Mutually M-intersecting Hermitian Varieties

Ryoh Fuji-Hara
Systems, Information and Mathematical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 305-8573
E-mail: fujihara@sk.tsukuba.ac.jp
and
Nobuko Miyamoto
Graduate School of Systems Management, University of Tsukuba, 3-29-1 Otsuka, Bunkyo, Tokyo 112-0012
E-mail: nobuko@gssm.otsuka.tsukuba.ac.jp
Communicated by James W. P. Hirschfield

Received October 7, 1997; revised November 6, 1998

Let M be a set of integers. We consider a set of varieties in $\operatorname{PG}(n, q)$ such that each variety contains ρ points and the intersection of two distinct varieties contains μ points, where $\mu \in M$. Such a set is called a set of mutually M-intersecting varieties. In this paper, it is shown that there exist new sets of mutually M-intersecting varieties by using Hermitian varieties in $\operatorname{PG}\left(2, q^{2}\right)$. © 1999 Academic Press

1. INTRODUCTION

Let f be a homogeneous polynomial. Then the set of points \boldsymbol{x} of $\operatorname{PG}(n q)$ satisfying $f(\boldsymbol{x})=0$ is called a variety and is denoted by $V(f)$. In a previous paper [4], we proposed a problem to find mutually M-intersecting varieties. This is a set of varieties $V\left(f_{1}\right), V\left(f_{2}\right), \ldots, V\left(f_{s}\right)$ which satisfies three conditions:
(i) M is a set of nonnegative integers.
(ii) $\left|V\left(f_{i}\right)\right|=\rho$ for $1 \leq i \leq s$.
(iii) $\left|V\left(f_{i}\right) \cap V\left(f_{j}\right)\right| \in M$ for $1 \leq i, j \leq s, i \neq j$.

We will use $\mathscr{V}(\rho, M)$ to denote such a set and when M is a singleton $\{\mu\}$, we simply write $\mathscr{V}(\rho, \mu)$. Note that $s=|\mathscr{V}(\rho, M)|$.

Some results on mutually $\{\mu\}$-intersecting varieties are given in [4]. By using quadrics and a projective group on $\operatorname{PG}(3, q)$, we obtained a $\mathscr{V}\left(q^{2}+1\right.$, $q+1)$ consisting of q^{2} varieties and a $\mathscr{V}\left((q+1)^{2}, 3 q+1\right)$ of q^{2} varieties. We are interested in finding as many as possible varieties which are mutually M-intersecting. This is not only an interesting geometrical problem but also a problem with combinatorial applications. When $M=\{\mu\}$, we can use a $\mathscr{V}(\rho, M)$ to construct combinatorial designs such as (r, λ)-designs and combinatorial arrays such as orthogonal, incomplete orthogonal or balanced arrays [2, 3]. When $|M|=2$, a $\mathscr{V}(\rho, M)$ is related to a particular graph called a strong regular graph which is sometimes used in the design of experiments. In this paper, we will use results on intersections of Hermitian varieties given by Kestenband [8] to construct new sets of mutually M-intersecting Hermitian varieties in $\operatorname{PG}\left(2, q^{2}\right)$ with $|M|=1$ or 2 .

