological spaces. Each continuous map $\mathcal{R}: Y \to \mathfrak{D}(X)$ has a continuous extension $\widetilde{\mathcal{R}}: \mathfrak{D}(Y) \to \mathfrak{D}(X)$ such that

$$\widetilde{\mathcal{R}}(\mathcal{A}) = \bigcup_{A \in \mathcal{A}} \bigcap_{y \in A} \mathcal{R}(y).$$

Proof. Let \mathcal{A} be a compact family of Y. Consider the family

$$\widetilde{\mathcal{R}}(\mathcal{A}) = \bigcup_{A \in \mathcal{A}} \bigcap_{y \in A} \mathcal{R}(y).$$

The family $\widetilde{\mathcal{R}}(\mathcal{A})$ is compact in *X*.

240

² For every filter \mathcal{F} on a topological space X, we call *adherence* of \mathcal{F} the set $\operatorname{adh} \mathcal{F} = \bigcap \{\operatorname{cl} F : F \in \mathcal{F}\}$. A family \mathcal{A} *meshes* a family \mathcal{B} (in symbols $\mathcal{A}\#\mathcal{B}$) if and only if $A \cap B \neq \emptyset$ for every $A \in \mathcal{A}$ and every $B \in \mathcal{B}$. A family \mathcal{S} is *compactoid* (respectively *compact*) if and only if for every filter \mathcal{F} on X that meshes \mathcal{S} , one has $\operatorname{adh} \mathcal{F} \neq \emptyset$ (respectively adh \mathcal{F} meshes \mathcal{S}).

³ Let $A^{\#} = \{B \subset X: B \cap A \neq \emptyset\}$. If X is a topological space, then lower Vietoris topology on 2^X relative to the topology of X is generated by the family $\{U^{\#}: U \in \mathcal{O}_X\}$.

Let $U \subset V$ two open subsets of X. If $U \in \widetilde{\mathcal{R}}(\mathcal{A})$ then there exists an $A \in \mathcal{A}$ such that $U \in \mathcal{R}(y)$ for every $y \in A$. Thus $V \in \mathcal{R}(y)$ for every $y \in A$ and $v \in \widetilde{\mathcal{R}}(\mathcal{A})$ and hence, $\mathcal{O}(\widetilde{\mathcal{R}}(\mathcal{A})) = \widetilde{\mathcal{R}}(\mathcal{A})$.

Let \mathcal{E} be a family of open subsets of X. If $\bigcup \mathcal{E} \in \widetilde{\mathcal{R}}(\mathcal{A})$ then there exists an $A \in \mathcal{A}$ such that $\bigcup \mathcal{E} \in \mathcal{R}(y)$ for every $y \in A$. Let $y \in A$, by compactness of $\mathcal{R}(y)$, there exists a finite subfamily $\mathcal{E}_y \subset \mathcal{E}$ with $\bigcup \mathcal{E}_y \in \mathcal{R}(y)$. By continuity of \mathcal{R} , there exists an open neighborhood W_y of y such that $\bigcup \mathcal{E}_y \in \mathcal{R}(w)$ for each $w \in W_y$. Since $\mathcal{O}(\widetilde{\mathcal{R}}(\mathcal{A})) = \widetilde{\mathcal{R}}(\mathcal{A})$, the open set $\bigcup_{y \in A} W_y$ is in \mathcal{A} and thus, by compactness of \mathcal{A} , there exists a finite subset A_0 of A such that $W = \bigcup_{y \in A_0} W_y \in \mathcal{A}$. The set $\widetilde{\mathcal{E}} = \{E \in \mathcal{E}_y: y \in A_0\}$ is a finite subfamily of \mathcal{E} . If $w \in W$, then there exists $y \in A_0$ such that $w \in W_y$ thus, $\bigcup \mathcal{E}_y \in \mathcal{R}(w)$. Hence $\bigcup \widetilde{\mathcal{E}} \in \mathcal{R}(w)$ for every $w \in W$ and since $W \in \mathcal{A}$, then $\bigcup \widetilde{\mathcal{E}} \in \widetilde{\mathcal{R}}(\mathcal{A})$.

The map $\widetilde{\mathcal{R}}$ is continuous. If $\widetilde{\mathcal{R}}(\mathcal{A}) \in \widetilde{U}$, that is $U \in \widetilde{\mathcal{R}}(\mathcal{A})$, then there exists $A \in \mathcal{A}$ such that $U \in \mathcal{R}(y)$ for every $y \in A$. By continuity of \mathcal{R} , for every $y \in A$, there exists $V_y \in \mathcal{O}(y)$ with $U \in \mathcal{R}(v)$ for every $v \in V_y$. The open set $V = \bigcup_{y \in A} V_y \in \mathcal{A}$, that is $\mathcal{A} \in \widetilde{V}$, and $\widetilde{\mathcal{R}}(\mathcal{S}) \in \widetilde{U}$ for every $\mathcal{S} \in \widetilde{V}$. \Box

3. Tri-quotient maps and others classes of maps

In [13] Michael introduces tri-quotient maps. The following definitions are written verbatim.

Definition 3.1. A continuous and onto map $f : X \to Y$ is *tri-quotient* if there exists a map *t* from \mathcal{O}_X to \mathcal{O}_Y such that:

- (1) $t(U) \subset f(U);$
- (2) t(X) = Y;
- (3) $U \subset V$ implies $t(U) \subset t(V)$;
- (4) if $y \in t(U)$ and \mathcal{W} is a cover of $f^{-1}(y) \cap U$ by open subsets of X, then there is a finite $\mathcal{F} \subset \mathcal{W}$ such that $y \in t(\bigcup \mathcal{F})$.

The same year, in [18, Theorem 1], Ostrovsky, in the proof of this theorem, uses three properties which put together a second definition of tri-quotient maps (see also [19]).

Definition 3.2. A continuous and onto map $f: X \to Y$ is tri-quotient if, for every $y \in Y$, there exists a family η_y of open subsets of X such that $X \in \eta_y$ and

- (1) if $U \in \eta_y$ and γ is a cover of $U \cap f^{-1}(y)$ by open subsets of X, then there exists a finite number k of elements of γ such that $\bigcup_{i=1}^k U_i \in \eta_y$;
- (2) if $U \in \eta_y$ then $y \in \text{int } f(U)$;
- (3) if $U \in \eta_y$ then there is a neighborhood O(y) such that $U \in \eta_{\xi}$ for every $\xi \in O(y)$.

