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Glycation Endproducts (RAGE) is a multi-ligand receptor of the immunoglobulin
family. RAGE interacts with structurally different ligands probably through the oligomerization of the
receptor on the cell surface. However, the exact mechanism is unknown. Among RAGE ligands are members
of the S100 protein family. S100 proteins are small calcium binding proteins with high structural homology.
Several members of the family have been shown to interact with RAGE in vitro or in cell-based assays.
Interestingly, many RAGE ligands appear to interact with distinct domains of the extracellular portion of
RAGE and to trigger various cellular effects. In this review, we summarize the modes of S100 protein–RAGE
interaction with regard to their cellular functions.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Receptor for Advanced Glycation Endproducts (RAGE) has
been first described in 1992 and since then attracted increasing
attention due to its involvement in various diseases including diabetic
complications, tumour outgrowth, chronic inflammation, and neuro-
degenerative disorders like Alzheimer disease or multiple sclerosis.
We are focusing in this review on the role of RAGE as receptor for the
S100 proteins and will discuss how members of this family interact
and activate the receptor.

2. S100 proteins

The S100 protein family consists of 21 members. S100s are small
proteins (9–13 kDa) that bind calcium via EF hand motifs and are
exclusively expressed in vertebrates where their expressions are
tissue and cell-type specific [1–4]. Most S100 protein genes are
clustered on a region of human chromosome 1q21 that is prone to
chromosomal rearrangements, suggesting a link between S100
proteins and metastasis and tumor formation [1,5–7].

The S100 proteins have been shown to interact with and to regulate
various proteins involved in a large number of cellular functions such
as calcium homeostasis, cell growth and differentiation, dynamic of
cytoskeleton or energy metabolism (reviewed in [2,6,8]). Calcium
binding to the EF-hand occurs in response to increases in intracellular
calcium concentration and triggers structural changes in the S100
protein that allow the interaction with target proteins and the
modulation of their activity [1,2,9,10]. Binding of S100 proteins to
eizmann).

ll rights reserved.
their targets is typically calcium-dependent, but calcium-independent
interactions have also been described [11]. Besides calcium, some S100
proteins have also been shown to bind zinc or copper [1,12,13].

All S100 proteins function as dimers except for S100G (Calbindin
D9k) which is monomeric [14]. Within the dimer, both subunits are
related by a two-fold rotational axis, resulting in an antiparallel
orientation of S100 binding domains on one face of the dimer [1].
Because of their sequence and structural homology S100 proteins are
capable of hetero-dimer formationwithdistinctphysiological functions:
S100A1/B, S100A8/A9, S100A1/A4, S100A1/P [15–18]. Certain mem-
bers of S100 proteins can also form active tetramers, hexamers or larger
oligomers (S100B [19], S100A4 [20], S100A8/A9 [21], S100A12 [22–24]).

Secretion has been demonstrated for several members of the S100
protein family. S100B can be actively secreted from astrocytes [25,26],
neurons, microglia [27], glioblastoma [28], or Schwann cells [29].
Moreover, the S100B serum level in melanoma patients is an
established biomarker for prognosis [30]. S100A8/A9 is actively
secreted by monocytes/macrophages [31]. S100A12 is released by
neutrophils at sites of inflammation in various diseases [32]. S100A4
has been shown to be secreted in embryoid bodies by parietal
endoderm and to promote cardiomyogenesis [33]. S100A1 is released
in the extracellular medium during ischemic myocardial injury [34].
S100A2 was found secreted in the medium of cultured LLC-PK1 [35].
We previously showed that S100A6 could be secreted from human
glioblastoma after calcium stimulation of the cells, in physiologically
relevant S100 concentrations [36]. In certain pathological conditions,
S100A7 is released from keratinocytes [37] and possesses antibacterial
cytokine activity [38–40].

Growing evidence suggests that all secreted S100 proteins act in
either an autocrine or paracrine manner through a common receptor:
the Receptor for Advanced Glycation Endproduct [41,42].
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3. RAGE

RAGE is a member of the immunoglobulin protein family of cell
surface molecules [43,44] and shares structural homology with other
immunoglobulin like receptors [45,46]. Although RAGE is not essential
to life [47], it plays important roles in certain human pathologies
including diabetes, Alzheimer's disease and cancer [48]. The mature
382 amino-acid long RAGE is composed of an extracellular part (314
aa), a single transmembrane spanning helix (27 aa) and a short
cytosolic domain (41 aa) (Fig. 1) [44]. The extracellular part of RAGE
contains one variable like V-domain (residues 24–127) and two
constant like C type domains frequently referred to as C1 (residues
132–230) and C2 domains (residues 239–320). Recent studies
suggests that RAGE forms oligomers at the cell surface [49]. RAGE
possesses two N-glycosylation sites, one adjacent to the V-domain and
the second one within the V-domain [44,50].

RAGE is highly expressed during development, especially in the
brain, but its expression level decreases in adult tissues. RAGE is found
in low level in neurons, smooth muscle cells, mesangial cells,
mononuclear phagocytes, hepatocytes and cardiac myocytes, but is
found in high level in lung tissue [51]. RAGE expression is also
augmented by increased levels of ligands in pathologic states [48].
RAGE signaling is complex and depends of the cell type, the type and
the concentration of the ligand (for recent review on RAGE/S100
signaling see [6,42]). The internalization/recycling of RAGE is poorly
understood but a recent study showed that in the presence of S100B,
RAGE was internalized and recycled to the cell membrane after fusion
with S100B containing secretory vesicles [29].

