Finite Fields and Their Applications 5, 285–293 (1999) Article ID ffta.1999.0248, available online at http://www.idealibrary.com on IDE

Mutually M-intersecting Hermitian Varieties

Ryoh Fuji-Hara

Systems, Information and Mathematical Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan 305-8573 E-mail: fujihara@sk.tsukuba.ac.jp

and

Nobuko Miyamoto

Graduate School of Systems Management, University of Tsukuba, 3-29-1 Otsuka, Bunkyo, Tokyo 112-0012 E-mail: nobuko@gssm.otsuka.tsukuba.ac.jp

Communicated by James W. P. Hirschfield

Received October 7, 1997; revised November 6, 1998

Let *M* be a set of integers. We consider a set of varieties in PG(*n*, *q*) such that each variety contains ρ points and the intersection of two distinct varieties contains μ points, where $\mu \in M$. Such a set is called a set of mutually *M*-intersecting varieties. In this paper, it is shown that there exist new sets of mutually *M*-intersecting varieties by using Hermitian varieties in PG(2, q^2). © 1999 Academic Press

1. INTRODUCTION

Let f be a homogeneous polynomial. Then the set of points x of PG(n q) satisfying f(x) = 0 is called a *variety* and is denoted by V(f). In a previous paper [4], we proposed a problem to find *mutually M-intersecting varieties*. This is a set of varieties $V(f_1)$, $V(f_2)$, ..., $V(f_s)$ which satisfies three conditions:

(i) M is a set of nonnegative integers.

(ii) $|V(f_i)| = \rho$ for $1 \le i \le s$.

(iii) $|V(f_i) \cap V(f_j)| \in M$ for $1 \le i, j \le s, i \ne j$.

We will use $\mathscr{V}(\rho, M)$ to denote such a set and when *M* is a singleton $\{\mu\}$, we simply write $\mathscr{V}(\rho, \mu)$. Note that $s = |\mathscr{V}(\rho, M)|$.

Some results on mutually $\{\mu\}$ -intersecting varieties are given in [4]. By using quadrics and a projective group on PG(3, q), we obtained a $\mathscr{V}(q^2 + 1, q + 1)$ consisting of q^2 varieties and a $\mathscr{V}((q + 1)^2, 3q + 1)$ of q^2 varieties. We are interested in finding as many as possible varieties which are mutually *M*-intersecting. This is not only an interesting geometrical problem but also a problem with combinatorial applications. When $M = \{\mu\}$, we can use a $\mathscr{V}(\rho, M)$ to construct combinatorial designs such as (r, λ) -designs and combinatorial arrays such as orthogonal, incomplete orthogonal or balanced arrays [2, 3]. When |M| = 2, a $\mathscr{V}(\rho, M)$ is related to a particular graph called a strong regular graph which is sometimes used in the design of experiments. In this paper, we will use results on intersections of Hermitian varieties given by Kestenband [8] to construct new sets of mutually *M*-intersecting Hermitian varieties in PG(2, q²) with |M| = 1 or 2.

2. HERMITIAN VARIETIES

An $(n + 1) \times (n + 1)$ square matrix $H = (h_{ij})$ with elements from $GF(q^2)$ is called a *Hermitian matrix* if $h_{ij} = h_{ji}^q$ for all *i*, *j*. Let $A^{(q)}$ denote the matrix whose (i, j)-entry is a_{ij}^q if the (i, j)-entry of the matrix *A* is a_{ij} . A *Hermitian* variety (abbreviated to HV) in $PG(n, q^2)$ is defined as $\{x \in PG(n, q^2);$ $f(\mathbf{x}) = \mathbf{x}^T H \mathbf{x}^{(q)} = 0\}$, where *H* is a Hermitian matrix. Here we use V(H), instead of V(f) to denote the Hermitian variety. Two Hermitian matrices *H* and *G* are said to be *equivalent* if there exists a nonsingular matrix *P* over $GF(q^2)$ such that $P^T H P^{(q)} = G$. It is also known that any nonsingular Hermitian matrix is equivalent to the identity matrix *I*. This means that there exists a nonsingular matrix *P* such that $P^T H P^{(q)} = I$ for any nonsingular Hermitian matrix *H*. When *H* is a Hermitian matrix of rank *r*, then V(H) is called an HV of rank *r*. An HV of rank n + 1 in $PG(n, q^2)$ is said to be *nondegenerate*. The properties of an HV in $PG(2, q^2)$ have been studied in [1, 8]. An HV in $PG(2, q^2)$ contains $q^2 + 1$, $q^3 + q^2 + 1$, or $q^3 + 1$ points, accordingly as the rank is 1, 2, or 3.