In [13] Michael shows that tri-quotient maps are preserved by finite products and asks whether tri-quotient maps are preserved by infinite products. In [20, Proposition 1], Uspenskij answers in the affirmative. In that paper, he rewrites the characterization of triquotient maps of Ostrovsky [18,19] in terms of Q-systems. These Q-systems are precisely compact families in our definition [8]. A family S of open subsets of X is *supported* by a family \mathcal{E} of subsets of X whenever $U \in S$, $U \cap E = V \cap E$ for some $E \in \mathcal{E}$, then $V \in S$. This amounts to $U \in S$ if and only if there exists $E \in \mathcal{E}$ such that $U \cap E \in S|_E$, where $S|_E = \{U \cap E : U \in S\}$.

Definition 3.3 [20, Proposition 1]. A map $f: X \to Y$ is tri-quotient if and only if there exists a continuous map $\mathcal{R}: Y \to \mathfrak{D}(X)$ such that for every $y \in Y$ the family $\mathcal{R}(y)$ is supported by $f^{-1}(y)$.

Actually, the assignment *t* and the mapping \mathcal{R} are related by:

$$U \in \mathcal{R}(y) \Leftrightarrow y \in t(U). \tag{3.1}$$

If f is a map from X to Y and A a family of subsets of Y, I denote $f^{-}(A) = \{f^{-1}(A): A \in A\}$. Here is a third characterization of tri-quotient maps.

Proposition 3.4. A map $f: X \to Y$ is tri-quotient if and only if there exists a continuous map $\mathcal{R}: \mathfrak{D}(Y) \to \mathfrak{D}(X)$ such that for every $\mathcal{A} \in \mathfrak{D}(Y)$ the family $\mathcal{R}(\mathcal{A})$ is supported by $f^{-}(\mathcal{A})$.

Proof. If there exists a continuous map $\mathcal{R}: \mathfrak{D}(Y) \to \mathfrak{D}(X)$ such that for every $\mathcal{A} \in \mathfrak{D}(Y)$ the family $\mathcal{R}(\mathcal{A})$ is supported by $f^{-}(\mathcal{A})$, its restriction to Y satisfies the condition of Proposition 3.3.

Let $f: X \to Y$ be a tri-quotient map and let $\mathcal{R}: Y \to \mathfrak{D}(X)$ be a corresponding map in the characterization of Proposition 3.3. By Proposition 2.1, the map \mathcal{R} has a continuous extension to $\mathfrak{D}(Y)$.

Let U and V two open subsets of X. If there exists $A \in \mathcal{A}$ such that $U \cap f^{-1}(A) = V \cap f^{-1}(A)$ and $U \in \mathcal{R}(\mathcal{A})$, then for every $y \in A$, $U \cap f^{-1}(y) = V \cap f^{-1}(y)$ and $U \in \mathcal{R}(y)$. Therefore $V \in \mathcal{R}(y)$ for every $y \in A$ that is $V \in \mathcal{R}(\mathcal{A})$. Hence the family $\mathcal{R}(\mathcal{A})$ is supported by $f^{-}(\mathcal{A})$. \Box

Here are two examples of tri-quotient maps given by Michael in [13, Theorem 6.5] with their *t*-assignment and the map $\mathcal{R}: Y \to \mathfrak{D}(X)$.

Example 3.5.

- (1) Each open map is tri-quotient. In this case, t(U) = f(U) for every open subset U and for every $y \in Y$, $\mathcal{R}(y) = f^{-1}(y)^{\#} = \{U \in \mathcal{O}_X : U \cap f^{-1}(y) \neq \emptyset\}.$
- (2) Each perfect map is tri-quotient. Put $t(U) = f(U^c)^c$ for every open subset U and $\mathcal{R}(y) = \{U \in \mathcal{O}_X: f^{-1}(y) \subset U\}$ for every $y \in Y$.

In these examples, each family $\mathcal{R}(y)$ is *compactly generated* [21] by compact subsets of $f^{-1}(y)$. As we have seen in Section 2, the existence of a continuous map $\mathcal{R}: Y \to \mathfrak{D}_K(X)$ amounts to the existence of a lower semicontinuous multivalued mapping $\Phi: Y \rightrightarrows \mathcal{K}_X$. As in [5], a multi-valued mapping $\Phi: Y \rightrightarrows 2^X$ is a *lifting* for the map $f: X \to Y$ if

$$\emptyset \neq \bigcup \Phi(y) \subset f^{-1}(y)$$
 for every $y \in Y$.

In [17], Ostrovsky introduces harmonious maps.

Definition 3.6. A continuous and onto map $f: X \to Y$ is *harmonious* if, for every $y \in Y$, there exists a non-empty family μ_y of open subsets of X such that:

- if U ∈ μ_y then there is a non-empty compact set B ⊂ f⁻¹(y) ∩ U such that, for every V ⊃ B, we have V ∈ μ_y;
- (2) if $U \in \mu_y$ then there is an open set $O(y) \ni y$ such that $U \in \mu_w$ for every $w \in O(y)$.

When \mathcal{K}_X is endowed with the upper Vietoris topology, we have the following characterization of harmonious maps.

Proposition 3.7. A map $f: X \to Y$ is harmonious if and only if there is a lower semicontinuous lifting ${}^4 \Phi: Y \rightrightarrows \mathcal{K}_X$ for f.

Proof. Let $f: X \to Y$ be an harmonious map. It is clear that $\mu_y = \mathcal{O}(\mu_y)$ for every $y \in Y$. The first part of condition (1) induces a multivalued mapping $\Phi: Y \rightrightarrows \mathcal{K}_X$ such that $B \subset f^{-1}(y)$ and $\mu_y \subset \mathcal{O}(\Phi(y))$ for every $y \in Y$. The condition $V \in \mu_y$ for every $V \supset B$ amounts to $\mathcal{O}(\Phi(y)) \subset \mu_y$ for every $y \in Y$ and hence, $\mathcal{O}(\Phi(y)) = \mu_y$.

Let U be an open subset of X. We have to prove that

 $V = \left\{ y \in Y \colon \Phi(y) \cap \widetilde{U} \neq \emptyset \right\}$

is an open subset of *X*. A point $y \in V$ if and only if there is $B \in \Phi(y)$ such that $B \in \widetilde{U}$ that is, $B \subset U$. This amounts to $U \in \mathcal{O}(\Phi(y))$. Hence $U \in \mu_y$ and by condition (2), there is an open set $O(y) \ni y$ such that $U \in \mu_w$ for every $w \in O(y)$ that is $U \in \mathcal{O}(\Phi(w))$ for every $w \in O(y)$. Therefore, $O(y) \subset V$.

Conversely, if $f: X \to Y$ is an harmonious map with a lower semicontinuous lifting $\Phi: Y \rightrightarrows \mathcal{K}_X$, the family $\mu_y = \mathcal{O}(\Phi(y))$ is suitable for the definition. \Box

This characterization amounts to Property A introduced by Just and Wicke in [11, Definition 3.0] for maps with a metric space as domain.