2. HERMITIAN VARIETIES

An $(n+1) \times(n+1)$ square matrix $H=\left(h_{i j}\right)$ with elements from $\operatorname{GF}\left(q^{2}\right)$ is called a Hermitian matrix if $h_{i j}=h_{j i}^{q}$ for all i, j. Let $A^{(q)}$ denote the matrix whose (i, j)-entry is $a_{i j}^{q}$ if the (i, j)-entry of the matrix A is $a_{i j}$. A Hermitian variety (abbreviated to HV) in $\operatorname{PG}\left(n, q^{2}\right)$ is defined as $\left\{\boldsymbol{x} \in \operatorname{PG}\left(n, q^{2}\right)\right.$; $\left.f(\mathbf{x})=\mathbf{x}^{\mathrm{T}} H \boldsymbol{x}^{(q)}=0\right\}$, where H is a Hermitian matrix. Here we use $V(H)$, instead of $V(f)$ to denote the Hermitian variety. Two Hermitian matrices H and G are said to be equivalent if there exists a nonsingular matrix P over GF $\left(q^{2}\right)$ such that $P^{\mathrm{T}} H P^{(q)}=G$. It is also known that any nonsingular Hermitian matrix is equivalent to the identity matrix I. This means that there exists a nonsingular matrix P such that $P^{\mathrm{T}} H P^{(q)}=I$ for any nonsingular Hermitian matrix H. When H is a Hermitian matrix of rank r, then $V(H)$ is called an HV of rank r. An HV of rank $n+1$ in $\operatorname{PG}\left(n, q^{2}\right)$ is said to be nondegenerate. The properties of an HV in $\mathrm{PG}\left(2, q^{2}\right)$ have been studied in $[1,8]$. An HV in $\operatorname{PG}\left(2, q^{2}\right)$ contains $q^{2}+1, q^{3}+q^{2}+1$, or $q^{3}+1$ points, accordingly as the rank is 1,2 , or 3 .

Kestenband [8] has determined the possible intersections of $V(H)$ with $V(I)$ in $\mathrm{PG}\left(2, q^{2}\right)$ for any nonsingular Hermitian matrix H. Note that the minimal polynomial $m(x)$ of a matrix H satisfies $m(H)=\mathbf{0}$ and $m^{\prime}(H) \neq \mathbf{0}$ for any polynomial $m^{\prime}(x)$ with $\operatorname{deg}\left(m^{\prime}(x)\right)<\operatorname{deg}(m(x))$.

Result (B. C. Kestenband). Let H be a nonsingular Hermitian matrix. Let $m(x)$ and $g(x)$ be minimal and characteristic polynomial of H, respectively. Then $|V(H) \cap V(I)|$ is one of the following:
(1) $(q+1)^{2}$ points, if $m(x)=g(x)=(x-\alpha)(x-\beta)(x-\gamma), \alpha, \beta, \gamma$ distinct elements of GF (q);
(2) $q^{2}+q+1$ points, if $m(x)=g(x)=(x-\alpha)(x-\beta)^{2}, \alpha, \beta$, distinct elements of $\operatorname{GF}(q)$;
(3) $q+1$ collinear points if $m(x)=(x-\alpha)(x-\beta), \alpha, \beta$, distinct elements of GF(q);
(4) $q^{2}+1$ points, if $m(x)=g(x)=(x-\alpha) p(x), \alpha \in \mathrm{GF}(q), p(x)$: irreducible over GF (q);
(5) $q^{2}+1$ points, if $m(x)=g(x)=(x-\lambda)^{3}$;
(6) one point if $m(x)=(x-\lambda)^{2}$;
(7) $q^{2}-q+1$ points, no three of which are collinear, if $g(x)$ is irreducible over GF (q).

Kestenband [7] also generated a set χ consisting of $q^{2}+q+1$ Hermitian matrices with irreducible characteristic polynomials over GF (q). The set of varieties from χ forms a $\mathscr{V}\left(q^{3}+1, q^{2}-q+1\right)$. Since χ is isomorphic to $\operatorname{PG}(2, q)$, the incidence matrix of the varieties $\mathscr{V}\left(q^{3}+1, q^{2}-q+1\right)$ and the points on $\operatorname{PG}\left(2, q^{2}\right)$ contains $q^{2}-q+1$ copies of $\operatorname{PG}(2, q)$. In the next section, we will use Hermitian matrices having the minimal polynomial $(x+1)^{3}$ over $\operatorname{GF}(q)$, where q is an even prime power, to construct new mutually M-intersecting varieties which are different from those found by Kestenband.