Kestenband [8] has determined the possible intersections of V(H) with V(I) in PG(2, q^2) for any nonsingular Hermitian matrix H. Note that the minimal polynomial m(x) of a matrix H satisfies m(H) = 0 and $m'(H) \neq 0$ for any polynomial m'(x) with deg(m'(x)) < deg(m(x)).

Result (B. C. Kestenband). Let *H* be a nonsingular Hermitian matrix. Let m(x) and g(x) be minimal and characteristic polynomial of *H*, respectively. Then $|V(H) \cap V(I)|$ is one of the following:

(1) $(q + 1)^2$ points, if $m(x) = g(x) = (x - \alpha)(x - \beta)(x - \gamma)$, α , β , γ distinct elements of GF(q);

(2) $q^2 + q + 1$ points, if $m(x) = g(x) = (x - \alpha)(x - \beta)^2$, α , β , distinct elements of GF(q);

(3) q + 1 collinear points if $m(x) = (x - \alpha)(x - \beta)$, α , β , distinct elements of GF(q);

(4) $q^2 + 1$ points, if $m(x) = g(x) = (x - \alpha)p(x)$, $\alpha \in GF(q)$, p(x): irreducible over GF(q);

(5) $q^2 + 1$ points, if $m(x) = g(x) = (x - \lambda)^3$;

(6) one point if $m(x) = (x - \lambda)^2$;

(7) $q^2 - q + 1$ points, no three of which are collinear, if g(x) is irreducible over GF(q).

Kestenband [7] also generated a set χ consisting of $q^2 + q + 1$ Hermitian matrices with irreducible characteristic polynomials over GF(q). The set of varieties from χ forms a $\mathscr{V}(q^3 + 1, q^2 - q + 1)$. Since χ is isomorphic to PG(2, q), the incidence matrix of the varieties $\mathscr{V}(q^3 + 1, q^2 - q + 1)$ and the points on PG(2, q^2) contains $q^2 - q + 1$ copies of PG(2, q). In the next section, we will use Hermitian matrices having the minimal polynomial $(x + 1)^3$ over GF(q), where q is an even prime power, to construct new mutually *M*-intersecting varieties which are different from those found by Kestenband.

3. CONSTRUCTIONS

We assume in the rest of this paper that q is an even prime power. Let

$$H = \begin{pmatrix} 1 & a & 0 \\ a^q & 1 & b \\ 0 & b^q & 1 \end{pmatrix},$$

where $a, b \in GF(q^2) \setminus \{0\}$, and $a^{q+1} = b^{q+1}$. Note that a and b are not necessary distinct. Then the minimal polynomial of H is $(x + 1)^3$ since the characteristic is two. We define a set of HV's by

$$\mathscr{H} = \{ V(H_0), V(H_1), \dots, V(H_q) \},\$$

where

$$H_{i} = \begin{pmatrix} 1 & au^{iq} & 0 \\ a^{q}u^{i} & 1 & bu^{iq} \\ 0 & b^{q}u^{i} & 1 \end{pmatrix},$$

 $u \in GF(q^2)$, and the order of u is q + 1. Note that $H_0 = H$ and $V(H_i) \in \mathcal{H}$ is a nondegenerate HV containing $q^3 + 1$ points.

LEMMA 1. For any two distinct HV's $V(H_i)$ and $V(H_j)$ of \mathscr{H} , there exists H_l of \mathscr{H} such that $|V(H_i) \cap V(H_j)| = |V(H_l) \cap V(H_0)|$.

Proof. Let $\mathbf{x}_1 = (x, u^k y, u^{k(1-q)} z)^T$ be a point of $V(H_i) \cap V(H_j)$. Then