3.1. RAGE isoforms

Understanding of the transcriptional regulation of RAGE is impor-
tant to understand RAGE signaling. Based on mRNA twenty RAGE
isoforms have been identified so far in various tissues and cells
including rat liver and kidney [52], human lung [53–55], human aortic
smooth muscle cells [55], human vascular endothelial cells and
pericytes [56] and human brain [57–59]. Recently, the different RAGE
gene splice variants have been classified and renamed (RAGE, RAGE_v1
to RAGE_v19) according to the Human Gene Nomenclature Committee
[55]. At the DNA level, the RAGE gene consists of 11 introns/exons that
can be alternatively spliced to produce the different variants [44,60].
The prevalent RAGE isoforms appear to be the full-length RAGE (RAGE),
a secreted isoform of RAGE_v1 (previously named sRAGE, secretory C-
truncated RAGE, esRAGE, hRAGEsec or sRAGE1/2/3) and a N-
Fig. 1. Schematic representation of RAGE. The extracellular part comprises three
immunoglobulin like domain, the V, C1 and C2 domain. A single transmembrane helix
connects the extracellular domain with the short intracellular domain (ID). RAGE
ligands interact with the extracellular domains as indicated. ⁎ indicates that the RAGE
domain where S100 binds is not known.
terminally truncated isoform RAGE_v2 (previously named Nt-RAGE,
N-RAGE or N-truncated RAGE) [55]. The relative expression levels of
these isoforms appear to be tissue specific suggesting strict tissue
regulation [53]. RAGE is the main isoform in human lung, human aortic
smooth muscle cells and pericytes [55,56]. RAGE_v1 is the prevalent
isoform in endothelial cells and human brain [56,59]. This isoform lacks
both the cytosolic and transmembrane domain and is characterized by
an unique C-terminal sequence due to reading frameshift. RAGE_v1 is
released in the extracellular spacewhere it can interact with circulating
RAGE ligands resulting in decreased RAGE activation [53–56]. The
variant RAGE_v2 is currently subject to controversy and may not be
expressed in cells but would rather be degraded at themRNA level [55].
Recent studies have shown that the circulating extracellular part of
RAGE (sRAGE) can also be generated by proteolytic degradation [61,62].
sRAGE is found elevated in broncho-alveolar lavage and plasma in case
of pulmonary tissue injury [63]. Interestingly, recent studies failed to
identify spliced soluble isoforms of RAGE in murine lung although
sRAGE could be isolated suggesting different mechanisms of RAGE
regulation between mouse and human species [64].

3.2. RAGE ligands

RAGE was initially identified as receptor for the AGE products
[43,44]. Besides AGEs, RAGE interacts with other structurally
unrelated ligands which include amphoterin (High Mobility Group
Box 1, HMGB1) [65], amyloid β peptide [66], immunoglobulin light
chain amyloid fibrils [67], transthyretin [68], members of the S100
protein family [48,69], and β2-integrinMac-1[70] (Fig.1). AGEs form a
heterogeneous class of compounds that result from the reaction
between reducing carbohydrates or carbohydrate breakdown pro-
ducts and primary amine groups of proteins (reviewed in [71]). Early
experiments showed that in vitro prepared AGE-BSA, resulting from
the incubation of BSA with high concentration of glucose, interacted
with RAGE with high affinity (KD=50 nM) [43]. Further studies
showed that AGEs purified from diabetic patients could trigger the
upregulation of endothelial cells in a RAGE dependent manner [72].
AGE-BSA-induced RAGE signaling was further demonstrated in many
experimental settings [73–76]. The most prevalent AGE products in
vivo, Carboxy-Methyl-Lysine or CML-AGEs [77–79] were also shown to
trigger RAGE dependent activation in cell assays and in mouse models
[74,76,80,81]. Recently, additional AGE products such as pronyl glycine
were also shown to bind to RAGE and to trigger RAGE dependent
signaling [82]. However, recent studies suggest that not all AGEs are
capable of binding to the receptor and/or triggering RAGE dependent
signaling effects [67,83,84]. Discrepancies between the published data
may arise from differences in composition and concentration of the
AGE products used and differences in cell types. In in vitro assays,
AGEs, including AGE-BSA and CML-AGE were found to interact
specifically with the V-domain of RAGE [49,80,85]. However there
are also discrepancies again between the observed binding affinities,
from sub-micromolar (KD=76 nM, [80]; KD=61 nM, [85];
KD=0.23–1.4 μM [86]), to high micromolar (KD=10 μM, [49])
resulting probably from differences in AGE composition. Glycosylation
of RAGE has been shown to influence binding of certain AGEs to RAGE.
Although CML-BSA bound to glycosylated RAGE, no binding was
detected with non-glycosylated RAGE [67]. On the contrary, a stronger
binding was observed between certain AGEs products and deglyco-
sylated RAGE than with glycosylated RAGE [87].

The second class of RAGE ligand is formed by amphoterin.
Amphoterin is a 30 kDa DNA- and heparin-binding protein with
both intracellular and extracellular functions. In the cell, amphoterin
stabilizes the formation of the nucleosome and facilitates transcrip-
tion [88–90]. Amphoterin can be passively released from necrotic cells
[91] or can be actively secreted by several cells including monocytes,
macrophages and endothelial cells [92,93] and plays a role as pro-
inflammatory cytokine [92,94] and is proangiogenic [95,96]. When



Table 1
Target proteins of selected S100 proteins

Protein Target proteins

S100B Neuromodulin GAP-43 [322]
Tau [323]
GFAP [324,325]
Vimentin, microtubules, intermediates filaments
type III [326]
Annexin VI [327–329]
p53 [330,331]
Sgt-1 [332]
CacyBP/BP [214]
AHNAK [333]
Phosphoglucomutase [334]
Fructose 1,6-biphosphatase, aldolase [335]
Calponin [336]
Caldesmon [337]
Neurocalcin [338]
CapZ [339]
RAGE [19,69,144]

S100A1 Fructose 1,6-biphosphate, aldolase [335]
Glycogen phosphorylase [340]
Adenylate cyclase [341]
Phosphoglucomutase [334]
Tubulin [342]
GCAP [339]
MyoD [343]
Intermediate filaments type III [344]
Annexin VI [327]
Synapsin I [345,346]
Ryanodine receptor [347]
Twitchin kinase [348]
SERCA-2a [349,350]
Hsp70, Hsp90, FKBP52, CyP40 [351]
Titin [352]
P53 [169]
RAGE [127]

S100A2 p53 [168,169]
Hsp70/Hsp90 organizing protein Hop [171]
Kinesin light chain [171]
RAGE [This study]

S100A4 Non-muscle tropomyosin [185];
p53 [331,353]
Non-muscle myosin [184,354]
Map [355]
RAGE [20] [This study]

S100A5 RAGE [This study]
S100A6 Glyceraldehyde 3-phosphate dehydrogenase [216]