Proposition 3.8. A map $f: X \to Y$ is harmonious if and only if f is tri-quotient and the defining $\mathcal{R}(y)$ is compactly generated by a family of subsets of $f^{-1}(y)$.

Proof. If f is harmonious with $\Phi: Y \to \mathcal{K}_X$ a lower semicontinuous lifting, let

 $\mathcal{R}(y) = \{ U \in \mathcal{O}_X \colon \exists K \in \Phi(y) \ K \subset U \}.$

Then $\mathcal{R}: Y \to \mathfrak{D}(X)$ is continuous and supported by $f^{-1}(y)$ for every $y \in Y$.

Conversely, if f is tri-quotient and the family $\mathcal{R}(y)$ is compactly generated by a family of compact subsets of $f^{-1}(y)$, then $\Phi: Y \to \mathcal{K}_X$ where $\Phi(y)$ is the family of compact subsets of $f^{-1}(y)$ that generates $\mathcal{R}(y)$ is a lower semicontinuous lifting of f. \Box

⁴ In [5], Debs and Saint Raymond say that the map has quasi-upper semicontinuous lifting.

Ostrovsky also introduces compact-harmonious maps and s-harmonious maps. Denote $\aleph_0 \mathcal{K}_Y$ the set of all nonempty countable compact subsets of *Y*. A map $f: X \to Y$ is *compact-harmonious* (respectively *s-harmonious*) if there exists a multi-valued lower semicontinuous mapping $\Phi: \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$ (respectively $\Phi: \aleph_0 \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$) with f(B) = K for every $K \in \mathcal{K}_Y$ (respectively $K \in \aleph_0 \mathcal{K}_Y$) and for every $B \in \Phi(K)$. Note that every compact-harmonious map (respectively *s*-harmonious map) is compact-covering (respectively countable compact-covering).⁵ In [17, Lemma 1], Ostrovsky proves that every compact-covering map between two separable metrizable spaces is compact-harmonious.

4. Consonance

244

We have seen that harmonious maps are those tri-quotient maps for which a defining map \mathcal{R} consists of compact families that are compactly generated. A topology is said to be *consonant* if every compact family is compactly generated [8].⁶ It is known that regular Čech-complete topologies are consonant.

We have immediately that

Proposition 4.1. Each tri-quotient map with consonant fibers, onto an Hausdorff space is harmonious.

Proof. For every $y \in Y$, the family

$$\mathcal{R}(y)|_{f^{-1}(y)} = \{ U \cap f^{-1}(y) \colon U \in \mathcal{R}(y) \}$$

is a compact family of $f^{-1}(y)$. Since $\mathcal{R}(y)$ is supported by $f^{-1}(y)$, an open subset U of X is in $\mathcal{R}(y)$ if and only if $U \cap f^{-1}(y)$ is in $\mathcal{R}(y)|_{f^{-1}(y)}$. And since $f^{-1}(y)$ is consonant, there exists a family $\Phi(y)$ of compact subsets of $f^{-1}(y)$ such that $U \in \mathcal{R}(y)$ if and only if there exists $K \in \Phi(y)$ included in U. \Box

As consonance is hereditary for closed subsets, each tri-quotient map from a consonant space onto an Hausdorff space is harmonious.

Arhangel'skii proved that every open map from a Čech-complete topology is compactcovering [1, Theorem 1.2]. Bouziad in [3] generalizes this result to the effect that each open map from a consonant topology is compact-covering. Here I give a double reinforcement of the above result of Bouziad: by relaxing the hypothesis on maps and spaces, and by strengthening the conclusion.

⁵ Recall that a continuous map f from X onto Y is compact-covering (respectively countable compact-covering) if and only if every compact (respectively countable compact) subset of Y is the image of a compact subset of X. ⁶ In [8], consonant spaces are introduced by Dolecki, Greco and Lechicki as spaces where the upper Kuratowski topology and the co-compact topology coincide on $\mathbb{F}(X)$, the family of all closed subsets of X. The *co-compact topology* on $\mathbb{F}(X)$ has the family $\{A \in \mathbb{F}(X): A \cap K = \emptyset\}$, where K ranges over compact subsets of X, for a base of open sets while a subset \mathcal{A} of $\mathbb{F}(X)$ is open in the *upper Kuratowski topology* if and only if \mathcal{A}_c is a compact family of X. For a given family \mathcal{A} of subsets of X, denote $\mathcal{A}_c = \{A^c: A \in \mathcal{A}\}$.

Theorem 4.2. If $f: X \to Y$ is tri-quotient, Y is Hausdorff and $f^{-1}(K)$ is consonant for every compact (respectively countable compact) subset K of Y, then f is compact-harmonious (respectively s-harmonious).

Proof. Let *K* be a compact (respectively countable compact) subset of *Y*. By Proposition 3.4 the family $\mathcal{R}(K)$ is a compact family of *X* supported by $f^{-1}(K)$. Since $\mathcal{R}(K)$ is compact and $f^{-1}(K)$ consonant, there exists $\Phi(K)$ a family of compact subsets of $f^{-1}(K)$ such that $U \in \mathcal{R}(K)$ if and only if there exists $C \in \Phi(K)$ such that $C \subset U$. For every $C \in \Phi(K)$, *K* is a subset of f(C). Suppose $y \notin f(C)$, then $C \subset f^{-1}(y)^c$ and then $f^{-1}(y)^c \in \mathcal{R}(K)$ and $K \subset t(f^{-1}(y)^c) \subset f(f^{-1}(y)^c)$. Hence, *y* is not in *K*.

At last, $\Phi: \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$ (respectively $\Phi: \aleph_0 \mathcal{K}_Y \rightrightarrows \mathcal{K}_X$) is lower semicontinuous. If $\Phi(K) \cap \widetilde{V} \neq \emptyset$, then there exists $C \in \Phi(K)$ such that $C \subset V$, that is, $V \in \mathcal{R}(y)$ for every $y \in K$. Hence for every $y \in K$, there exists a neighborhood U_y of y such that $V \in \mathcal{R}(z)$ for every $z \in U_y$. Let $U = \bigcup_{y \in K} U_y$. Then \widetilde{U} is a neighborhood of K and if $L \in \widetilde{U}$, then $V \in \mathcal{R}(z)$ for every $z \in L$ thus $\Phi(L) \cap \widetilde{V} \neq \emptyset$. \Box

As consonance is hereditary for closed subsets, each tri-quotient map from a consonant space onto a Hausdorff space is compact-harmonious.

In [16, Theorem 8.2] Nogura and Shakhmatov show that continuous open maps are consonance-preserving and Bouziad in [2] proves that perfect maps also preserve consonance. The following result embraces these two cases.