$$\begin{split} \mathbf{x}_{1}^{\mathrm{T}}H_{i}\mathbf{x}_{1}^{(q)} &= (x, u^{k}y, u^{k(1-q)}z) \begin{pmatrix} 1 & au^{iq} & 0 \\ a^{q}u^{i} & 1 & bu^{iq} \\ 0 & b^{q}u^{i} & 1 \end{pmatrix} \begin{pmatrix} x^{q} \\ u^{kq}y^{q} \\ u^{k(1-q)q}z^{q} \end{pmatrix} \\ &= (x, y, z) \begin{pmatrix} 1 & 0 & 0 \\ 0 & u^{k} & 0 \\ 0 & 0 & u^{k(1-q)} \end{pmatrix} \begin{pmatrix} 1 & au^{iq} & 0 \\ a^{q}u^{i} & 1 & bu^{iq} \\ 0 & b^{q}u^{i} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & u^{kq} & 0 \\ 0 & 0 & u^{k(1-q)q} \end{pmatrix} \begin{pmatrix} x^{q} \\ y^{q} \\ z^{q} \end{pmatrix} \\ &= (x, y, z) \begin{pmatrix} 1 & au^{iq} & 0 \\ a^{q}u^{i+k} & u^{k} & bu^{iq+k} \\ 0 & b^{q}u^{i+k(1-q)} & u^{k(1-q)} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & u^{kq} & 0 \\ 0 & 0 & u^{k(1-q)q} \end{pmatrix} \begin{pmatrix} x^{q} \\ y^{q} \\ z^{q} \end{pmatrix} \\ &= (x, y, z) \begin{pmatrix} 1 & au^{(i+k)q} & 0 \\ a^{q}u^{i+k} & u^{k(1+q)} & bu^{(i+k)q+k(1-q)(1+q)} \\ 0 & b^{q}u^{i+k} & u^{k(1-q)(1+q)} \end{pmatrix} \begin{pmatrix} x^{q} \\ y^{q} \\ z^{q} \end{pmatrix} \\ &= (x, y, z) \begin{pmatrix} 1 & au^{(i+k)q} & 0 \\ a^{q}u^{i+k} & 1 & bu^{(i+k)q} \\ 0 & b^{q}u^{i+k} & 1 \end{pmatrix} \begin{pmatrix} x^{q} \\ y^{q} \\ z^{q} \end{pmatrix} = \mathbf{x}^{\mathrm{T}}H_{i+k}\mathbf{x}^{(q)} \end{split}$$

since the order of u is q + 1. That is, $\mathbf{x} = (x, y, z)^T$ is a point of $V(H_{i+k}) \cap V(H_{j+k})$. Hence the change of variables $x_1 = x, y_1 = u^k y$, and $z_1 = u^{k(1-q)}z$ established a one-to-one correspondence between the points of $V(H_i) \cap V(H_j)$ and those of $V(H_{i+k}) \cap V(H_{j+k})$.

Moreover, k can be chosen so that $H_{j+k} = H_0$. Therefore, we have $|V(H_i) \cap V(H_j)| = |V(H_i) \cap V(H_0)|$, where l = i + k.

THEOREM 1. Let q be an even prime power. Then \mathscr{H} is a set of mutually *M*-intersecting varieties $\mathscr{V}(q^3 + 1, q^2 + 1)$, where $|\mathscr{V}(q^3 + 1, q^2 + 1)| = q + 1$.

Proof. From Lemma 1, we will show that the number of points of $V(H_i) \cap V(H_0)$ for any $V(H_i) \in \mathscr{H}$, $H_i \neq H_0$, is $q^2 + 1$. We have $|V(H_i) \cap V(H_0)| = |V(P^T H_i P^{(q)}) \cap V(I)|$, where *P* is a nonsingular matrix *P* such that $P^T H_0 P^{(q)} = I$. We consider the following two cases: (1) $a^{q+1} = 1$ and (2) $a^{q+1} \neq 1$ to show the minimal polynomial of $P^T H_i P^{(q)}$ is $(x + 1)^3$. (1) For $a^{q+1} = 1$, let

$$P = \begin{pmatrix} 1 & 0 & a^q \\ 0 & 0 & 1 \\ 0 & 1 & b \end{pmatrix}.$$

As q is an even prime power and $a^{q+1} = b^{q+1}$,

$$P^{\mathrm{T}}H_{0}P^{(q)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ a^{q} & 1 & b \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ a^{q} & 1 & b \\ 0 & b^{q} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 0 & 1 \\ 0 & 1 & b^{q} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & a & 0 \\ 0 & b^{q} & 1 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 0 & 1 \\ 0 & 1 & b^{q} \end{pmatrix} = I.$$

Then the characteristic polynomial of $P^{T}H_{i}P^{(q)}$ is

$$det (xI - P^{T}H_{i}P^{(q)}) = det (xP^{T}H_{0}P^{(q)} + P^{T}H_{i}P^{(q)})$$

= det (P^T) det (xH₀ + H_i) det (P^(q))
= det (xH₀ + H_i)
= (x + 1)³ + (x + 1) (x + u^{iq})(x + u^{i})(a^{q+1} + b^{q+1})
= (x + 1)³.