CacyBP/SIP [214,332]
Tropomyosin [215]
Annexin I, II, VI, XI, [216–219]
p30 [356]
P53 [169]
Hsp70/Hsp90 organizing protein Hop [171]
Kinesin Light Chain [171]
RAGE [36]

S100A7 Epidermal-fatty acid binding protein [227]
RanBMP [229]
Jab-1 [230]
RAGE [231]

S100A8/A9 CD36 receptor [258]
NADPH oxidase [260]
Toll-like receptor 4 [261]
RAGE [262,263]

S100A11 Annexin A1 [271]
Annexin A2 [357]
RAD54B [317]
P53 [169]
RAGE [281,283]

S100A12 NADP+ dependent isocitrate dehydrogenase, [301]
Fructose 1,6 bisphosphate aldolase A, [301]
Glyceraldehyde-3 phosphate dehydrogenase, [301]
Annexin V, [301]
S100A9, [301]
RAGE [24,69]

S100A13 Fibroblast growth factor 1 [307,308]
C2A [304]

(continued on next page)(continued on next page)
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added extracellularly, amphoterin has been shown to promote neurite
outgrowth and neuronal cell differentiation by mechanisms involving
RAGE (reviewed by Huttunen et al. [97]). Amphoterin-induced RAGE
signaling has also been shown to play an important role in cancer as
shown in rat C6 gliomas [98]. Amphoterin was reported to interact
with the V-domain of RAGE based on binding competition experi-
ments with AGE-BSA [65]. Glycosylation has been shown to influence
binding of RAGE to amphoterin by slightly increasing binding affinity
(KD-Glyco.=10.7 nM versus KD-deglyco.=18.2 nM) [50].

Amyloid forming peptides or proteins constitutes a third class of
RAGE ligand. Amyloid β peptide (Aβ) is a proteolytic fragment of
amyloid proteinprecursor (APP) andmediates oxidative stress andNF-
κB activation through RAGE [99–102]. The interaction of Aβ peptide to
RAGEwas initially suggested to interact with the N-terminal portion of
RAGE based onmodeling experiments [103]. By using a combination of
RAGE domain specific antibodies and purified RAGE domains, we
recently demonstrated that binding of Aβ to RAGE depended of the
state of oligomerization of the amyloid forming peptide [102].
Whereas oligomers of Aβ were shown to interact with the V-domain
of RAGE, Aβ aggregates interacted with the C1 domain (Fig. 1) [102].

In the following paragraph, wewill describe in more detail a fourth
class of RAGE ligands constituted by the S100 proteins. Many of the
S100 proteins interact with RAGE in vitro and trigger RAGE dependent
signaling in cell-based assays. Some S100 proteins have also been
shown to trigger RAGE signaling in animal models.

4. S100 proteins that interact with RAGE

4.1. S100B

S100B and S100A1 are the best characterized proteins of the S100
family [104]. S100B is mainly present in the brain and is particularly
highly expressed and secreted by astrocytes [105,106], oligodendro-
cytes [107] and Schwann cells [29]. S100B binds two calcium ions per
subunit with moderate affinity (2–20 μM) [108]. Besides calcium,
S100B binds zinc with high affinity (KD=0.1–1 μM) and zinc binding
to S100B increases both calcium binding and target protein binding
affinities [108]. S100B also binds copper with sub-micromolar affinity
and has been suggested to play a role against copper induced oxidative
stress in cells [109].

The three-dimensional structure of S100B has been solved by NMR
and crystallography in the calcium-free state [110,111], calcium bound
state [19,112–114] and in the presence of target protein derived
peptides (p53 [115], Ndr-kinase [116], capZ [117]). The N-terminal
S100 specific EF-hand of S100B exhibits only minor conformational
changes upon calcium binding whereas the C-terminal canonical EF-
hand changes its conformation significantly upon calcium binding.
The change of conformation in the C-terminal domain correlates with
a 90° C change in angle between helix III and IV upon calcium binding.
This change of conformation allows the exposure of residues critical
for the binding to target proteins (reviewed by Heizmann et al. [1]).
S100B interacts with a large variety of target proteins in either a
calcium dependent or independent manner resulting in various intra-
and extra-cellular functions (Table 1, and reviewed in [2,11]).

High levels of S100B have been detected with various clinical
conditions such as brain trauma, ischemia and neurodegenerative,
inflammatory and psychiatric diseases [118]. Glioblastoma in culture
have also been shown to secrete S100B [28]. Besides the brain, S100B
is a well-established prognostic marker for melanoma and high serum
concentration of S100B correlate with poor prognosis [30,119]. Animal
studies with S100B knout-out or S100B overexpressing transgenic
mice revealed that S100B is not an essential protein for life. However,
S100B plays important roles in spatial and fear memory, learning
capabilities, epileptogenosis and myocardial functions [120–126].

S100B together with S100A12 were the first members of the S100
protein family that were shown to interact with RAGE and to trigger



Table 1 (continued)

Protein Target proteins

RAGE [309] (Direct binding not yet demonstrated)
Non-muscle myosin A heavy chain [15]

S100P S100PBPR [319]
S100A1 [15]
Ezrin [317,318]
RAGE [320]

Only S100 proteins that have been shown to interact with RAGE are presented in this
table.

Fig. 2. Schematic representation of immobilized GST-RAGE (A) or V-domain (B) on a
sensor chip used for the SPR measurements. The surface of the chip is covered with a
mesh of dextran that provides large flexibility of the bound proteins. (A) In case of GST-
RAGE, an IgG antibody specific to GST is covalently coupled to the surface. In a second
step, GST-RAGE is injected over the surface allowing the capture of GST-RAGE by the
anti-GST antibody, resulting in specific orientation of the chimeric RAGE protein. The
two GST-RAGE molecules are thus very close in space and can form dimers. (B) When
the V-domain is directly coupled to the surface, it can also form dimers due to the
inherent properties of the dextran layer.
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cellular signaling [69]. Since then the interaction of S100B with RAGE
has been demonstrated inmany cell-types. In N18 neurons transfected
with RAGE, Huttunen et al. showed that S100B had dual RAGE
dependent cellular effects depending of the concentration of the
ligand [127]. Whereas nanomolar concentration of S100B triggered
neurite outgrowth, micromolar concentration of the ligand resulted in
apoptosis [127]. At the intracellular level, low concentrations of
extracellular S100B triggered the up-regulation of the anti-apoptotic
factor Bcl-2 whereas high concentration resulted in the activation of
caspase 3 through the activation of the oxidant stress dependent
MEK/ERK pathways, leading to apoptosis [127]. In rat hippocampal
neurons low concentration of S100B were shown to protect the cells
against the toxic effect of N-methyl-D-aspartate, through the activa-
tion of NF-κB and possibly through the engagement of RAGE [128]. In
LAN-5 neuroblastomas, low concentration of S100B was shown to
protect against the cellular toxicity of Aβ peptide, in a RAGE
dependent manner, by inhibiting the decrease in expression of the
anti-apoptotic factor Bcl-2 [129].

