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Let M be a set of integers. We consider a set of varieties in PG(n, q) such that each
variety contains o points and the intersection of two distinct varieties contains
k points, where k3M. Such a set is called a set of mutually M-intersecting varieties. In
this paper, it is shown that there exist new sets of mutually M-intersecting varieties by
using Hermitian varieties in PG(2, q2). ( 1999 Academic Press
1. INTRODUCTION

Let f be a homogeneous polynomial. Then the set of points x of PG(n q)
satisfying f (x)"0 is called a variety and is denoted by < ( f ). In a previous
paper [4], we proposed a problem to "nd mutually M-intersecting varieties.
This is a set of varieties <( f

1
), <( f

2
),2 ,<( f

s
) which satis"es three condi-

tions:
(i) M is a set of nonnegative integers.
(ii) D<( f

i
) D"o for 14i4s.

(iii) D<( f
i
)W<( f

j
) D3M for 14i, j4s, iOj.

We will use V(o,M) to denote such a set and when M is a singleton MkN, we
simply write V(o,k). Note that s"DV(o, M) D.
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Some results on mutually MkN-intersecting varieties are given in [4]. By
using quadrics and a projective group on PG(3,q), we obtained a V(q2#1,
q#1) consisting of q2 varieties and a V((q#1)2, 3q#1) of q2 varieties. We
are interested in "nding as many as possible varieties which are mutually
M-intersecting. This is not only an interesting geometrical problem but also
a problem with combinatorial applications. When M"MkN, we can use
a V(o,M) to construct combinatorial designs such as (r, j)-designs and
combinatorial arrays such as orthogonal, incomplete orthogonal or balanced
arrays [2, 3]. When DMD"2, a V(o, M) is related to a particular graph called
a strong regular graph which is sometimes used in the design of experiments.
In this paper, we will use results on intersections of Hermitian varieties given
by Kestenband [8] to construct new sets of mutually M-intersecting
Hermitian varieties in PG(2,q2) with DMD"1 or 2.

2. HERMITIAN VARIETIES

An (n#1)](n#1) square matrix H"(h
ij
) with elements from GF(q2) is

called a Hermitian matrix if h
ij
"hq

ji
for all i, j. Let A(q) denote the matrix

whose (i, j)-entry is aq
ij

if the (i, j)-entry of the matrix A is a
ij
. A Hermitian

variety (abbreviated to HV) in PG(n, q2) is de"ned as Mx3PG(n, q2);
f (x)"xTHx(q)"0N, where H is a Hermitian matrix. Here we use <(H),
instead of <( f ) to denote the Hermitian variety. Two Hermitian matrices
H and G are said to be equivalent if there exists a nonsingular matrix P over
GF (q2) such that PTHP(q)"G. It is also known that any nonsingular Her-
mitian matrix is equivalent to the identity matrix I. This means that there
exists a nonsingular matrix P such that PTHP(q)"I for any nonsingular
Hermitian matrix H. When H is a Hermitian matrix of rank r, then <(H) is
called an HV of rank r. An HV of rank n#1 in PG(n, q2) is said to be
nondegenerate. The properties of an HV in PG(2, q2) have been studied in
[1, 8]. An HV in PG(2, q2) contains q2#1, q3#q2#1, or q3#1 points,
accordingly as the rank is 1, 2, or 3.

Kestenband [8] has determined the possible intersections of <(H) with
<(I) in PG(2, q2) for any nonsingular Hermitian matrix H. Note that the
minimal polynomial m(x) of a matrix H satis"es m(H)"0 and m@(H)O0 for
any polynomial m@(x) with deg (m@(x))(deg (m (x)).

Result (B. C. Kestenband). Let H be a nonsingular Hermitian matrix. Let
m(x) and g(x) be minimal and characteristic polynomial of H, respectively.
Then D<(H)W<(I) D is one of the following:

(1) (q#1)2 points, if m(x)"g(x)"(x!a) (x!b) (x!c), a, b, c distinct
elements of GF(q);
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(2) q2#q#1 points, if m(x)"g(x)"(x!a) (x!b)2, a, b, distinct ele-
ments of GF(q);

(3) q#1 collinear points if m(x)"(x!a) (x!b), a, b, distinct elements of
GF(q);

(4) q2#1 points, if m(x)"g(x)"(x!a)p(x), a3GF(q), p(x): irreducible
over GF(q);