When the first row of $P^{T}H_{i}P^{(q)}$ is expressed by $p^{T} = (1, 0, a(1 + u^{iq}))$, the (1, 1)-entry of $(P^{T}H_{i}P^{(q)} + I)^{2}$ is

$$\boldsymbol{p}^{\mathrm{T}}\boldsymbol{p}^{(q)} + 1 = 1 + a^{q+1}(1+u^{iq})^{q+1} + 1 = (1+u^{i})^{q+1}$$

As $u^i \neq 1$, we have $(1 + u^i)^{q+1} \neq 0$; that is, $(P^T H_i P^{(q)} + I)^2 \neq 0$ for $1 \le i \le q$. Hence, the minimal polynomial of $P^T H_i P^{(q)}$ is $(x + 1)^3$. (2) For $a^{q+1} \neq 1$, let

$$P = \begin{pmatrix} 1 & a^{q}t & a^{q}b^{q}t \\ 0 & t & b^{q}t \\ 0 & 0 & t^{-1} \end{pmatrix}.$$

where $t \in GF(q)$ and $t^2(a^{q+1} + 1) = 1$. Then

$$\begin{split} P^{\mathrm{T}}H_{0}P^{(q)} &= \begin{pmatrix} 1 & 0 & 0 \\ a^{q}t & t & 0 \\ a^{q}b^{q}t & b^{q}t & t^{-1} \end{pmatrix} \begin{pmatrix} 1 & a & 0 \\ a^{q} & 1 & b \\ 0 & b^{q} & 1 \end{pmatrix} \begin{pmatrix} 1 & at & abt \\ 0 & t & bt \\ 0 & 0 & t^{-1} \end{pmatrix} \\ &= \begin{pmatrix} 1 & a & 0 \\ 0 & (a^{q+1}+1)t & bt \\ 0 & (a^{q+1}+1)b^{q}t + b^{q}t^{-1} & b^{q+1}t + t^{-1} \end{pmatrix} \begin{pmatrix} 1 & at & abt \\ 0 & t & bt \\ 0 & 0 & t^{-1} \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & (a^{q+1}+1)t^{2} & (a^{q+1}+1)bt^{2} + b \\ 0 & (a^{q+1}+1)b^{q}t^{2} + b^{q} & (a^{q+1}+1)b^{q+1}t^{2} + b^{q+1} + t^{-2} \end{pmatrix} = I \end{split}$$

since $t^{-2} = a^{q+1} + 1$. The characteristic polynomial of $P^T H_i P^{(q)}$ is also $(x + 1)^3$. When the first row of $P^T H_i P^{(q)}$ is expressed by $p^T = (1, at(1 + u^{iq}), abt(1 + u^{iq}))$, the (1, 1)-entry of $(P^T H_i P^{(q)} + I)^2$ is

$$p^{T}p^{(q)} + 1 = 1 + a^{q+1}t^{2}(1+u^{i})^{q+1} + a^{q+1}b^{q+1}t^{2}(1+u^{i})^{q+1} + 1$$
$$= a^{q+1}(1+u^{i})^{q+1}t^{2}(1+b^{q+1})$$
$$= a^{q+1}(1+u^{i})^{q+1} \neq 0$$

by $t^2(1 + b^{q+1}) = 1$. Since $(P^T H_i P^{(q)} + I)^2 \neq 0$, the minimal polynomial of $P^T H_i P^{(q)}$ is $(x + 1)^3$ for $1 \le i \le q$.

Therefore, in both cases, we have $|V(H_i) \cap V(H_0)| = q^2 + 1$ for $1 \le i \le q$ from the result given in the previous section.

Next we consider two nonsingular Hermitian matrices H and H' both having the minimal polynomial $m(x) = (x + 1)^3$. As we mentioned before, we can define two sets as

$$\mathscr{H}_{a,b} = \{ V(H_0), V(H_1), \dots, V(H_q) \}$$

290

$$\mathscr{H}_{c,d} = \{ V(H'_0), V(H'_1), \dots, V(H'_q) \},\$$

where

$$H_{i} = \begin{pmatrix} 1 & au^{iq} & 0 \\ a^{q}u^{i} & 1 & bu^{iq} \\ 0 & b^{q}u^{i} & 1 \end{pmatrix}, \quad H'_{j} = \begin{pmatrix} 1 & cu^{jq} & 0 \\ c^{q}u^{j} & 1 & du^{jq} \\ 0 & d^{q}u^{j} & 1 \end{pmatrix}.$$