We recently showed that in human SH-SY5Y cells, high concentra-
tion of S100B (5 μM) promoted cell survival through the PI3K/Akt/NF-
κB pathway in a RAGE dependent manner and through the generation
of reactive oxygen species [36]. In Neuro2a cells transfected with
RAGE, high concentration (5 μM) of S100B triggered mitogenic
signaling through RAGE and the p42/44 MAP kinase pathway [130].
In dorsal root ganglia neuron, submicromolar concentration (500 nM)
of S100B triggered RAGE dependent activation of PI3/Akt kinase
pathway and of NAD(P)H oxidase through the generation and
amplification of reactive oxygen [131]. In astrocytes, which are the
cells with the highest expression of S100B, S100B-induced RAGE
activated the release of TNF-α and IL-6 [132].

Inmicroglia, the immune system of the central nervous system, the
role of S100B/RAGE appears to be more complex [133]. Although
S100B regulates NF-κB transcriptional activity in BV-2 microglia in a
RAGE dependent manner, the production of NO by these cells in
response to S100B appeared to be independent of RAGE, since the
release of NOwas similar in cells that were either transfected with the
full-length RAGE or with RAGE deleted of the cytoplasmic domain
(DN-RAGE) [133]. However, the release of NO by S100B-activated
microglia was significantly stronger in microglia transfected with
RAGE than mock transfected, suggesting a possible role of RAGE in
concentrating S100B at the cell surface [133]. In these cells, S100B-
activated RAGE also triggered the up-regulation of cyclo-oxygenase-2
expression through the independent stimulation of a Rac1/JNK/SP-1
pathway and a Rac1/NF-κB pathway [134,135].

S100B/RAGE dependent activation of COX-2 expression through
the activation of p38/ERK/NF-κB has also been shown in both primary
and established (THP-1) cultures of monocytes [136]. S100B also
triggered the production of superoxide O2

− through the activation of
NADPH oxidase in the same cells, in a RAGE dependent manner [137].
TNF-α can be released from human peripheral blood mononuclear
cells following activation of RAGE by S100B [83] and S100B
significantly increased IP-10 mRNA and protein levels in these cells
in a RAGE dependent manner [138].

Endothelial cells stimulated with S100B have been shown to
activate NF-κB [69] and to up-regulate the expression of the vascular
cell adhesion molecule 1 (VCAM-1) in a RAGE dependent manner
[83]. In human aortic endothelial cells, S100Bwas shown to induce the
expression of monocyte chemoattractant protein 1 (MCP-1) and RAGE
transcripts [139], also in a RAGE dependent manner. In vascular
smooth muscle cells (VSMCs), S100B stimulated angiotensin II
induced tyrosine phosphorylation of JAK2 and cell proliferation in a
RAGE dependent manner [140]. In the same cell type, S100B was
shown to stimulate caveolin-1 tyrosine phosphorylation by Src kinase
and the activation of the MAPK/NF-κB-STAT3 pathway, in a RAGE
dependent manner, resulting in up-regulation of IL-6 and the
macrophage-chemoattractant protein 1 (MCP-1) [141]. A direct
interaction between RAGE and the β2-integrin Mac-1 protein on
endothelial cells correlated with leukocyte recruitment and was
augmented by S100B [70].

Although RAGE appears to be an important mediator in S100B
dependent cellular signaling, recent studies in myoblasts and
microglia suggest that RAGE is not the sole receptor of this calcium
binding protein [133,142,143].

Comprehension of the molecular mechanisms of the interaction of
RAGE with its ligands is key to understand how RAGE signaling
functions. Surface plasmon resonance (SPR) allows to follow the
interaction between two partners in real time and was used to
investigate in great details the interaction of several S100 proteins
with RAGE [19,20,144]. The SPR technology requires the immobiliza-
tion of one of the partners on a sensor surface, a procedure that can
influence the interaction between the binding partners. To minimize
this problem, the protein of interest can be captured on the surface in
a defined orientation. For this purpose, we have used a chimeric GST-
RAGE fusion construct, where the extracellular part of RAGEwas fused
to the gluthatione-S-transferase protein [19,36,84]. Other groups have
used a chimeric sRAGE-Fc where the Fc portion was captured via a
specific antibody covalently bound to the surface [20]. The fusion
protein allows to anchor the chimeric protein in a specific orientation
on the surface of the sensor chip, therefore mimicking the orientation
of RAGE on a cell membrane. In our studies, the GST-RAGE fusion
protein was captured onto the surface by anti-GST specific antibodies
covalently immobilized onto the surface of the sensor chip (Fig. 2). An



Table 2
Summary of S100/RAGE interaction as determined by SPR

S100 RAGE
domain

Affinity Reference

S100B V 3.6 μM (62%) 2.2 nM (38%) [144]
Dimers VC1 11 nM (84%) 0.2 μM (16%) [144]

GST-RAGE 8.3 μM [19]
3.6 μM (62%) 2.2 nM (38%) [36]sRAGE

S100B
Tetramers

GST-RAGE 1.1 μM (66%) 42 nM (34%) [19]

S100A1 GST-RAGE 23 μM (85%) 6.8 nM (15%) ⁎Leclerc et al., unpublished
data

V-domain 0.6 μM This study
S100A2 GST-RAGE 5.46 μM (70%) 56 nM (30%) ⁎Leclerc et al., unpublished

data
V-domain 89.5 nM This study

S100A4 GST-RAGE 0.62 μM (79%) 1.7 μM (21%) ⁎Leclerc et al., unpublished
data

Dimers sRAGE-Fc 0.138 μM [20]
sRAGE-Fc 0.138 μM [20]