3. CONSTRUCTIONS

We assume in the rest of this paper that q is an even prime power. Let

$$
H=\left(\begin{array}{ccc}
1 & a & 0 \\
a^{q} & 1 & b \\
0 & b^{q} & 1
\end{array}\right)
$$

where $a, b \in \operatorname{GF}\left(q^{2}\right) \backslash\{0\}$, and $a^{q+1}=b^{q+1}$. Note that a and b are not necessary distinct. Then the minimal polynomial of H is $(x+1)^{3}$ since the characteristic is two. We define a set of HV's by

$$
\mathscr{H}=\left\{V\left(H_{0}\right), V\left(H_{1}\right), \ldots, V\left(H_{q}\right)\right\}
$$

where

$$
H_{i}=\left(\begin{array}{ccc}
1 & a u^{i q} & 0 \\
a^{q} u^{i} & 1 & b u^{i q} \\
0 & b^{q} u^{i} & 1
\end{array}\right)
$$

$u \in \operatorname{GF}\left(q^{2}\right)$, and the order of u is $q+1$. Note that $H_{0}=H$ and $V\left(H_{i}\right) \in \mathscr{H}$ is a nondegenerate HV containing $q^{3}+1$ points.

Lemma 1. For any two distinct HV's $V\left(H_{i}\right)$ and $V\left(H_{j}\right)$ of \mathscr{H}, there exists H_{l} of \mathscr{H} such that $\left|V\left(H_{i}\right) \cap V\left(H_{j}\right)\right|=\left|V\left(H_{l}\right) \cap V\left(H_{0}\right)\right|$.

Proof. Let $\boldsymbol{x}_{1}=\left(x, u^{k} y, u^{k(1-q)} z\right)^{\mathrm{T}}$ be a point of $V\left(H_{i}\right) \cap V\left(H_{j}\right)$. Then

$$
\begin{aligned}
\boldsymbol{x}_{1}^{\mathrm{T}} H_{i} \boldsymbol{x}_{1}^{(q)} & =\left(x, u^{k} y, u^{k(1-q)} z\right)\left(\begin{array}{ccc}
1 & a u^{i q} & 0 \\
a^{q} u^{i} & 1 & b u^{i q} \\
0 & b^{q} u^{i} & 1
\end{array}\right)\left(\begin{array}{c}
x^{q} \\
u^{k q} y^{q} \\
u^{k(1-q) q} z^{q}
\end{array}\right) \\
& =(x, y, z)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & u^{k} & 0 \\
0 & 0 & u^{k(1-q)}
\end{array}\right)\left(\begin{array}{ccc}
1 & a u^{i q} & 0 \\
a^{q} u^{i} & 1 & b u^{i q} \\
0 & b^{q} u^{i} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & u^{k q} & 0 \\
0 & 0 & u^{k(1-q) q}
\end{array}\right)\left(\begin{array}{l}
x^{q} \\
y^{q} \\
z^{q}
\end{array}\right) \\
& =(x, y, z)\left(\begin{array}{ccc}
1 & a u^{i q} & 0 \\
a^{q} u^{i+k} & u^{k} & b u^{i q+k} \\
0 & b^{q} u^{i+k(1-q)} & u^{k(1-q)}
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & u^{k q} & 0 \\
0 & 0 & u^{k(1-q) q}
\end{array}\right)\left(\begin{array}{l}
x^{q} \\
y^{q} \\
z^{q}
\end{array}\right) \\
& =(x, y, z)\left(\begin{array}{ccc}
1 & a u^{(i+k) q} & 0 \\
a^{q} u^{i+k} & u^{k(1+q)} & b u^{(i+k) q+k(1-q)(1+q)} \\
0 & b^{q} u^{i+k} & u^{k(1-q)(1+q)}
\end{array}\right)\left(\begin{array}{l}
x^{q} \\
y^{q} \\
z^{q}
\end{array}\right) \\
& =(x, y, z)\left(\begin{array}{ccc}
1 & a u^{(i+k) q} & 0 \\
a^{q} u^{i+k} & 1 & b u^{(i+k) q} \\
0 & b^{q} u^{i+k} & 1
\end{array}\right)\left(\begin{array}{l}
x^{q} \\
y^{q} \\
z^{q}
\end{array}\right)=\boldsymbol{x}^{\mathrm{T}} H_{i+k} \boldsymbol{x}^{(q)}
\end{aligned}
$$