Note that $a^{q+1} = b^{q+1}$, $c^{q+1} = d^{q+1}$, and the order of u is q + 1. In order that $\mathscr{H}_{a,b}$ and $\mathscr{H}_{c,d}$ be disjoint, a,b,c, and d should have some restrictions. Let w be a primitive element of the multiplicative group $GF(q^2) \setminus \{0\}$ of order $q^2 - 1$. Let $K = \{1, w^{q-1}, \dots, w^{q(q-1)}\}$ be a multiplicative subgroup of order q + 1 and $K_k = K \cdot w^k$ for k cosets of K, $0 \le k \le q - 2$. Suppose $a \in K_l$, $0 \le l \le q - 2$. Then the (1, 2)-entry au^{iq} of H_i is also an element of K_l since u is included in K. So for $0 \le i \le q$, au^{iq} runs over all elements of K_l . As $a^{q+1} = b^{q+1}$, b must be contained in K_l . Hence we must choose c and d from a coset K_m , $m \ne l$, so that $\mathscr{H}_{a,b} \cap \mathscr{H}_{c,d} = \phi$.

THEOREM 2. Let q be an even prime power. If a and c belong to different cosets K_l and K_m respectively, then $\mathscr{H}_{a,b} \cup \mathscr{H}_{c,d}$ is a set of mutually M-intersecting varieties $\mathscr{V}(q^3 + 1, M)$, where $M \subseteq \{q^2 + 1, (q + 1)^2\}$ and $|\mathscr{V}(q^3 + 1, M)| = 2(q + 1)$.

Proof. From Theorem 1, $\mathcal{H}_{a,b}$ and $\mathcal{H}_{c,d}$ are both $\mathcal{V}(q^3 + 1, q^2 + 1)$. So we need only consider the number of points in the intersection of $V(H_i)$ and $V(H'_j)$ for $H_i \in \mathcal{H}_{a,b}$ and $H'_j \in \mathcal{H}_{c,d}$. It is easily seen that $|V(H_i) \cap V(H'_j)| = |V(H_0) \cap V(H'_{j+k})|$ for some k such that $H_{i+k} = H_0$ similar to Lemma 1. And we have $|V(H_0) \cap V(H'_j)| = |V(I) \cap V(P^TH'_jP^{(q)})|$, where P is a nonsingular matrix such that $P^TH_0P^{(q)} = I$. The characteristic polynomial g(x) of $P^TH'_jP^{(q)}$ is

$$det (xI - P^{T}H'_{j}P^{(q)}) = det (xH_{0} + H'_{j})$$

= $(x + 1)^{3} + (x + 1) \{ (xa + cu^{jq})(xa^{q} + c^{q}u^{j}) + (xb + du^{jq})(xb^{q} + d^{q}u^{j}) \}$
= $(x + 1)^{3} + (x + 1) \{ (ac^{q} + bd^{q})u^{j} + (a^{q}c + b^{q}d)u^{jq} \}$
= $(x + 1)(x^{2} + \delta x + 1),$

where $\delta = (ac^q + bd^q)u^j + (a^qc + b^qd)u^{jq}$. The quadratic equation $x^2 + \delta x + 1 = 0$ has one solution over GF(q) if $\delta = 0$. In this case we have $g(x) = (x + 1)^3$. We will show that $(P^TH'_jP^{(q)} + xI)^2 \neq \mathbf{0}$ similar to Theorem 1.

(1) For $a^{q+1} = 1$, the first row of $P^T H'_j P^{(q)}$ is expressed by $p^T = (1, 0, a + cu^{jq})$. Then the (1, 1)-entry of $(P^T H'_j P^{(q)} + I)^2$ is

$$\boldsymbol{p}^{\mathrm{T}}\boldsymbol{p}^{(q)} + 1 = 1 + (a + cu^{jq})^{q+1} + 1 = (a + cu^{jq})^{q+1} \neq 0,$$

since a and c belong to different cosets.

(2) For $a^{q+1} \neq 1$, the first row of $P^T H'_j P^{(q)}$ is expressed by $p^T = (1, (a + cu^{jq})t, (a + cu^{jq})bt)$. Then the (1, 1)-entry of $(P^T H'_j P^{(q)} + I)^2$ is

$$p^{\mathsf{T}}p^{(q)} + 1 = 1 + (a + cu^{jq})^{q+1}t^2 + (a + cu^{jq})^{q+1}b^{q+1}t^2 + 1$$
$$= (a + cu^{jq})^{q+1} \neq 0.$$

Hence, the minimal polynomial m(x) of $P^{T}H'_{i}P^{(q)}$ is $m(x) = (x + 1)^{3}$.