Theorem 4.3. Tri-quotient maps preserve consonance.

Proof. As $X \in \mathcal{R}(y)$ and $\mathcal{R}(y)$ is supported by $f^{-1}(y)$ for every $y \in Y$, every open subset of X which includes $f^{-1}(y)$ is in $\mathcal{R}(y)$. Hence, for every open subset W of Y, the statement $y \in W$ amounts to $f^{-1}(W) \in \mathcal{R}(y)$.

Let \mathcal{A} be a compact family of Y. By Proposition 3.4 the family $\mathcal{R}(\mathcal{A})$ is a compact family of X. Since X is consonant, there exists $\mathcal{C} \subset \mathcal{K}_X$ with $\mathcal{R}(\mathcal{A}) = \mathcal{O}(\mathcal{C})$. Note that $f(\mathcal{C}) = \{f(C); C \in \mathcal{C}\}$. Now we claim that $\mathcal{A} = \mathcal{O}(f(\mathcal{C}))$. Indeed, $W \in \mathcal{A}$ if and only if $f^{-1}(W) \in \mathcal{R}(\mathcal{A})$ if and only if $C \in f^{-1}(W)$ for some $C \in \mathcal{C}$ that amounts to $f(C) \subset W$. \Box

5. Monotonic spaces

Recall that a *sieve* on a topological space X is a sequence of open covers $\{U_{\alpha} : \alpha \in A_n\}_n$ of X (with disjoint A_n) together with functions $\pi_n : \mathcal{A}_{n+1} \to \mathcal{A}_n$ such that for all $n \in \mathbb{N}$ and $\alpha \in \mathcal{A}_n$,

$$U_{\alpha} = \bigvee \{ U_{\beta} \colon \beta \in \pi_n^{-1}(\alpha) \}.$$

A π -chain for such a sieve is a sequence $(\alpha_n)_n$ such that $\alpha_n \in \mathcal{A}_n$ and $\pi_n(\alpha_{n+1}) = \alpha_n$ for all *n*. The sieve is *complete* if $(\alpha_n)_n$ is compactoid for every π -chain $(\alpha_n)_n$.

For a sequence $(B_k)_k$, note that $\mathcal{B} = \{B_k: k \in \mathbb{N}\}$. In [4] Chaber, Čoban and Nagami called a sequence $(B_k)_k$ an

(1) *md-sequence* if for every $x \in \bigcap \mathcal{B}$, the family \mathcal{B} is a base at x.

(2) *mp-sequence* if $\bigcap \mathcal{B} \neq \emptyset$ and if the family \mathcal{B} is compactoid.

(3) *mc-sequence* if the family \mathcal{B} is compactoid.

If *m* is any of the properties *md*, *mp*, *mc*, a sequence $(\mathcal{B}_n)_n$ of bases is called an *m*-sequence of bases if every closurewise decreasing⁷ sequence $(B_n)_n$, where $B_n \in \mathcal{B}_n$ for every $n \in \mathbb{N}$, has the property *m*.

A space X is said to be a *monotonic p-space* if it has an *mp*-sequence of bases, and is said to have a *base of countable order* if it has an *md*-sequence of bases.

It was proved in [4, Lemma 1.1] that a space has an *mc*-sequence of bases if and only if it has a complete sieve.

Dolecki, Greco and Lechicki have shown that every Čech-complete topology is consonant [8, Theorem 4.1]. A slight modification of their proof yields

Theorem 5.1. Every regular sieve-complete topology is consonant.

Proof. Let $(A_n)_n$ be a finitely additive complete sieve on *X*. Let \mathcal{D} be a compact family and $Q_0 \in \mathcal{O}(\mathcal{D})$. Since the space is regular, the family

$$\mathcal{U}_0 = \{ U \in \mathcal{O}_X \colon \exists A \in \mathcal{A}_1 \ \mathrm{cl} \ U \subset A \cap Q_0 \}$$

is an open cover of Q_0 . Thus by compactness of \mathcal{D} , there exists a nonempty set $Q_1 \in \mathcal{O}(\mathcal{D})$ and $A_1 \in \mathcal{A}_1$, such that cl $Q_1 \subset Q_0$ and $Q_1 \subset A_1$. Now, the family

$$\mathcal{U}_1 = \left\{ U \in \mathcal{O}_X \colon \exists A \in \pi_1^{-1}(A_1) \text{ cl } U \subset A \cap Q_1 \right\}$$

is an open cover of Q_1 . Hence, there exists a nonempty open set $Q_2 \in \mathcal{O}(\mathcal{D})$ and $A_2 \in \pi_1^{-1}(A_1)$, such that cl $Q_2 \subset Q_1$ and $Q_2 \subset A_2$. Similarly, we can construct a π -chain $(A_n)_n$ and a sequence $(Q_n)_n$ of nonempty open sets such that, for every n, $Q_n \in \mathcal{O}(\mathcal{D})$, cl $Q_{n+1} \subset Q_n$ and $Q_n \subset A_n$. If \mathcal{G} is the filter base $\{Q_n: n \in \mathbb{N}\}$, then $\operatorname{adh} \mathcal{G} \subset Q_0$. Every filter \mathcal{F} that meshes \mathcal{G} , meshes the π -chain $(A_n)_n$. Hence, by sieve-completeness of X, $\operatorname{adh} \mathcal{F} \neq \emptyset$ and therefore, \mathcal{G} is compactoid. By regularity, this implies that adherence of \mathcal{G} is compact and every open set $\mathcal{O} \supset \operatorname{adh} \mathcal{G}$ belongs to \mathcal{G} [8, Proposition 2.1] and thus belongs to $\mathcal{O}(\mathcal{D})$. The consonance is proved. \Box

In fact, we have a shorter indirect proof of Theorem 5.1. From [4, Theorem 3.7], it is known that a regular space is sieve-complete if and only if it is an open image of a paracompact Čech-complete space. Since every Čech-complete space is consonant [8] and open maps preserve consonance, it follows that every regular sieve-complete space is consonant.⁸

246

⁷ A sequence $(B_n)_n$ is *closurewise decreasing* if $cl B_{n+1} \subset B_n$ for every $n \in \mathbb{N}$.

⁸ Uspenskij has brought to my attention that, in January 1993, thinking about Michael's problem on infinite products of tri-quotient maps, quite independently of other people, he came to the definition of consonant spaces (he called them for himself "Q-complete") and proved that regular sieve-complete spaces are consonant.

As a consequence of Proposition 4.1, we have

Corollary 5.2. Each tri-quotient map with sieve-complete fibers onto an Hausdorff space is harmonious.

On the other hand, Proposition 4.2 implies that

Corollary 5.3. Each tri-quotient map from a regular sieve-complete space to a Hausdorff space is compact-harmonious.