(5) q2#1 points, if m(x)"g(x)"(x!j)3;
(6) one point if m(x)"(x!j)2;
(7) q2!q#1 points, no three of which are collinear, if g(x) is irreducible

over GF(q).
Kestenband [7] also generated a set s consisting of q2#q#1 Hermitian

matrices with irreducible characteristic polynomials over GF(q). The set
of varieties from s forms a V(q3#1, q2!q#1). Since s is isomorphic to
PG(2, q), the incidence matrix of the varieties V(q3#1, q2!q#1) and the
points on PG(2, q2) contains q2!q#1 copies of PG(2, q). In the next
section, we will use Hermitian matrices having the minimal polynomial
(x#1)3 over GF(q), where q is an even prime power, to construct new
mutually M-intersecting varieties which are di!erent from those found by
Kestenband.

3. CONSTRUCTIONS

We assume in the rest of this paper that q is an even prime power. Let

H"A
1 a 0

aq 1 b

0 bq 1B ,

where a, b3GF(q2)CM0N, and aq`1"bq`1. Note that a and b are not neces-
sary distinct. Then the minimal polynomial of H is (x#1)3 since the charac-
teristic is two. We de"ne a set of HV's by

H"M<(H
0
), <(H

1
),2 ,<(H

q
)N,

where

H
i
"A

1 auiq 0

aqui 1 buiq

0 bqui 1 B ,
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u3GF(q2), and the order of u is q#1. Note that H
0
"H and <(H

i
)3H is

a nondegenerate HV containing q3#1 points.

LEMMA 1. For any two distinct H<1s <(H
i
) and <(H

j
) of H, there exists

H
l
of H such that D< (H

i
)W<(H

j
) D"D<(H

l
)W<(H

0
) D.

Proof. Let x
1
"(x, uky, uk(1~q)z)T be a point of <(H

i
)W<(H

j
). Then

xT
1
H

i
x (q)
1
"(x, uky, uk(1~q)z) A

1 auiq 0

aqui 1 buiq

0 bqui 1 B A
xq

ukqyq

uk(1~q)qzqB
"(x, y, z) A

1 0 0

0 uk 0

0 0 uk(1~q)B A
1 auiq 0

aqui 1 buiq

0 bqui 1 B A
1 0 0

0 ukq 0

0 0 uk(1~q)qB A
xq

yq

zqB
"(x, y, z) A

1 auiq 0

aqui`k uk buiq`k

0 bqui`k(1~q) uk(1~q)B A
1 0 0

0 ukq 0

0 0 uk(1~q)qB A
xq

yq

zqB
"(x, y, z) A

1 au(i`k)q 0

aqui`k uk(1`q) bu(i`k)q`k(1~q) (1`q)

0 bqui`k uk(1~q) (1`q) B A
xq

yq

zqB
"(x, y, z) A

1 au(i`k)q 0

aqui`k 1 bu(i`k)q

0 bqui`k 1 B A
xq

yq

zqB"xTH
i`k

x (q)

since the order of u is q#1. That is, x"(x, y, z)T is a point of
<(H

i`k
)W<(H

j`k
). Hence the change of variables x

1
"x, y

1
"uky, and

z
1
"uk(1~q)z established a one-to-one correspondence between the points of
<(H

i
)W< (H

j
) and those of <(H

i`k
)W<(H

j`k
).

Moreover, k can be chosen so that H
j`k

"H
0
. Therefore, we have

D<(H
i
)W<(H

j
) D"D<(H

l
)W<(H

0
) D, where l"i#k.

THEOREM 1. ¸et q be an even prime power. ¹hen H is a set of mutually
M-intersecting varieties V(q3#1, q2#1), where DV(q3#1, q2#1) D"
q#1.
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Proof. From Lemma 1, we will show that the number of points of
<(H

i
)W<(H

0
) for any <(H

i
)3H, H

i
OH

0
, is q2#1. We have

D<(H
i
)W<(H

0
) D"D<(PTH

i
P(q))W<(I) D, where P is a nonsingular matrix P

such that PTH
0
P(q)"I. We consider the following two cases: (1) aq`1"1

and (2) aq`1O1 to show the minimal polynomial of PTH
i
P(q) is (x#1)3.

(1) For aq`1"1, let

P"A
1 0 aq

0 0 1

0 1 b B .