since the order of u is $q+1$. That is, $\boldsymbol{x}=(x, y, z)^{\mathrm{T}}$ is a point of $V\left(H_{i+k}\right) \cap V\left(H_{j+k}\right)$. Hence the change of variables $x_{1}=x, y_{1}=u^{k} y$, and $z_{1}=u^{k(1-q)} z$ established a one-to-one correspondence between the points of $V\left(H_{i}\right) \cap V\left(H_{j}\right)$ and those of $V\left(H_{i+k}\right) \cap V\left(H_{j+k}\right)$.

Moreover, k can be chosen so that $H_{j+k}=H_{0}$. Therefore, we have $\left|V\left(H_{i}\right) \cap V\left(H_{j}\right)\right|=\left|V\left(H_{l}\right) \cap V\left(H_{0}\right)\right|$, where $l=i+k$.

Theorem 1. Let q be an even prime power. Then \mathscr{H} is a set of mutually M-intersecting varieties $\mathscr{V}\left(q^{3}+1, q^{2}+1\right)$, where $\left|\mathscr{V}\left(q^{3}+1, q^{2}+1\right)\right|=$ $q+1$.

Proof. From Lemma 1, we will show that the number of points of $V\left(H_{i}\right) \cap V\left(H_{0}\right)$ for any $V\left(H_{i}\right) \in \mathscr{H}, \quad H_{i} \neq H_{0}, \quad$ is $q^{2}+1$. We have $\left|V\left(H_{i}\right) \cap V\left(H_{0}\right)\right|=\left|V\left(P^{\mathrm{T}} H_{i} P^{(q)}\right) \cap V(I)\right|$, where P is a nonsingular matrix P such that $P^{\mathrm{T}} H_{0} P^{(q)}=I$. We consider the following two cases: (1) $a^{q+1}=1$ and (2) $a^{q+1} \neq 1$ to show the minimal polynomial of $P^{\mathrm{T}} H_{i} P^{(q)}$ is $(x+1)^{3}$.
(1) For $a^{q+1}=1$, let

$$
P=\left(\begin{array}{ccc}
1 & 0 & a^{q} \\
0 & 0 & 1 \\
0 & 1 & b
\end{array}\right)
$$

As q is an even prime power and $a^{q+1}=b^{q+1}$,

$$
\begin{aligned}
P^{\mathrm{T}} H_{0} P^{(q)} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
a^{q} & 1 & b
\end{array}\right)\left(\begin{array}{ccc}
1 & a & 0 \\
a^{q} & 1 & b \\
0 & b^{q} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 0 & 1 \\
0 & 1 & b^{q}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & a & 0 \\
0 & b^{q} & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & a \\
0 & 0 & 1 \\
0 & 1 & b^{q}
\end{array}\right)=I .
\end{aligned}
$$

Then the characteristic polynomial of $P^{\mathrm{T}} H_{i} P^{(q)}$ is

$$
\begin{aligned}
\operatorname{det}\left(x I-P^{\mathrm{T}} H_{i} P^{(q)}\right) & =\operatorname{det}\left(x P^{\mathrm{T}} H_{0} P^{(q)}+P^{\mathrm{T}} H_{i} P^{(q)}\right) \\
& =\operatorname{det}\left(P^{\mathrm{T}}\right) \operatorname{det}\left(x H_{0}+H_{i}\right) \operatorname{det}\left(P^{(q)}\right) \\
& =\operatorname{det}\left(x H_{0}+H_{i}\right) \\
& =(x+1)^{3}+(x+1)\left(x+u^{i q}\right)\left(x+u^{i}\right)\left(a^{q+1}+b^{q+1}\right) \\
& =(x+1)^{3} .
\end{aligned}
$$