6. Harmonious maps, countable compact-covering maps and inductively perfect maps

Recall that a continuous and onto map $f: X \to Y$ is *perfect* if and only if f is closed and each fiber is compact. Note that f is perfect if and only if each fiber is compact and the map $\Phi: Y \to \mathcal{K}_X$ with $\Phi(y) = f^{-1}(y)$ is continuous. This amounts to the compactness of $f^{-1}(K)$ for every compact subset K of Y together with the continuity of the map $\Psi: \mathcal{K}_Y \to \mathcal{K}_X$ such that $\Psi(K) = f^{-1}(K)$.

A map $f: X \to Y$ is called *inductively perfect* if there exists $Z \subset X$ such that f(Z) = Yand f|Z is perfect. Thus f is inductively perfect if and only if there exists a continuous map $\Phi: Y \to \mathcal{K}_X$ such that $\Phi(y)$ is a compact subset of $f^{-1}(y)$ for every $y \in Y$. This amounts to the existence of a continuous map $\Psi: \mathcal{K}_Y \to \mathcal{K}_X$ such that $f(\Psi(K)) = K$. Therefore it appears that the relation between compact-harmonious or harmonious maps and inductively perfect maps is essentially a problem of selection for a lower semicontinuous multivalued mapping.

In [15, Theorem 1.4] Michael has proved that every tri-quotient map $f: X \to Y$, with completely metrizable fibers, from a metrizable space onto a countable regular space Y is inductively perfect. Just and Wicke extended this result to tri-quotient maps, with sieve-complete fibers, from regular monotonic p-spaces to countable regular spaces [10, Theorem 3.1]. Note that in the two cases the hypothesis imply that a map f has consonant fibers thus is harmonious. The proofs of these two theorems use the following result of Michael:

Theorem 6.1 [14, Theorem 1.1]. If $\Phi: Y \to 2^Z$ is lower semicontinuous, with Y a countable regular space and Z first-countable, then there exists a continuous map $g: Y \to Z$ such that $g(y) \in \Phi(y)$ for all $y \in Y$.

Using this theorem with $Z = \mathcal{K}_X$ which is first-countable if X is metric, as f is harmonious, the proof of [15, Theorem 1.4] of Michael is immediate.

I show that the result of Just and Wicke [10, Theorem 3.1] remains true if we assume that f is only harmonious.

At first, I give two propositions that generalize Lemma 2.0 and Theorem 3.0 of Just and Wicke in [10].

Proposition 6.2.

- (1) If X is a regular monotonic p-space, then for every compact subset K of X and for every neighborhood \widetilde{U} of K, there exists a compact set C having a countable base of neighborhoods such that $K \subset C$ and $C \in \widetilde{U}$.
- (2) Moreover, if F is a G_{δ} -subset of X and $K \subset F$, then C can be chosen to also satisfy $C \subset F$.

Proof. Let *K* be a compact subset of *X* and *U* be an open subset of *X*. Recall that $K \in \widetilde{U}$ amounts to $K \subset U$. Consider $(\mathcal{B}_n)_n$ an *mp*-sequence of bases and $U = \bigcup \mathcal{B}'_0$ for a $\mathcal{B}'_0 \subset \mathcal{B}_0$. Then there is a finite $\mathcal{U}_0 \subset \mathcal{B}'_0$ such that $K \subset \bigcup \mathcal{U}_0$. Denote $U_0 = \bigcup \mathcal{U}_0$. If *F* is a G_δ -subset of *X* such that $K \subset F$, then $F = \bigcap_{n \in \mathbb{N}} H_n$ else $H_n = Y$ for every $n \in \mathbb{N}$. The family $B'_1 = \{B \in \mathcal{B}_1: B \# K, \exists D \in \mathcal{U}_0 \text{ cl } B \subset D \cap H_1\}$ is an open cover of *K*, then there is a finite $\mathcal{U}_1 \subset \mathcal{B}'_1$ such that $K \subset \bigcup \mathcal{U}_1$. Denote $U_1 = \bigcup \mathcal{U}_1$. Similarly, we construct a sequence $(\mathcal{U}_n)_n$ of finite families of \mathcal{B}_n for every $n \in \mathbb{N}$, a sequence $(U_n)_n$ of open sets that include *K* such that

$$U_n \subset \operatorname{cl} U_n \subset \bigcap_{i \leq n} H_i$$
 and $U_n \subset \operatorname{cl} U_n \subset U_{n-1}$,

for every $n \in \mathbb{N}$. Now, let \mathcal{U} the filter composed on the filter base $(U_n)_n$ and \mathcal{G} a filter that meshes \mathcal{U} . Then $\mathcal{M}_n = \{B \in \mathcal{U}_n : B \# \mathcal{G}\}$ is nonempty and, for every $n \in \mathbb{N}$ if $B \in \mathcal{M}_n$, then there is $C \in \mathcal{M}_{n-1}$ such that $\operatorname{cl} B \subset C$. Since each \mathcal{M}_n is finite, by Kunig's Lemma⁹ there exists a closurewise decreasing sequence $(B_n)_n$ such that $B_n \in \mathcal{M}_n$ for every $n \in \mathbb{N}$. Since $(B_n)_n$ meshes K,

$$\bigcap_{n\in\mathbb{N}}B_n=\bigcap_{n\in\mathbb{N}}\operatorname{cl} B_n\neq\emptyset$$

and thus \mathcal{G} clusters in X and therefore \mathcal{U} is compactoid. By [8, Proposition 2.1], $\operatorname{adh} \mathcal{U} = \bigcap_{n \in \mathbb{N}} U_n$ is a compact subset C of F and for every open set $U \supset C$ there exists $U_n \subset U$. \Box

Corollary 6.3. If X is a regular monotonic p-space, then the set of compact subsets with a countable base of neighborhoods is dense in \mathcal{K}_X .

Proposition 6.4. Let $f: X \to Y$ be a harmonious map with a lower semicontinuous lifting Φ and let X be a regular monotonic p-space.

- (1) If every point of Y is a G_{δ} -subset, then there exists a lower semicontinuous lifting Ψ such that $\mathcal{O}(\Psi(y)) = \mathcal{O}(\Phi(y))$ for every $y \in Y$ and every $L \in \Psi(y)$ has a countable base of neighborhoods in \mathcal{K}_X .
- (2) If Y is regular, then Y is of pointwise countable type.
- (3) Moreover if X has a base of countable order, then Y is first countable.

Proof. (1) A compact set $L \in \Psi(y)$ if and only if L is a compact subset of $f^{-1}(y)$ with a countable base of neighborhoods and if there exists $K \in \Phi(y)$ such that $K \subset$

248

⁹ Every tree of height ω with finite levels has an infinite branch.