As q is an even prime power and aq`1"bq`1,

PTH
0
P(q)"A

1 0 0

0 0 1

aq 1 bB A
1 a 0

aq 1 b

0 bq 1B A
1 0 a

0 0 1

0 1 bqB
"A

1 a 0

0 bq 1

0 1 0B A
1 0 a

0 0 1

0 1 bqB"I.

Then the characteristic polynomial of PTH
i
P(q) is

det (xI!PTH
i
P(q))"det (xPTH

0
P(q)#PTH

i
P(q))

"det (PT) det (xH
0
#H

i
) det (P(q))

"det (xH
0
#H

i
)

"(x#1)3#(x#1) (x#uiq) (x#ui) (aq`1#bq`1)

"(x#1)3.

When the "rst row of PTH
i
P(q) is expressed by pT"(1, 0, a(1#uiq)), the

(1, 1)-entry of (PTH
i
P(q)#I)2 is

pTp(q)#1"1#aq`1(1#uiq)q`1#1"(1#ui )q`1.

As uiO1, we have (1#ui)q`1O0; that is, (PTH
i
P(q)#I)2O0 for 14i4q.

Hence, the minimal polynomial of PTH
i
P(q) is (x#1)3.
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(2) For aq`1O1, let

P"A
1 aqt aqbqt

0 t bqt

0 0 t~1 B .

where t3GF(q) and t2(aq`1#1)"1. Then

PTH
0
P(q)"A

1 0 0

aqt t 0

aqbqt bqt t~1B A
1 a 0

aq 1 b

0 bq 1B A
1 at abt

0 t bt

0 0 t~1B
"A

1 a 0

0 (aq`1#1)t bt

0 (aq`1#1)bqt#bqt~1 bq`1t#t~1B A
1 at abt

0 t bt

0 0 t~1B
"A

1 0 0

0 (aq`1#1)t2 (aq`1#1)bt2#b

0 (aq`1#1)bqt2#bq (aq`1#1)bq`1t2#bq`1#bq`1#t~2B"I

since t~2"aq`1#1. The characteristic polynomial of PTH
i
P(q) is also

(x#1)3. When the "rst row of PTH
i
P(q) is expressed by pT"(1, at(1#uiq),

abt(1#uiq)), the (1, 1)-entry of (PTH
i
P(q)#I)2 is

pTp(q)#1"1#aq`1t2(1#ui)q`1#aq`1bq`1t2(1#ui)q`1#1

"aq`1(1#ui)q`1t2(1#bq`1)

"aq`1(1#ui)q`1O0

by t2(1#bq`1)"1. Since (PTH
i
P(q)#I)2O0, the minimal polynomial of

PTH
i
P(q) is (x#1)3 for 14i4q.

Therefore, in both cases, we have D<(H
i
)W<(H

0
) D"q2#1 for 14i4q

from the result given in the previous section. j

Next we consider two nonsingular Hermitian matrices H and H@ both
having the minimal polynomial m(x)"(x#1)3. As we mentioned before, we
can de"ne two sets as

H
a,b

"M<(H
0
), <(H

1
),2 ,<(H

q
)N
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and

H
c,d
"M<(H @

0
), <(H @

1
),2 ,<(H@

q
)N,

where

H
i
"A

1 auiq 0

aqui 1 buiq

0 bqui 1 B , H @
j
"A

1 cujq 0

cquj 1 dujq

0 dquj 1 B .

Note that aq`1"bq`1, cq`1"dq`1, and the order of u is q#1. In order that
H

a,b
and H

c,d
be disjoint, a,b,c, and d should have some restrictions. Let w be

a primitive element of the multiplicative group GF(q2)CM0N of order q2!1.
Let K"M1, wq~1,2 , wq(q~1)N be a multiplicative subgroup of order q#1
and K

k
"K )wk for k cosets of K, 04k4q!2. Suppose a3K

l
,

04l4q!2. Then the (1, 2)-entry auiq of H
i
is also an element of K

l
since u is

included in K. So for 04i4q, auiq runs over all elements of K
l
. As

aq`1"bq`1, b must be contained in K
l
. Hence we must choose c and d from

a coset K
m
, mOl, so that H

a,b
WH

c,d
"/.

THEOREM 2. ¸et q be an even prime power. If a and c belong to di+erent
cosets K

l
and K

m
respectively, then H

a,b
XH

c,d
is a set of mutually M-

intersecting varieties V(q3#1, M), where M-Mq2#1, (q#1)2N and
DV(q3#1, M) D"2(q#1).