If the equation $x^2 + \delta x + 1 = 0$ has two solutions, then $m(x) = g(x) = (x + 1) (x + \beta) (x + \gamma)$, where $1 \neq \beta \neq \gamma \neq 1 \in GF(q)$. If the equation has no solutions, then $m(x) = g(x) = (x + 1) (x^2 + \delta x + 1)$; that is, $x^2 + \delta x + 1$ is irreducible over GF(q). Therefore, $V(P^TH'_jP^{(q)})$ and V(I) intersect on $q^2 + 1$ points or $(q + 1)^2$ points.

In the proof of Theorem 2, if $\delta = 0$, the minimal polynomial m(x) of $P^{T}H'_{j}P^{(q)}$ is $(x + 1)^{3}$. When a = b and c = d, we always have $\delta = 0$. Since $|V(H_{i}) \cap V(H'_{j})| = q^{2} + 1$ for $H_{i} \in \mathscr{H}_{a,b}$ and $H'_{j} \in \mathscr{H}_{c,d}$, we can obtain the next corollary.

COROLLARY 1. Let q be an even prime power. If a and c belong to different cosets K_1 and K_m , respectively, then $\mathscr{H}_{a,a} \cup \mathscr{H}_{c,c}$ is a set of mutually M-intersecting varieties $\mathscr{V}(q^3 + 1, q^2 + 1)$ consisting of 2(q + 1) varieties.

THEOREM 3. Let q be an even prime power. Then there exists a set of mutually M-intersecting varieties $\mathscr{V}(q^3 + 1, q^2 + 1)$ consisting of $q^2 - 1$ varieties.

Proof. In virtue of Theorem 1 and Corollary 1, what we need to do is to consider the set of matrices

$$H = \begin{pmatrix} 1 & a & 0 \\ a^{q} & 1 & a \\ 0 & a^{q} & 1 \end{pmatrix},$$

as a ranges through $GF(q^2) \setminus \{0\}$.

THEOREM 4. Let q be an even prime power. Then there exists a set of mutually M-intersecting varieties $\mathscr{V}(q^3 + 1, \{q^2 + 1, (q + 1)^2\})$ consisting of $(q + 1)^2(q - 1)$ varieties.

Proof. Let $J = \{1, w, ..., w^{q-2}\}$ be a set of representatives of the cosets K_k for $0 \le k \le q-2$. Let $L = \{(a,b): a^{q+1} = b^{q+1}, a \in J, b \in GF(q^2)\}$. Then L consists of (q-1)(q+1) elements and we have $\mathscr{H}_{a,b} \cap \mathscr{H}_{c,d} = \phi$ for $(a,b), (c,d) \in L, (a,b) \ne (c,d)$. Therefore, $\bigcup_{(a,b) \in L} \mathscr{H}_{a,b}$ is $\mathscr{V}(q^3 + 1, \{q^2 + 1, (q+1)^2\})$ by Theorem 2. ■

We remark that we can add V(I) to $\mathscr{V}(\rho, M)$ in all theorems because we can show $|V(H_i) \cap V(I)| = q^2 + 1$ for any $V(H_i) \in \mathscr{H}$.

ACKNOWLEDGMENTS

The authors thank the referees for their valuable comments and suggestions.

REFERENCES

- 1. R. C. Bose and I. M. Chakravarti, Hermitian varieties in a finite projective space $PG(N, q^2)$, *Can. J. Math.* **17** (1966), 1161–1182.
- 2. R. Fuji-Hara and N. Miyamoto, Balanced arrays from quadratic functions, submitted.
- R. Fuji-Hara and N. Miyamoto, A construction of combinatorial arrays from non-linear functions, Utilitas Math. 52 (1997), 183–192.
- R. Fuji-Hara and N. Miyamoto, Mutually M-intersecting varieties, Congr. Numer. 126 (1997), 125–130.
- J. W. P. Hirschfeld, "Projective Geometries over Finite Field," Oxford Univ. Press, New York, 1979.
- J. W. P. Hirschfeld, "Finite Projective Spaces of Three Dimensions," Oxford Univ. Press, New York, 1985.
- B. C. Kestenband, Projective geometries that are disjoint union caps, Can. J. Math. 32, No. 6 (1980), 1299–1305.
- B. C. Kestenband, Unital intersections in finite projective planes, *Geom. Dedicata* 11 (1981), 107–117.