When the first row of $P^{\mathrm{T}} H_{i} P^{(q)}$ is expressed by $\boldsymbol{p}^{\mathrm{T}}=\left(1,0, a\left(1+u^{i q}\right)\right)$, the $(1,1)$-entry of $\left(P^{\mathrm{T}} H_{i} P^{(q)}+I\right)^{2}$ is

$$
\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p}^{(q)}+1=1+a^{q+1}\left(1+u^{i q}\right)^{q+1}+1=\left(1+u^{i}\right)^{q+1} .
$$

As $u^{i} \neq 1$, we have $\left(1+u^{i}\right)^{q+1} \neq 0$; that is, $\left(P^{\mathrm{T}} H_{i} P^{(q)}+I\right)^{2} \neq \mathbf{0}$ for $1 \leq i \leq q$. Hence, the minimal polynomial of $P^{\mathrm{T}} H_{i} P^{(q)}$ is $(x+1)^{3}$.
(2) For $a^{q+1} \neq 1$, let

$$
P=\left(\begin{array}{ccc}
1 & a^{q} t & a^{q} b^{q} t \\
0 & t & b^{q} t \\
0 & 0 & t^{-1}
\end{array}\right)
$$

where $t \in \operatorname{GF}(q)$ and $t^{2}\left(a^{q+1}+1\right)=1$. Then

$$
\begin{aligned}
& P^{\mathrm{T}} H_{0} P^{(q)}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
a^{q} t & t & 0 \\
a^{q} b^{q} t & b^{q} t & t^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & a & 0 \\
a^{q} & 1 & b \\
0 & b^{q} & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & a t & a b t \\
0 & t & b t \\
0 & 0 & t^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & a & 0 \\
0 & \left(a^{q+1}+1\right) t & b t \\
0 & \left(a^{q+1}+1\right) b^{q} t+b^{q} t^{-1} & b^{q+1} t+t^{-1}
\end{array}\right)\left(\begin{array}{ccc}
1 & a t & a b t \\
0 & t & b t \\
0 & 0 & t^{-1}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \left(a^{q+1}+1\right) t^{2} & \left(a^{q+1}+1\right) b t^{2}+b \\
0 & \left(a^{q+1}+1\right) b^{q} t^{2}+b^{q} & \left(a^{q+1}+1\right) b^{q+1} t^{2}+b^{q+1}+b^{q+1}+t^{-2}
\end{array}\right)=I
\end{aligned}
$$

since $t^{-2}=a^{q+1}+1$. The characteristic polynomial of $P^{\mathrm{T}} H_{i} P^{(q)}$ is also $(x+1)^{3}$. When the first row of $P^{\mathrm{T}} H_{i} P^{(q)}$ is expressed by $\boldsymbol{p}^{\mathrm{T}}=\left(1, a t\left(1+u^{i q}\right)\right.$, $\operatorname{abt}\left(1+u^{i q}\right)$), the $(1,1)$-entry of $\left(P^{\mathrm{T}} H_{i} P^{(q)}+I\right)^{2}$ is

$$
\begin{aligned}
\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p}^{(q)}+1 & =1+a^{q+1} t^{2}\left(1+u^{i}\right)^{q+1}+a^{q+1} b^{q+1} t^{2}\left(1+u^{i}\right)^{q+1}+1 \\
& =a^{q+1}\left(1+u^{i}\right)^{q+1} t^{2}\left(1+b^{q+1}\right) \\
& =a^{q+1}\left(1+u^{i}\right)^{q+1} \neq 0
\end{aligned}
$$

by $t^{2}\left(1+b^{q+1}\right)=1$. Since $\left(P^{\mathrm{T}} H_{i} P^{(q)}+I\right)^{2} \neq \mathbf{0}$, the minimal polynomial of $P^{\mathrm{T}} H_{i} P^{(q)}$ is $(x+1)^{3}$ for $1 \leq i \leq q$.