S100A4
Oligo.
S100A5 V-domain 6.59 μM This study
S100A6 V 13.5 μM (97%) 0.5 μM (3%) [36]

VC1 5.8 μM (82%) 0.6 μM (18%) [36]
C2 1 μM (55%) 28 nM (45%) [36]
sRAGE 0.6 μM (51%) 0.5 μM (49%) [36]

S100A12 sRAGE-Fc 79 nM [20]
Dimers
S100A12 V-domain 167 nM This study
Tetramers

In most cases, the binding curves were fitted with a two independent binding sites
model. The numbers in bracket correspond to the percentile of the S100 population that
binds to RAGE with the indicated affinity.
⁎Leclerc, E., Fritz, G., Weibel, M., Heizmann, C.H. and Vetter, S.W., Molecular
characterization of the interaction of S100A1, S100A2, S100A6 and S100A4 with the
Receptor for Advanced Glycation Endproducts., unpublished results.

Fig. 3. RAGE V-domainwas expressed in E. coli and purified as described in [144]. About
6500 RU were immobilized on a CM5 Biacore sensor chip according to previously
described procedures [144]. Association and dissociation of each S100 protein was
followed in real-time. After each cycle, the surface was regenerated as previously
described [144]. Protein concentrations were as follow. S100B: 12.6 μM, S100A1: 10 μM,
S100A2: 7.5 μM, S100A5: 30 μM, S100A12: 4 μM. The sensograms are depicted as follow.
Panel A, S100B: full line; S100A2: dashed line. Panel B, S100A1: dashed line. S100A5: full
line. S100A12: point and dash line. Fast association and dissociation are observed for
S100B and S100A2, whereas S100A2, S100A5 and S100A12 associate and dissociate
more slowly to and from RAGE V-domain suggesting different mechanisms of
interaction between S100B, S100A1 and S100A2, A5 and S100A12.
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advantage using this system is that the GST-RAGE molecules are close
in space on the sensor chip due to the bivalence of the IgG used in the
capture. Moreover, the surface of the sensor chips used in our studies
(CM series) is covered with a branched dextran layer that forms a
flexible mesh. This mesh gives to the bound protein, even when
directly bound to the surface, some freedom of movement (Fig. 2).
Indeed, previous studies using SPR have demonstrated the formation
of dimers among immobilized receptors [145]. Our initial study was
performed with S100B and showed micromolar affinity with RAGE
[19]. Using the same approach, we showed that tetrameric S100B
binds more tightly to RAGE suggesting that RAGE could form
oligomers when interacting with its ligands. In a second study we
investigated in more detail the interaction of dimeric S100B to RAGE
to the isolated V-domain (residues 23–132) and showed specific
interaction between S100B and RAGE with sub-micromolar affinity
(KD≈0.5 μM) (Fig. 1 and [144]). Using non-glycosylated and
glycosylated sRAGE, our studies showed that glycosylation does not
significantly influence binding of S100B to RAGE [19,36,144].

4.2. S100A1

S100A1was co-discovered with S100B in the brain [104]. However,
S100A1 is mainly expressed in the heart and is present in lower levels
in other tissues [6,7,146]. Like S100B, S100A1 binds two calcium ions
per subunit withmoderate affinity (KD=10 μM) [108]. Calcium bound
S100A1 interacts with a large variety of targets (Table 1) and regulates
cardiac performance as shown by in vitro studies and S100A1
transgenic animal models [147–152]. Recent studies with S100A1
knock-out mice showed that it associated with an anxiety related
behavior [153]. Little is known about the interaction of S100A1 with
RAGE besides that S100A1 was shown to promote neurite outgrowth
and to activate the transcription factor NF-κB in concert with
amphoterin in a RAGE dependent manner [127]. We have newly
characterized the interaction of S100A1 with RAGE in vitro using SPR
with GST-RAGE (Table 2). As for S100B, binding to RAGE was in the
micromolar range and strictly calcium dependent (Table 2). A more
detailed analysis of this interaction suggests that S100A1 interacts
with the V-domain of RAGE (Fig. 3).

4.3. S100A2

S100A2 was first detected as a tumor suppressor in human
mammary epithelial cells [154]. The peculiarity of S100A2 is its
primary nuclear location [155]. S100A2 tissue distribution is rather



Fig. 4. Example of RAGE signaling triggered by S100B or S100A6 in human SH-SY5Y
neuroblastomas. Micromolar concentration of S100B and S100A6 triggered distinct
cellular pathways involving Akt and JNK respectively, leading to either cell survival,
proliferation (S100B), or apoptosis (S100A6) [36].
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large since it is present in many organs or tissues including lung,
kidney, liver and breast epithelia [156,157]. Besides calcium, S100A2
binds zinc with high affinity (KD=25 nM) and zinc binding to S100A2
reduces significantly the affinity of S100A2 for calcium [13]. The three-
dimensional structure of a mutant of S100A2 in the apo form has
recently been solved by crystallography and showed similarities with
the structures of calcium free S100A3, S100A4 or S100A6 [158].
S100A2 is found down-regulated in many cancers including mela-
noma [159], prostate [160], oral [161], lung [162] and breast cancer
[163]. Interestingly, up-regulation of S100A2 was found in other
cancers including esophageal squamous carcinoma [164], non-small
cell lung carcinoma [165], gastric [166] and ovarian cancer [167]. At
the molecular level S100A2 has been shown to interact with and
increase the transcriptional activity of the tumor suppressor protein
p53 (Table 1) [168,169] and a positive correlation between S100A2
and favorable patient outcomewas found in tumor with p53wild type
phenotype [170] suggesting a complex role of S100A2 and p53 in
tumor biology. S100A2 also interacts with the Hsp70/Hsp90-organiz-
ing protein (Hop) and the kinesin-light chain (KLC) and thus
participates in protein folding [171]. Earlier studies failed to
demonstrate the interaction between RAGE and S100A2 [20].
However, we have recently characterized the interaction of S100A2
with RAGE in vitro (Fig. 1, Table 2) and showed micromolar affinity
between S100A2 and GST-RAGE, with strict calcium dependency
(Table 2). Our further analysis of RAGE/S100A2 interaction showed
that S100A2 interacts with the V-domain of the receptor (Fig. 3).

