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Extracellular matrix (ECM) proteins create structural frameworks in tissues such as bone, skin, tendon and
cartilage etc. These connective tissues play important roles in the development and homeostasis of organs.
Collagen is the most abundant ECM protein and represents one third of all proteins in humans. The biosyn-
thesis of ECM proteins occurs in the rough endoplasmic reticulum (rER). This review describes the current
understanding of the biosynthesis and folding of procollagens, which are the precursor molecules of colla-
gens, in the rER. Multiple folding enzymes and molecular chaperones are required for procollagen to establish
specific posttranslational modifications, and facilitate folding and transport to the cell surface. Thus, this
molecular ensemble in the rER contributes to ECM maturation and to the development and homeostasis of
tissues. Mutations in this ensemble are likely candidates for connective tissue disorders. This article is part
of a Special Issue entitled: Functional and structural diversity of endoplasmic reticulum.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Our structural framework consists of connective tissues such as bone,
skin, tendon and cartilage, which play crucial roles in development and
homeostasis. We call this framework the extracellular matrix (ECM)
and it is composed of structural proteins such as collagens, elastin,
fibrillins, laminins and many others. Proper maturation and remodeling
of the ECM is required for development and homeostasis. ECM proteins
are relatively large molecules compared to general globular proteins.
They are primarily biosynthesized in the rough endoplasmic reticulum
(rER) [1,2]. The specific biosynthetic processes of many ECM proteins
are poorly understood with the exception of type I procollagen biosyn-
thesis. Collagen is the most abundant protein and represents one third
of all proteins in humans. Procollagen is the biosynthetic precursormole-
cule of collagen. Procollagen biosynthesis and quality control take place
in the rER. Type I collagen is the major component of various structural
connective tissues and its biosynthesis is the best characterized out of
the twenty nine types of collagens [1,3]. The quality control of type I
procollagen synthesis is also performed in the rER. This overall process
can be imagined as a manufacturing process in a factory. Inside a factory,
a blueprint is used to produce a commodity by machinery composed of
many employees. The procollagen biosynthesis acts in a similar way:
procollagen biosynthesis in the rER (factory) requires a large number
onal and structural diversity of
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of proteins that act as posttranslational modifiers, folding enzymes or
molecular chaperones (employees).

Collagen has a relatively simple structure. The primary amino
acid sequence is composed of Gly-Xaa-Yaa repeats and this poly-
peptide chain, called the α chain, forms a left-handed polyproline
II-like helix. Three α chains align with a one residue stagger into a
right-handed superhelix (the triple helix). This structure is highly elon-
gated (300 nm × 1.5 nm for type I collagen) and glycine is packed tightly
at the center of the triple helix. All side chains of the Xaa and Yaa position
residues are exposed at the molecular surface, which is formed by the
three staggered polypeptide chains [1,3,4]. The foldingmachinery creates
type I procollagen in a highly efficient manner—it takes only approxi-
mately 10 and 30 min for the translation and folding in the rER and the
secretion to ECM, respectively, despite such an elongated shape with
numerous posttranslational modifications [5–8]. Procollagen bio-
synthesis related proteins in the rER interact with one another
and form an ‘ensemble’ to supply quality-controlled collagens to
the extracellular space. Improving our understanding of the struc-
ture and function of this ensemble will allow us to develop new
strategies and approaches for further characterization of collagen
structural properties as well as for diagnosis and treatment of
collagen-related defects and diseases.

This review focuses on two things: One is that the blueprint of the
procollagen folding machinery is drawn with an emphasis on several
open questions regarding these processes. Procollagen biosynthesis
and secretion in cells is a complicated process and this blueprint is a
useful approach to fully understand this process. The other is that differ-
ent views are provided for the understanding of the procollagen biosyn-
thesis machinery in the rER. The maximum efficiency and effectiveness
of thismachinerymay involve an appropriate rER environment, therefore
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several indirect elements which potentially influence this machinery are
shown in this part. Additionally, the correlation between procollagen
biosynthesis and the molecular ensemble is discussed from the view
point of mutations in this machinery.