Therefore, in both cases, we have $\left|V\left(H_{i}\right) \cap V\left(H_{0}\right)\right|=q^{2}+1$ for $1 \leq i \leq q$ from the result given in the previous section.

Next we consider two nonsingular Hermitian matrices H and H^{\prime} both having the minimal polynomial $m(x)=(x+1)^{3}$. As we mentioned before, we can define two sets as

$$
\mathscr{H}_{a, b}=\left\{V\left(H_{0}\right), V\left(H_{1}\right), \ldots, V\left(H_{q}\right)\right\}
$$

and

$$
\mathscr{H}_{c, d}=\left\{V\left(H_{0}^{\prime}\right), V\left(H_{1}^{\prime}\right), \ldots, V\left(H_{q}^{\prime}\right)\right\},
$$

where

$$
H_{i}=\left(\begin{array}{ccc}
1 & a u^{i q} & 0 \\
a^{q} u^{i} & 1 & b u^{i q} \\
0 & b^{q} u^{i} & 1
\end{array}\right), \quad H_{j}^{\prime}=\left(\begin{array}{ccc}
1 & c u^{j q} & 0 \\
c^{q} u^{j} & 1 & d u^{j q} \\
0 & d^{q} u^{j} & 1
\end{array}\right)
$$

Note that $a^{q+1}=b^{q+1}, c^{q+1}=d^{q+1}$, and the order of u is $q+1$. In order that $\mathscr{H}_{a, b}$ and $\mathscr{H}_{c, d}$ be disjoint, a, b, c, and d should have some restrictions. Let w be a primitive element of the multiplicative $\operatorname{group} \operatorname{GF}\left(q^{2}\right) \backslash\{0\}$ of order $q^{2}-1$. Let $K=\left\{1, w^{q-1}, \ldots, w^{q(q-1)}\right\}$ be a multiplicative subgroup of order $q+1$ and $K_{k}=K \cdot w^{k}$ for k cosets of $K, 0 \leq k \leq q-2$. Suppose $a \in K_{l}$, $0 \leq l \leq q-2$. Then the (1,2)-entry $a u^{i q}$ of H_{i} is also an element of K_{l} since u is included in K. So for $0 \leq i \leq q$, $a u^{i q}$ runs over all elements of K_{l}. As $a^{q+1}=b^{q+1}, b$ must be contained in K_{l}. Hence we must choose c and d from a coset $K_{m}, m \neq l$, so that $\mathscr{H}_{a, b} \cap \mathscr{H}_{c, d}=\phi$.

Theorem 2. Let q be an even prime power. If a and c belong to different cosets K_{l} and K_{m} respectively, then $\mathscr{H}_{a, b} \cup \mathscr{H}_{c, d}$ is a set of mutually M intersecting varieties $\mathscr{V}\left(q^{3}+1, M\right)$, where $M \subseteq\left\{q^{2}+1,(q+1)^{2}\right\}$ and $\left|\mathscr{V}\left(q^{3}+1, M\right)\right|=2(q+1)$.

Proof. From Theorem 1, $\mathscr{H}_{a, b}$ and $\mathscr{H}_{c, d}$ are both $\mathscr{V}\left(q^{3}+1, q^{2}+1\right)$. So we need only consider the number of points in the intersection of $V\left(H_{i}\right)$ and $V\left(H_{j}^{\prime}\right)$ for $H_{i} \in \mathscr{H}_{a, b}$ and $H_{j}^{\prime} \in \mathscr{H}_{c, d}$. It is easily seen that $\left|V\left(H_{i}\right) \cap V\left(H_{j}^{\prime}\right)\right|=$ $\left|V\left(H_{0}\right) \cap V\left(H_{j+k}^{\prime}\right)\right|$ for some k such that $H_{i+k}=H_{0}$ similar to Lemma 1. And we have $\left|V\left(H_{0}\right) \cap V\left(H_{j}^{\prime}\right)\right|=\left|V(I) \cap V\left(P^{T} H_{j}^{\prime} P^{(q)}\right)\right|$, where P is a nonsingular matrix such that $P^{\mathrm{T}} H_{0} P^{(q)}=I$. The characteristic polynomial $g(x)$ of $P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}$ is