4.4. S100A4

S100A4 is also known as metastasin or Metastasis Associated
Protein due to its link with metastasis formation. The gene of S100A4
was originally isolated and characterized from metastatic cells [172]
and was later shown to control tumor metastasis [173–175]. In normal
tissue S100A4 is predominantly found in the nervous system and is
thought to play a role in neuronal plasticity under normal and
pathological conditions [176–178]. Besides calcium, S100A4 binds
zinc [3]. The three-dimensional structure of calcium free and calcium
loaded S100A4 has been determined by NMR [179] and X-ray
crystallography [180,181] revealing high similarity with S100A6.
Animal studies with S100A4 transgenic and knock-outmice confirmed
the role of S100A4 in tumor progression and development [182,183]. At
the molecular level, S100A4 has been shown to interact with non
muscle myosin and tropomyosin (Table 1) and to play a role in
cytoskeleton rearrangements, therefore influencing cellular motility
[184–188]. S100A4has also been shown to induce the activity of several
matrixmetalloproteinase in osteosarcomas [189,190]. S100A4 interacts
with RAGE in vitro as demonstrated by SPR studies using either
chimeric sRAGE-Fcor biotinylatedRAGE (KD=138nM; [20]). Using the
same technology but a GST-RAGE fusion protein as choice of binding
partner, we showed affinities in the same order ofmagnitude and strict
calcium dependency for this interaction (Table 2). Interestingly, both
S100A4 dimers and oligomers were reported to bind to RAGE in vitro
[20]). Although S100A4 binds to RAGE in vitro, the role of S100A4/
RAGE interaction in vivo appears to be more complex. Indeed S100A4
has been shown to trigger RAGE independent neuritogenesis in
primary rat hippocampal neurons [20] whereas S100A4 could
stimulate RAGE dependent signaling cascades leading to activation of
MMP13 in osteoarthritic cartilage [191]. Further studies will be
necessary to investigate in more details the role of S100A4/RAGE
axis in vivo.

4.5. S100A5

S100A5 was first isolated from bovine brain [192] but was also
found in restricted areas of the kidney [193]. In the brain, S100A5
expression is limited to a few areas such as the olfactory bulb, the
brainstem and the spinal trigeminal tract [192,194]. S100A5 binds
calcium with higher affinity (KD=6 μM) than most of the other
members of the S100 protein family [192]. It also binds zinc and
copper with low micromolar affinity and copper binding strongly
impairs the binding to calcium [192]. Due to its binding affinity for
copper S100A5 could play a role as either a copper delivery protein or
protect other proteins from copper induced oxidative stress [192]. The
three-dimensional structure of the protein is so far unknown. S100A5
is overexpressed in astrocytic tumors [195] and has been suggested to
be a marker of recurrence in certain meningiomas [196]. So far, no
cellular target had been described (Table 1). In order to understand
how S100 proteins interact with RAGE, we studied the interaction of
S100A5 with RAGE by SPR and could show low micromolar affinity
between S100A5 and the V-domain and strict calcium dependency for
the binding (Fig. 3). Further studies will be necessary to characterize
this interaction in more detail and to investigate if this interaction is
physiologically relevant.

4.6. S100A6

S100A6 was first isolated from Ehrlich ascites [197]. It is found in
high levels in various organs including muscle, lung, kidney, spleen
and brain [198,199]. S100A6 has been shown to translocate from the
cytoplasm to the nuclear envelope and the plasma membrane in a
calcium dependentmanner [200]. Calcium dependent translocation of
S100A6 between different organelles was also found in endothelial
cells and neuroblastomas [201,202]. Besides calcium, S100A6 binds
zinc with micromolar affinity [203]. The three-dimensional structure
of S100A6 has been determined by NMR and X-ray crystallography
both in the calcium free- and calcium bound conformation revealing
similar conformational changes in S100A6 and S100B following
binding to calcium [[204–206]. S100A6 appears to play an important
role in cancer and is found overexpressed in many cancers including
colorectal cancer [207], hepato-cellular carcinoma [207], melanoma
[159], lung cancer [208] or gastric cancer [209,210]. In pancreatic
cancer, S100A6 concentration increases with malignancy [209] and a
high nuclear concentration of S100A6 has been shown to correlate
with poor prognosis [211]. S100A6 may also play a role in several
neurodegenerative diseases as it was found overexpressed in a mouse
model of amyotrophic lateral sclerosis [212] as well as in patients with
Alzheimer's disease [213]. At the molecular level, S100A6 interacts
with several proteins in vitro including CacyBP/SIP [214], tropomyosin
[215], annexins II, XI [216–219], Hop, KLC [171], P53 [169] and RAGE
[36] (Figs.1, 4, Table 1).We showed recently that S100A6 could interact
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with both the V and C2 domains of RAGE in vitro [36]. Aswith the other
S100 proteins described above, S100B, S100A1, S100A2, S100A4 and
S100A5, binding of S100A6 to GST-RAGE appeared to be strictly
calcium dependent, as determined by SPR. Interestingly, the cellular
effects triggered by S100A6 in human neuroblastoma SH-SY5Y cells
appear to occur via binding to the C2 domain (Figs. 1, 4) [36]. Our
studies have also shown that glycosylation of RAGE does not
significantly influence binding of S100A6 to RAGE [19,36,144].

4.7. S100A7

S100A7 was first identified in inflamed psoriatic skin [220].
S100A7 binds calcium (KD=150 μM) and zinc with low affinity
(KD=100 μM) [221]. The 3-D structure of S100A7 has been solved, in
the presence of calcium and in the presence and absence of zinc and
showed only one bound calcium ion per subunit [222,223]. Contrary
to other S100 proteins, binding of calcium to S100A7 does not result in
large conformational changes of the protein [222]. S100A7 has been
shown to be released from keratinocytes surrounding epidermal
wounds and to possess cytokine [37] and antibacterial activity [38–
40]. S100A7 is also thought to play a role in various cancers such as
lung squamous cell carcinoma, ductal or invasive breast carcinoma
[224–226]. At the molecular level, S100A7 interacts with the
epidermal fatty acid binding protein (E-FABP), RanBMP and Jab-1
and RAGE (Table 1) 227–230]. Recent studies demonstrate that
S100A7 was chemotactic for granulocytes, monocytes and lympho-
cytes, in a RAGE dependent manner [231].