L. By Proposition 6.2.1, $\Psi(y)$ is non-empty for every $y \in Y$. We have to show that $V = \{y \in Y; \Psi(y) \cap \widetilde{U} \neq \emptyset\}$ is an open subset of *Y*, for every open subset *U* of *X*. If $\Psi(y) \cap \widetilde{U} \neq \emptyset$ then there is $L \in \Psi(y)$ such that $L \subset U$. Since $L \in \Psi(y)$, there is $K \in \Phi(y)$ such that $K \subset L \subset U$ that is, $\Phi(y) \cap \widetilde{U} \neq \emptyset$. Since Φ is lower semicontinuous, there exists an open set $O(y) \ni y$ such that $\Phi(w) \cap \widetilde{U} \neq \emptyset$, for every $w \in O(y)$. Hence, for every $w \in O(y)$, there is $K_w \in \Phi(w)$ such that $K_w \subset U$. By Proposition 6.2.1, for every $w \in O(y)$, there exists a compact set C_w having a countable base of neighborhoods such that $K_w \subset C_w \subset U$. The set $C_w \in \Psi(w) \cap \widetilde{U}$ for every $w \in O(y)$, hence $O(y) \subset W$ and therefore, Ψ is lower semicontinuous.

Since every point of Y is a G_{δ} -subset, $f^{-1}(y)$ is a G_{δ} -subset of X and by Proposition 6.2.2 where $F = f^{-1}(y)$, the mapping Ψ is a lifting for f.

(2) Let $y \in Y$ and $K \in \Phi(y)$. By Proposition 6.2.1, there exists a compact subset $L \supset K$ of X with a countable base $(\widetilde{U}_n)_{n \in \mathbb{N}}$ of neighborhoods. Since $K \in \Phi(y)$, we have that $y \in t(U_0)$ and since Y is regular, there exists an open set $V_0 \subset Y$ such that $y \in V_0$ and $\operatorname{cl} V_0 \subset t(U_0)$. If we denote $W_1 = f^{-1}(V_0) \cap U_1$, then $W_1 \cap f^{-1}(y) = U_1 \cap f^{-1}(y)$, thus $y \in t(W_1)$ and by the isotonicity of t, we have $\operatorname{cl}(t(W_1)) \subset t(U_0)$. Similarly, we construct a sequence $(W_n)_{n \in \mathbb{N}}$ such that $\operatorname{cl}(t(W_{n+1})) \subset t(W_n)$ and $y \in \bigcap_{n \in \mathbb{N}} t(W_n)$. Let \mathcal{G} be the filter generated by $(t(W_n))_{n \in \mathbb{N}}$. If a filter \mathcal{F} meshes \mathcal{G} , since $t(W_n) \subset f(W_n)$, the filter $f^-(\mathcal{F})$ meshes $(W_n)_{n \in \mathbb{N}}$ thus it meshes $(U_n)_{n \in \mathbb{N}}$. Therefore adh $f^-\mathcal{F}$ is nonempty and by the continuity of f, the filter \mathcal{F} clusters in Y. Thus the filter \mathcal{G} is compactoid and by [8, Proposition 2.1], $\operatorname{adh} \mathcal{G} = \bigcap_{n \in \mathbb{N}} t(W_n)$ is a compact subset of Y that has a countable base of neighborhoods in \mathcal{K}_Y and such that $y \in \operatorname{adh} \mathcal{G}$.

If *X* has a base of countable order, the proof goes through verbatim the proof of [10, Theorem 3.0(b)]. \Box

Now, I am in position to give the following result.

Theorem 6.5. Let $f: X \to Y$ be a harmonious map. If X is a regular monotonic p-space and Y is a countable regular space, then f is inductively perfect.

Proof. If *Y* is countable and regular then every point of *Y* is a G_{δ} -subset. Since *f* is an harmonious map, there exists a lower semicontinuous lifting for $f, \Phi : Y \rightrightarrows \mathcal{K}_X$. Since *X* is a regular monotonic p-space and $\{y\}$ is a G_{δ} -subset of *Y* for each $y \in Y$, by Proposition 6.4.1, there exists a lower semicontinuous lifting for $f, \Psi : Y \rightrightarrows \mathcal{K}_X$ such that, for every $y \in Y$, all compact sets of $\Psi(y)$ have a countable base of neighborhoods in \mathcal{K}_X . Now, if in Theorem 6.1, the space *Z* is the subspace of \mathcal{K}_X of all elements which admit a countable base of neighborhoods, then Ψ has a continuous selection and therefore, the map *f* is inductively perfect. \Box

Corollary 6.6. Every tri-quotient map with consonant fibers from a regular monotonic *p*-space onto a countable regular space Y is inductively perfect.

Corollary 6.7. Every tri-quotient map from a regular sieve-complete space onto a countable regular space Y is inductively perfect.

Proof. Every sieve-complete space is a monotonic p-space and by Theorem 5.1, X is consonant. Since $f^{-1}(y)$ is closed, $f^{-1}(y)$ is consonant for every $y \in Y$. Now the conclusion follows from Corollary 6.6. \Box

Corollary 6.8. Let $f : X \to Y$ be a harmonious map. If X is a regular monotonic p-space and Y is Hausdorff, then f is countable compact-covering.

The proof is the same one given in [10, Theorem 3.2]. I give it verbatim. Just before, note that it is easy to see that harmonious map are hereditar on closed subsets.

Proof. Let f, X and Y be as in assumptions, and let Z be a compact, countable subspace of Y. We show that there exists a compact cover of Z. Let $W = f^{-1}(Z)$. The space W is a closed subspace of X, and thus a regular, monotonic p-space. Therefore, the restriction of f to W satisfies the assumptions of Theorem 6.5. It follows that there is a subspace $W' \subset W$ that is mapped by f onto Z and such that f|W' is perfect. Since inverse images of compact spaces under perfect maps are compact, W' is a compact cover of Z.

Corollary 6.9. If $f: X \to Y$ is a tri-quotient map with consonant fibers from a regular monotonic p-space X onto a Hausdorff space Y, then f is countable compact-covering.

In [11] Just and Wicke have shown that

250

Theorem 6.10. If X is a metric space, Y a first-countable zero-dimensional space, and f a countable compact-covering surjection such that every fiber is separable, then f is harmonious.

I am in a position to refine Theorem 6.10.

Theorem 6.11. Let X be a regular monotonic p-space. Let Y be a Hausdorff firstcountable space. If $f: X \to Y$ is a countable compact-covering map with every fiber second countable, then f is harmonious.

7. Proof of Theorem 6.11

Proof. Note that if $f^{-1}(y)$ is second countable, then $\mathcal{K}_{f^{-1}(y)}$ is also second countable, and therefore by [9, Theorem 1.1.14], every open cover of every subspace of $\mathcal{K}_{f^{-1}(y)}$ has a countable subcover.