$$
\begin{aligned}
& \operatorname{det}\left(x I-P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}\right)=\operatorname{det}\left(x H_{0}+H_{j}^{\prime}\right) \\
& \quad=(x+1)^{3}+(x+1)\left\{\left(x a+c u^{j q}\right)\left(x a^{q}+c^{q} u^{j}\right)+\left(x b+d u^{j q}\right)\left(x b^{q}+d^{q} u^{j}\right)\right\} \\
& \quad=(x+1)^{3}+(x+1)\left\{\left(a c^{q}+b d^{q}\right) u^{j}+\left(a^{q} c+b^{q} d\right) u^{j q}\right\} \\
& \quad=(x+1)\left(x^{2}+\delta x+1\right),
\end{aligned}
$$

where $\delta=\left(a c^{q}+b d^{q}\right) u^{j}+\left(a^{q} c+b^{q} d\right) u^{j q}$. The quadratic equation $x^{2}+$ $\delta x+1=0$ has one solution over $\operatorname{GF}(q)$ if $\delta=0$. In this case we have $g(x)=$ $(x+1)^{3}$. We will show that $\left(P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}+x I\right)^{2} \neq \mathbf{0}$ similar to Theorem 1.
(1) For $a^{q+1}=1$, the first row of $P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}$ is expressed by $\boldsymbol{p}^{\mathrm{T}}=$ $\left(1,0, a+c u^{j q}\right)$. Then the $(1,1)$-entry of $\left(P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}+I\right)^{2}$ is

$$
\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p}^{(q)}+1=1+\left(a+c u^{j q}\right)^{q+1}+1=\left(a+c u^{j q}\right)^{q+1} \neq 0
$$

since a and c belong to different cosets.
(2) For $a^{q+1} \neq 1$, the first row of $P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}$ is expressed by $\boldsymbol{p}^{\mathrm{T}}=$ $\left(1,\left(a+c u^{j q}\right) t,\left(a+c u^{j q}\right) b t\right)$. Then the $(1,1)$-entry of $\left(P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}+I\right)^{2}$ is

$$
\begin{aligned}
\boldsymbol{p}^{\mathrm{T}} \boldsymbol{p}^{(q)}+1 & =1+\left(a+c u^{j q}\right)^{q+1} t^{2}+\left(a+c u^{j q}\right)^{q+1} b^{q+1} t^{2}+1 \\
& =\left(a+c u^{j q}\right)^{q+1} \neq 0 .
\end{aligned}
$$

Hence, the minimal polynomial $m(x)$ of $P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}$ is $m(x)=(x+1)^{3}$.
If the equation $x^{2}+\delta x+1=0$ has two solutions, then $m(x)=g(x)=$ $(x+1)(x+\beta)(x+\gamma)$, where $1 \neq \beta \neq \gamma \neq 1 \in \mathrm{GF}(q)$. If the equation has no solutions, then $m(x)=g(x)=(x+1)\left(x^{2}+\delta x+1\right)$; that is, $x^{2}+\delta x+1$ is irreducible over GF (q). Therefore, $V\left(P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}\right)$ and $V(I)$ intersect on $q^{2}+1$ points or $(q+1)^{2}$ points.