4.8. S100A8/A9

S100A8 and S100A9 are predominantly expressed by cells of
myeloid origin [232–236] but are also expressed in epithelial cells and
keratinocytes during inflammation [235,237]. S100A8/A9 can form
heterodimers in the absence of calcium and heterotetramers
(S100A8/A9)2 in the presence of calcium [238,239]. The three-
dimensional structure of the (S100A8/S100A9)2 has been determined
by crystallography revealing that the calcium bound C-terminal EF-
hand loops are necessary for tetramerisation [240]. S100A8/A9
heterotetramers appear to play important biological functions such
as formation of microtubules [21].

S100A8 and S100A9 homodimers have been solved by crystal-
lography and show similarities with the calcium bound structures of
other S100 proteins [241,242]. S100A8/A9 plays a role in myeloid
differentiation [232], in inflammation [243] and exerts antimicrobial
activity [244]. Moreover, elevated serum levels of these S100 proteins
are found in patients suffering from inflammatory diseases such as
rheumatoid arthritis, cystic fibrosis or Crohn's disease [2,18,245–247].
High levels of S100A8/A9 have also been found in the microglia of
patients with Alzheimer's disease or suffering from ischemic lesions
[248,249] (reviewed in [250]) and may also play a role in several
cancers such as gastric cancer [251,252], colorectal carcinoma [253] or
prostate cancer [254]. S100A8 is an essential gene for life since S100A8
knock-out mice died during embryonic development [255]. Surpris-
ingly, S100A9 knock-out mice do not show any obvious phenotype
demonstrating distinct functions between S100A8 and S100A9
[256,257]. At the molecular level, the heterocomplex S100A8/A9
interacts with the scavenger receptor CD36 [258], with heparin and
heparan sulfate glycosaminoglycans [259] and with components of
the NADPH oxidase complex [260]. Recently S100A8/A9was shown to
interact with the Toll-like receptor 4, via the interaction with S100A8,
promoting endotoxin-induced shock [261]. S100A8/A9 also interacts
with RAGE as shown by immunoprecipitation experiments [262,263].
However, the role of RAGE/S100A8/A9 interaction in vivo is currently
not clearly understood. Although S100A8/A9 have been shown to
promote cell growth via p38MAPK and p44/42 kinase activation in
tumor cells [263] and to mediate endotoxin-induced cardiomyocyte
dysfunction [262] in a RAGE dependent manner, RAGE dependent
signaling was observed in human umbilical aortic cells (HUVEC)
treated with S100A8/A9, only after pretreatment with AGEs products
[246]. In rheumatoid arthritis, S100A8/A9 amplified proinflammatory
cytokine production by macrophages via the activation of NF-κB and
p38MAPK, in a RAGE independentmanner [264]. In several tumor cell
lines, S100A8/A9 induces cell death in a RAGE independent manner
[265]. In prostate cancer cell lines, S100A8/A9was found to induce the
co-localization of RAGE with the two S100 proteins. In these cells, the
activation of MAP kinase and NF-κB signaling pathways triggered by
S100A8/A9 was not reduced in the presence of anti-RAGE antibody,
suggesting a RAGE independent signaling pathway as well [252]. To
increase the complexity of RAGE/S100A8/A9 signaling a recent report
demonstrated the presence of CML-modified S100A8/A9 in inflamed
intestinal tissue that were able to activate NF-κB and to elicit a RAGE-
dependent intestinal inflammatory response [266], suggesting a
complex interplay between AGEs, S100 proteins and RAGE. In a
different study, S100A8/A9 was shown to interact specifically with a
subpopulation of RAGE carrying carboxylated glycans and to trigger
RAGE dependent NF-κB activation and cellular proliferation [267].

4.9. S100A11

S100A11 was first isolated in chicken gizzard smooth muscle and
later purified and characterized [268]. S100A11 is present in many
tissues but in higher amount in lung and smooth muscle tissues
[268,269]. The three-dimensional structure of S100A11 has been
solved by NMR and crystallography, in the calcium free [270] and
calcium bound form in the presence of annexin I binding domain
[271]. S100A11 binds to annexins A1 and A2, the DNA-dependent
ATPase Rad54B, p53 and RAGE (Table 1). The interaction of S100A11
with Rad54B suggests a role in DNA double strand repair mechanism
and cell cycle progression [272]. S100A11 has been found elevated in
several tumors and was suggested to play a role either as tumor
promoter, such as in prostate, breast and pancreatic cancer [273–275]
or tumor suppressor such as in bladder and renal carcinoma [276,277].
Moreover, in normal human keratinocytes, phosphorylation of
S100A11 by protein kinase C in response to TGFβ-1 and high calcium
concentrations resulted in growth inhibition [278,279]. S100A11 is not
essential for life since S100A11 knock-out mice do not show any
obvious phenotype [280]. S100A11 has been shown to modulate
osteoarthritis (OA) via the interaction with RAGE (Table 1) [281]. In
this study, RAGE and S100A11 expression were up-regulated in OA
cartilages. More recently, S100A11 was shown to be secreted by
chondrocytes and in the same cells S100A11/RAGE activation resulted
in hypertrophy [281,282]). S100A11 has also been shown to be
secreted and to exert RAGE dependent signaling in human keratino-
cytes [283]. At the molecular level, the interaction of S100A11 with
RAGE has not yet been characterized.