Proof. From Theorem 1, H
a,b

and H
c,d

are both V(q3#1, q2#1). So we
need only consider the number of points in the intersection of <(H

i
) and

<(H @
j
) for H

i
3H

a,b
and H@

j
3H

c,d
. It is easily seen that D<(H

i
)W<(H@

j
) D"

D<(H
0
)W<(H@

j`k
) D for some k such that H

i`k
"H

0
similar to Lemma 1. And

we have D<(H
0
)W<(H@

j
) D"D<(I)W<(PTH@

j
P (q)) D, where P is a nonsingular

matrix such that PTH
0
P(q)"I. The characteristic polynomial g(x) of PTH@

j
P(q)

is

det (xI!PTH@
j
P(q))"det (xH

0
#H@

j
)

"(x#1)3#(x#1) M(xa#cujq) (xaq#cquj)#(xb#dujq) (xbq#dquj)N

"(x#1)3#(x#1) M(acq#bdq)uj#(aqc#bqd)ujqN

"(x#1) (x2#dx#1),

where d"(acq#bdq)uj#(aqc#bqd)ujq. The quadratic equation x2#

dx#1"0 has one solution over GF(q) if d"0. In this case we have g(x)"
(x#1)3. We will show that (PTH@

j
P (q)#xI)2O0 similar to Theorem 1.
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(1) For aq`1"1, the "rst row of PTH@
j
P (q) is expressed by pT"

(1, 0, a#cujq). Then the (1, 1)-entry of (PTH @
j
P(q)#I)2 is

pTp (q)#1"1#(a#cujq)q`1#1"(a#cujq)q`1O0,

since a and c belong to di!erent cosets.
(2) For aq`1O1, the "rst row of PTH @

j
P (q) is expressed by pT"

(1, (a#cujq)t, (a#cujq)bt). Then the (1, 1)-entry of (PTH @
j
P (q)#I)2 is

pTp(q)#1"1#(a#cujq)q`1t2#(a#cujq)q`1bq`1t2#1

"(a#cujq)q`1O0.

Hence, the minimal polynomial m(x) of PTH@
j
P (q) is m(x)"(x#1)3.

If the equation x2#dx#1"0 has two solutions, then m(x)"g(x)"
(x#1) (x#b) (x#c), where 1ObOcO13GF(q). If the equation has no
solutions, then m(x)"g(x)"(x#1) (x2#dx#1); that is, x2#dx#1 is
irreducible over GF(q). Therefore, <(PTH@

j
P(q)) and <(I) intersect on q2#1

points or (q#1)2 points. j

In the proof of Theorem 2, if d"0, the minimal polynomial m(x) of
PTH@

j
P(q) is (x#1)3. When a"b and c"d, we always have d"0. Since

D<(H
i
)W<(H@

j
) D"q2#1 for H

i
3H

a,b
and H@

j
3H

c,d
, we can obtain the next

corollary.

COROLLARY 1. ¸et q be an even prime power. If a and c belong to di+erent
cosets K

l
and K

m
, respectively, then H

a,a
XH

c,c
is a set of mutually M-

intersecting varieties V (q3#1, q2#1) consisting of 2(q#1) varieties.

THEOREM 3. ¸et q be an even prime power. ¹hen there exists a set of
mutually M-intersecting varieties V(q3#1, q2#1) consisting of q2!1 var-
ieties.

Proof. In virtue of Theorem 1 and Corollary 1, what we need to do is to
consider the set of matrices

H"A
1 a 0

aq 1 a

0 aq 1B ,

as a ranges through GF(q2)CM0N. j

THEOREM 4. ¸et q be an even prime power. ¹hen there exists a set of
mutually M-intersecting varieties V(q3#1, Mq2#1, (q#1)2N) consisting of
(q#1)2(q!1) varieties.
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Proof. Let J"M1, w,2 , wq~2N be a set of representatives of the cosets
K

k
for 04k4q!2. Let ¸"M(a, b) : aq`1"bq`1, a3J, b3GF(q2)N. Then

¸ consists of (q!1) (q#1) elements and we have H
a,b

WH
c,d
"/ for

(a, b), (c, d)3¸, (a, b)O(c, d ). Therefore, Z(a, b)3¸
H

a,b
is V(q3#1, Mq2#1,

(q#1)2N) by Theorem 2. j

We remark that we can add<(I) to V(o,M) in all theorems because we can
show D<(H

i
)W<(I) D"q2#1 for any <(H

i
)3H.
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