For every $y \in Y$, let $\Phi(y)$ be the family of all $K \in \mathcal{K}_X$ such that

(1) $K \subset f^{-1}(y)$,

- (2) *K* has a first countable base of neighborhoods in \mathcal{K}_X ,
- (3) for every countable compact subset *E* of *Y* there exists a compact $C \subset X$ such that $C \cap f^{-1}(y) \subset K$ and f(C) = E.

Denote $\omega \mathcal{K}_{f^{-1}(y)}$ the family of all compact subsets of $f^{-1}(y)$ which have a countable base of neighborhoods in \mathcal{K}_X .

Let *E* be a compact, countable subset of *Y*, let $y \in Y$, and let $K \in \omega \mathcal{K}_{f^{-1}(y)}$. We say that *E* eliminates *K* if there is no compact $C \subset X$ with f(C) = E and $C \cap f^{-1}(y) \subset K$.

Note that $\Phi(y)$ is the family of all $K \in \omega \mathcal{K}_{f^{-1}(y)}$ such that no countable, compact $E \subset Y$ eliminates K. \Box

Proposition 7.1.

- (1) If E eliminates $K \in \omega \mathcal{K}_{f^{-1}(y)}$, then $y \in E$.
- (2) If E eliminates $K \in \omega \mathcal{K}_{f^{-1}(y)}$, and U is a neighborhood of y in Y, then $E \cap cl U$ also eliminates K.
- (3) If $E \subset F$ are countable, compact subsets of Y, and if E eliminates K, then so does F.
- (4) If *E* eliminates some $K \in \omega \mathcal{K}_{f^{-1}(y)}$, then there is a neighborhood \widetilde{V} of *K* such that *E* eliminates every $L \in \widetilde{V} \cap \omega \mathcal{K}_{f^{-1}(y)}$.

Proof. (1) Let *E* be a countable compact subset of *Y*, since *f* is countable compactcovering, then there exists a compact subset of *X* such that f(C) = E. If *y* is not in *E*, then $C \cap f^{-1}(y) = \emptyset$. Hence *E* does not eliminate *K*.

(2) $E \cap cl U$ and $E \cap U^c$, closed if U is open, are countable compact subsets of Y. If C and D are compact subsets of X such that $f(C) = E \cap cl U$ and $f(D) = E \cap U^c$, then $C \cup D$ is a compact set of X with $f(C \cup D) = E$, and $(C \cup D) \cap f^{-1}(y) = C \cap f^{-1}(y)$.

(3) If C is compact with f(C) = F, then $D = C \cap f^{-1}(E)$ is also compact with f(D) = E and $D \cap f^{-1}(y) = C \cap f^{-1}(y)$.

(4) Suppose (4) is false, and let $K \in \omega \mathcal{K}_{f^{-1}(y)}$ and E that eliminates K. Let $(\widetilde{V}_n)_{n \in \mathbb{N}}$ a base of neighborhoods of K in \mathcal{K}_X . For every $n \in \mathbb{N}$, there exists a compact subset $L_n \in \widetilde{V}_n$ of $f^{-1}(y)$ such that E does not eliminate L_n . Hence for every $n \in \mathbb{N}$ there exists a compact subset C_n of X such that $f(C_n) = E$ and $C_n \cap f^{-1}(y) \subset L_n$. Therefore, for every $n \in \mathbb{N}$, there exists a compact subset C_n of X such that $f(C_n) = K$ and $C_n \cap f^{-1}(y) \subset L_n$. Therefore, for every $n \in \mathbb{N}$, there exists a compact subset C_n of X such that $C_n \cap f^{-1}(y) \in \widetilde{V}_n$.

Lemma 7.2. Let $(U_k)_{k \in \mathbb{N}}$ be a base of neighborhoods of y. For each $n \in \mathbb{N}$, there exists U_{k_n} such that $C_n \cap f^-(\operatorname{cl} U_{k_n}) \in \widetilde{V}_n$.

Proof. Assume it is false. If there exists $n \in \mathbb{N}$ such that for every $k \in \mathbb{N}$, $C_n \cap f^-(\operatorname{cl} U_k) \notin \widetilde{V}_n$, that amounts to $C_n \cap f^-(\operatorname{cl} U_k) \notin V_n$, then there is w_k in $C_n \cap f^-(\operatorname{cl} U_k)$ such that $w_k \notin V_n$. C_n is compact, then the sequence $(w_k)_{k \in \mathbb{N}}$ clusters in C_n at some point w. Since f is continuous and $\bigcap_{k \in \mathbb{N}} \operatorname{cl} U_k = \{y\}$, the point w is in $f^{-1}(y)$. But w is not in V_n , hence $C_n \cap f^{-1}(y) \notin \widetilde{V}_n$. \Box

Continuation of the proof of Proposition 7.1. By Lemma 7.2, we find a base $(U_n)_{n \in \mathbb{N}}$ of neighborhoods of *y* such that $C_n \cap f^-(\operatorname{cl} U_n) \in \widetilde{V}_n$ for every $n \in \mathbb{N}$. Let

$$C = \bigcup_{n \in \mathbb{N}} \left(C_n \cap f^{-1} \left((\operatorname{cl} U_n) \setminus U_{n+1} \right) \right) \cup K.$$

C is compact [11, Claim 1.4] and $f(C) = E \cap \operatorname{cl} U_0 = E'$. By Proposition 7.1.2, $E \cap \operatorname{cl} U_0 = E'$ eliminates $K \in \omega \mathcal{K}_{f^{-1}(y)}$ hence $y \in E'$. If $x \in C_n \cap f^{-1}((\operatorname{cl} U_n) \setminus U_{n+1})$, then $f(x) \in \operatorname{cl} U_0$ and since $f(C_n) = E$ for every *n*, then $f(x) \in E$. If $z \in E' \setminus \{y\}$, then for every $n \in \mathbb{N}$, there exists $x_n \in C_n$ such that $f(x_n) = z$ and since $z \in \operatorname{cl} U_0$, there is $n_z \in \mathbb{N}$ such that $z \in (\operatorname{cl} U_{n_z}) \setminus U_{n_z+1}$ and $x_{n_z} \in C_{n_z} \cap f^{-1}(\operatorname{cl} U_{n_z}) \setminus U_{n_z+1}$. \Box

Note that by Proposition 7.1.4, the family $\Phi(y)$ is closed.

Proposition 7.3. If $y \in Y$ and $G \subset \Phi(y)^c$, then there is a countable compact set that eliminates all the elements of $G \cap \omega \mathcal{K}_{f^{-1}(y)}$.