4.10. S100A12

S100A12was identified and isolated from resting neutrophils [284]
later sequenced [285], cloned, expressed [286] and characterized
[287]. Besides neutrophils, S100A12 is found in monocytes [284] and
lymphocytes [288]. S100A12 translocates from the cytosol to the
membrane in the presence of increased calcium concentration [284].
The crystal structure of calcium bound S100A12 showed either
dimeric [289] or hexameric [22] arrangements suggesting oligomeric
specific biological functions. The structure of S100A12 in the presence
of copper also revealed the putative role of copper in the function of
the protein [290]. S100A12 is strongly expressed in inflammatory
diseases such as Crohn's disease, cystic fibrosis, atherosclerosis,
rheumatoid arthritis, psoriasis or Kawasaki disease [247,291–297].
Overexpression of S100A12 was recently found in inflammation of
mammary tissue [298] as well as in inflamed gastric mucosa of
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Helicobacter pylori-infected children [299]. Interestingly, S100A12 was
also shown to promote neurite outgrowth of primary rat hippocampal
neurons through the activation of the MAPK pathway and phospho-
lipase C pathway [300]. The physiological relevance of this interaction
needs to be further clarified. At the molecular level, S100A12 interacts
with several metabolic enzymes including cytosolic NADP+-depen-
dent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldo-
lase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese
(GAPDH), annexin V, S100A9, and RAGE (Table 1) [301]. S100A12
was suggested to bind to the V-domain of RAGE (KD=90 nM) based
on competition experiments with AGE-BSA [69,80]. Later, binding
studies between a sRAGE-Fc fusion protein and S100A12 showed low
nanomolar affinity [20]. Recently Xie et al. suggested from fluores-
cence and NMR spectroscopy that S100A12 bound specifically with
the C1 domain of the receptor (Fig. 1), both in the presence and
absence of calcium, the interaction of apo-S100A12 with RAGE being
about 1000 times weaker than that in the presence of calcium form
[24]. In this study hexameric S100A12 was complexed with tetrameric
RAGE [24]. We used SPR to measure the interaction of S100A12 with
RAGE and our experiments revealed a submicromolar binding affinity
between tetrameric S100A12 and the V-domain (Table 2 and Fig. 3).
Further studies will be necessary to understand the discrepancies
between these studies.

4.11. S100A13

S100A13 was discovered by screening expressed sequence tag data
bases [302] and was later cloned, recombinantly expressed and
characterized at the protein level [303]. S100A13 binds two calcium
ions per subunit with strong cooperativity (KD1=8 μM and
KD2=400 μM). Besides calcium, S100A13 binds copper with micro-
molar affinity, independently from calcium [304]. S100A13 has been
found at the mRNA level in many tissues and organs including heart,
kidney, brain, ovary and spleen [302,303]. It was recently suggested to
be a marker of angiogenesis in human astrocytic gliomas [305] and to
play a role in lung cancer [306]. In vivo, S100A13 was identified as part
of a brain-derived heparin-binding multiprotein aggregate/complex
containing fibroblast growth factor 1 (FGF-1), suggesting a possible
interaction with FGF-1 (Table 1) [307]. This interaction was later
confirmed by quartz crystal microbalance [308]. S100A13 also interact
with copper binding C2A protein (KD=85 μM), suggesting a role as a
copper chaperon [304]. Binding to RAGE has been suggested from the
RAGE dependent translocation of S100A13 from the nucleus to the
cytoplasm in endothelial cells, in response to extracellular addition of
S100A13 [309]. More experiments will be necessary to support this
hypothesis. The interaction of S100A13 with RAGE at the molecular
level has not yet been studied.

4.12. S100P

S100P was first identified in placenta and later cloned, expressed
and characterized [310]. S100P binds two calcium ions with different
affinities: a low affinity binding site (KD=800 μM) and a high affinity
binding site (KD=1.6 μM) [310]. Besides placenta, S100P is expressed
in normal organs or cells including esophagus, stomach, duodenum,
large intestine, prostate and leukocytes [311,312] and plays a role in
cytokine-induced differentiation of human myeloid leukemia cells
[313]. S100P is also present in many tumors including ovarian,
pancreatic, gastric, colorectal, breast and prostate carcinomas
[312,314–316. S100P form a S100P/S100A1 heterodimer with high
affinity, both in vitro and in cultured cells [15]. It interacts with ezrin in
a calcium dependent manner [317] and has been suggested to play a
role in the transendotelial migration of tumor cells [318]. S100P was
also shown to interactwith S100PBPR, in a calciumdependentmanner,
and toplaya role in early pancreatic cancer [319]. The direct interaction
of S100P with RAGE was suggested from co-immunoprecipitation
experiments in NIH3T3, BxPC3 (pancreatic cancer) and SW480 (colon
cancer) cells [314,320,321]. In BxPC3 and SW480 cells, S100P was
shown to trigger the activation of NF-κB through theMAPK pathway in
a RAGE dependent manner [320,321].

5. Conclusion

A large number of S100 proteins have been shown to interact with
RAGE in vitro (S100B, S100A1, S100A2, S100A4, S100A5, S100A6,
S100A7, S100A8/A9, S100A11, S100A12, S100P). Moreover, in cell-
based assays, all these members, except for S100A2 and S100A5, have
been shown to trigger RAGE dependent signaling. However, the role of
S100/RAGE interaction in vivo appears to be very complex and so far
not all S100 proteins have been shown to trigger RAGE signaling in
animalmodels. Themolecularmechanisms of the interaction between
S100 proteins and RAGE are slowly getting unraveled. There is
experimental evidence that the S100 proteins might form sub-groups
which bind to different sites on RAGE. Indeed, whereas S100B appears
to bind strictly to the V-domain, S100A6 can interact with the V- and
C2-domain, and S100A12 with the V- and C1-domain. Furthermore,
several S100 proteins such as S100B, S100A4, S100A8/A9 and S100A12
also interact with RAGE in their oligomeric states. Interestingly, the
binding characteristics of the S100 proteins in the oligomeric states
are distinct from the corresponding dimers suggesting another level of
signal modification and regulation. The physiological significance of
these interactions has yet to be understood in greater detail. From the
RAGE perspective, carboxylated glycans might be a factor as well
modulating the interactions of certain S100 proteins with RAGE, as
shown with S100A8/A9. From the S100 perspective, the findings are
challenged by the recent identification of CML-modified S100 proteins
(S100A8/A9) as RAGE ligand. The many different findings on RAGE/
S100 interactions suggest that further variations will be found. In the
light of the different reported RAGE/S100 interactions it is essential to
establish standardized direct in vitro binding assays such as those
performed by surface plasmon resonance. The knowledge of these
binding affinities in combinationwith the knowledge of the structures
of the S100 proteins will provide valuable information on the nature
and location of critical surface residues involved in RAGE/S100
interaction. This analysis will help to deduce a more general scheme
of RAGE ligand recognition and binding. Future studies combining in
vitro and cell-based assays will be necessary to improve our under-
standing of RAGE activation.
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