In the proof of Theorem 2, if $\delta=0$, the minimal polynomial $m(x)$ of $P^{\mathrm{T}} H_{j}^{\prime} P^{(q)}$ is $(x+1)^{3}$. When $a=b$ and $c=d$, we always have $\delta=0$. Since $\left|V\left(H_{i}\right) \cap V\left(H_{j}^{\prime}\right)\right|=q^{2}+1$ for $H_{i} \in \mathscr{H}_{a, b}$ and $H_{j}^{\prime} \in \mathscr{H}_{c, d}$, we can obtain the next corollary.

Corollary 1. Let q be an even prime power. If a and c belong to different cosets K_{l} and K_{m}, respectively, then $\mathscr{H}_{a, a} \cup \mathscr{H}_{c, c}$ is a set of mutually M intersecting varieties $\mathscr{V}\left(q^{3}+1, q^{2}+1\right)$ consisting of $2(q+1)$ varieties.

Theorem 3. Let q be an even prime power. Then there exists a set of mutually M-intersecting varieties $\mathscr{V}\left(q^{3}+1, q^{2}+1\right)$ consisting of $q^{2}-1$ varieties.

Proof. In virtue of Theorem 1 and Corollary 1, what we need to do is to consider the set of matrices

$$
H=\left(\begin{array}{ccc}
1 & a & 0 \\
a^{q} & 1 & a \\
0 & a^{q} & 1
\end{array}\right)
$$

as a ranges through $\mathrm{GF}\left(q^{2}\right) \backslash\{0\}$.
Theorem 4. Let q be an even prime power. Then there exists a set of mutually M-intersecting varieties $\mathscr{V}\left(q^{3}+1,\left\{q^{2}+1,(q+1)^{2}\right\}\right)$ consisting of $(q+1)^{2}(q-1)$ varieties.

Proof. Let $J=\left\{1, w, \ldots, w^{q-2}\right\}$ be a set of representatives of the cosets K_{k} for $0 \leq k \leq q-2$. Let $L=\left\{(a, b): a^{q+1}=b^{q+1}, a \in J, b \in \operatorname{GF}\left(q^{2}\right)\right\}$. Then L consists of $(q-1)(q+1)$ elements and we have $\mathscr{H}_{a, b} \cap \mathscr{H}_{c, d}=\phi$ for $(a, b),(c, d) \in L,(a, b) \neq(c, d)$. Therefore, $\bigcup_{(a, b) \in L} \mathscr{H}_{a, b}$ is $\mathscr{V}\left(q^{3}+1,\left\{q^{2}+1\right.\right.$, $\left.\left.(q+1)^{2}\right\}\right)$ by Theorem 2 .

We remark that we can add $V(I)$ to $\mathscr{V}(\rho, M)$ in all theorems because we can show $\left|V\left(H_{i}\right) \cap V(I)\right|=q^{2}+1$ for any $V\left(H_{i}\right) \in \mathscr{H}$.

ACKNOWLEDGMENTS

The authors thank the referees for their valuable comments and suggestions.

REFERENCES

1. R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $\operatorname{PG}\left(N, q^{2}\right)$, Can. J. Math. 17 (1966), 1161-1182.
2. R. Fuji-Hara and N. Miyamoto, Balanced arrays from quadratic functions, submitted.
3. R. Fuji-Hara and N. Miyamoto, A construction of combinatorial arrays from non-linear functions, Utilitas Math. 52 (1997), 183-192.
4. R. Fuji-Hara and N. Miyamoto, Mutually M-intersecting varieties, Congr. Numer. 126 (1997), 125-130.
5. J. W. P. Hirschfeld, "Projective Geometries over Finite Field," Oxford Univ. Press, New York, 1979.
6. J. W. P. Hirschfeld, "Finite Projective Spaces of Three Dimensions," Oxford Univ. Press, New York, 1985.
7. B. C. Kestenband, Projective geometries that are disjoint union caps, Can. J. Math. 32, No. 6 (1980), 1299-1305.
8. B. C. Kestenband, Unital intersections in finite projective planes, Geom. Dedicata 11 (1981), 107-117.