Proof. Let $K \in G \cap \omega \mathcal{K}_{f^{-1}(y)}$ and $K \notin \Phi(y)$, then there exists a countable compact set E_K and a neighborhood V_K of K such that E_K eliminates all the compact subsets $L \in V_K \cap \omega \mathcal{K}_{f^{-1}(y)}$.

The family $(V_k)_k$ is an open cover of $G \cap \omega \mathcal{K}_{f^{-1}(y)}$ and by [9, Theorem 1.1.14], there is a sequence $(K_n)_{n \in \mathbb{N}}$ such that for every compact subset $L \in G$ of $f^{-1}(y)$, there exists E_{K_n} that eliminates L. Let $(U_n)_{n \in \mathbb{N}}$ be a base of neighborhoods of y. $E = \bigcup_{n \in \mathbb{N}} (E_{K_n} \cap \operatorname{cl} U_n)$ is a countable compact set that eliminates all compact subsets $L \in G \cap \omega \mathcal{K}_{f^{-1}(y)}$. \Box

Proposition 7.4. For every $y \in Y$, the family $\Phi(y)$ is nonempty.

Proof. If $\Phi(y)$ is empty, then $\omega \mathcal{K}_{f^{-1}(y)} \subset \Phi(y)^c$ and by Proposition 7.3, there exists a countable compact set that eliminates all elements of $\omega \mathcal{K}_{f^{-1}(y)}$. But this is impossible because for every compact subset *C* of *X* such that f(C) = E, *E* does not eliminate the compact sets $L \in \omega \mathcal{K}_{f^{-1}(y)}$ such that $C \cap f^{-1}(y) \subset L$. \Box

Now we are in a position to prove that Φ is lower semicontinuous. Suppose that $\Phi: Y \to \omega \mathcal{K}_X$ is not lower semi-continuous. Then

$$\exists K \in \Phi(y) \; \exists V \in \mathcal{N}(K) \; \forall U \in \mathcal{N}(y) \; \exists y' \in U \; \Phi(y') \cap V = \emptyset.$$

Let $(U_n)_{n\in\mathbb{N}}$ be a base of neighborhoods of y. Then we can find a sequence $(y_n)_{n\in\mathbb{N}}$ such that $y_n \in U_n$ for every $n \in \mathbb{N}$ and $\Phi(y_n) \cap \widetilde{V} = \emptyset$. Passing to a subsequence if necessary, assume that $y_n \in U_n \setminus U_{n+1}$. By the Proposition 7.3, for every $n \in \mathbb{N}$ we may choose a countable compact subset E_n of Y that eliminates all elements of $\widetilde{V} \cap \omega \mathcal{K}_{f^{-1}(y_n)}$. Hence $G_n = E_n \cap \operatorname{cl} U_n$ eliminates all compact subsets $L \in \widetilde{V} \cap \omega \mathcal{K}_{f^{-1}(y_n)}$. The set $E = \bigcup_{n \in \mathbb{N}} G_n \cup \{y\}$ is countable and compact. Let C be a compact subset of X with f(C) = E. For every $n \in \mathbb{N}$, the set E eliminates all elements of $\widetilde{V} \cap \omega \mathcal{K}_{f^{-1}(y_n)}$, hence by Proposition 6.2, $C \cap f^{-1}(y_n) \notin \widetilde{V}$. Therefore for every $n \in \mathbb{N}$, there is $w_n \in C \cap f^{-1}(y_n)$ such that $\{w_n\} \notin \widetilde{V}$. Since C is compact the sequence $(w_n)_{n \in \mathbb{N}}$ clusters at some point $w \in C$. By the continuity of f and $\{y\} = \bigcap_{n \in \mathbb{N}} U_n$, the point w is in $f^{-1}(y)$. Since $w_n \notin V$ for every $n \in \mathbb{N}$, the point w is not in K. Therefore E eliminates K. \Box

References

- A.V. Arhangel'skii, Open and near open mappings. Connections between spaces, Trans. Moscow Math. Soc. 15 (1966) 204–250.
- [2] A. Bouziad, Borel measures in consonant spaces, Topology Appl. 70 (1996) 125–132.
- [3] A. Bouziad, Consonance and topological completeness in analytic spaces, Proc. Amer. Math. Soc., to appear.
- [4] J. Chaber, M.M. Čoban, K. Nagami, On monotone generalizations of Moore spaces, Čechcomplete spaces and p-spaces, Fund. Math. 84 (1974) 107–119.
- [5] G. Debs, J. Saint Raymond, Compact-covering-properties of finite-to-one mappings, Topology Appl. 81 (1997) 55–84.
- [6] G. Debs, J. Saint Raymond, Compact covering and game determinacy, Topology Appl. 68 (1996) 153–185.
- [7] S. Dolecki, G.H. Greco, A. Lechicki, Compactoid and compact filters, Pacific J. Math. 117 (1985).
- [8] S. Dolecki, G.H. Greco, A. Lechicki, When do the upper Kuratowski topology (homeomorphically, Scott topology) and the co-compact topology coincide?, Trans. Amer. Math. Soc. 347 (1995) 2869–2884.
- [9] R. Engelking, Topology, PWN, Warsaw, 1977.
- [10] W. Just, H. Wicke, Preservation properties of tri-quotient maps with sieve-complete fibers, Topology Proc. 17 (1992) 151–172.
- [11] W. Just, H. Wicke, Some conditions under which tri-quotient or compact-covering maps are inductively perfect, Topology Appl. 55 (1994) 289–305.
- [12] E. Michael, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968) 287–302.
- [13] E. Michael, Complete spaces and tri-quotient maps, Illinois J. Math. 21 (1977) 716–733.
- [14] E. Michael, Continuous selections and countable sets, Fund. Math. 111 (1981) 1–10.
- [15] E. Michael, Inductively perfect maps and tri-quotient maps, Proc. Amer. Math. Soc. 82 (1981) 115–119.
- [16] N. Nogura, D. Shakhmatov, When does the Fell topology on a hyperspace of closed sets coincide with the meet of the upper Kuratowski and the lower Vietoris topologies, Topology Appl. 70 (1996) 213–243.
- [17] A.V. Ostrovsky, Harmonic maps, Vestnik Mosk. Gos. Univ. 4 (1994) 24-28.
- [18] A.V. Ostrovsky, On compact-covering mappings, Soviet Math. Dokl. 17 (1976) 606–610.
- [19] A.V. Ostrovsky, Triquotient and inductively perfect maps, Topology Appl. 23 (1986) 25–28.
- [20] V.V. Uspenskij, Tri-quotient maps are preserved by infinite products, Proc. Amer. Math. Soc. 123 (1995) 3567–3574.
- [21] P. Wilker, Adjoint product and HOM functors in general topology, Pacific J. Math. 34 (1970) 269–283.