2. Complexity of procollagen biosynthesis and secretion in cells

Osteogenesis Imperfecta (OI) is a connective tissue disorder which
is characterized by fragile bones with susceptibility to fracture from
minimal trauma. OI is usually inherited in an autosomal dominant pat-
tern and distinguished by seven subtypes in humans based on the un-
derlying genetic defects and phenotypic severity [9–11]. 90% of all
human OI cases are caused by structural defects in type I collagen due
to heterozygous mutations in the type I collagen genes, COL1A1 or
COL1A2 [9,10,12–14]. A new paradigm emerged in 2006. The report of a
humanmutation in cartilage associated protein (CRTAP) revealed a reces-
sive form of OI and CRTAP null mice showed osteochondrodysplasia due
to severe osteoporosis and decreased osteoid production [15]. CRTAP is a
rER resident protein and forms a tight multifunctional complex with
prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CypB) [15–17]. Since
2006, collagen biosynthesis-related proteins including these three mole-
cules have been identified as recessive genes that cause OI and other
collagen related diseases in addition to COL1A1 and COL1A2 mutations
[8,18–42].

The understanding of procollagen folding and quality controlmachin-
ery in the rER therefore requires more attention. Why is procollagen bio-
synthesis so complicated even though a collagen molecule has a rather
simple structure? Recently published reviews describe various aspects
of these complex processes and identify related proteins [1,43–45]. In
this section, unanswered questions particularly regarding biosynthesis
and secretion are addressed, including recent new findings. Some of
these questions are presently difficult to answer but require clarification
in the near future. This section contains two topics: 1) the blueprint of
the type I procollagen foldingmachinery in the rER, and 2) the openques-
tions of type I procollagenbiosynthesis and secretion. These parts are like-
ly to also be relevant to the biosynthesis and secretion of all other types of
collagens.

2.1. The blueprint of the type I procollagen folding machinery in the rER

Type I procollagen consists of two different polypeptide chains,
namely the proα1 and proα2 chain, which are translated from the
COL1A1 and COL1A2 gene, respectively. These chains are assembled
in a ratio of two proα1 to one proα2 chain. Newly synthesized type
I procollagen polypeptide chains extend to the luminal part of the
rER. Both of the proα1 and proα2 chain have three distinct do-
mains, an amino-terminal noncollagenous domain (N-propeptide and
N-telopeptide), a major collagenous region which is composed of 338
Gly-Xaa-Yaa repeats and a carboxyl-terminal noncollagenous domain
(C-telopeptide and C-propeptide).

2.1.1. Prior to triple helix formation
The triple helix characterizes the structure of collagen. Before this

structure can be formed, multiple steps are required to produce
procollagen molecules which function properly in the ECM.

2.1.1.1. Posttranslational modifications on unfolded collagen chains.
Hydroxylation occurs co-translationally by three distinct enzyme
families: Prolyl 4-hydroxylases (P4Hs), Prolyl 3-hydroxylases (P3Hs)
and Lysyl hydroxylases (LHs). These modifications can only occur on
unfolded chains (denatured procollagen) (Fig. 1a). These hydroxylases
belong to a Fe(II)- and 2-oxoglutarate-dependent dioxygenase family
and contain a dioxygenase domain. Ascorbic acid (vitamin C) is essen-
tial to return the iron to its oxidized state, especially for prolyl
4-hydroxylases, therefore ascorbic acid is crucial for procollagen bio-
synthesis [46–48]. P4Hs modify proline to 4-hydroxyproline (4Hyp) in
the Yaa position of Gly-Xaa-Yaa repeat and almost all prolines in the
Yaa position are 4-hydroxylated in vertebrates. This modification is
themost abundant posttranslationalmodification,which provides ther-
mal stability to the collagen triple helix [49–52].

On the other hand, prolyl 3-hydroxylation is a far less frequent event.
In type IV collagenwhich is reported as a highly 3-hydroxylated collagen,
4-hydroxylation levels reach close to 10% but 3-hydroxyproline (3Hyp)
contributes to less than 1% of the amino acid sequence [53–55]. P3Hs
hydroxylate proline to 3-hydroxyproline in the Xaa position of a
Gly-Xaa-4Hyp sequence, suggesting that 3-hydroxylation occurs after
4-hydroxylation (Fig. 1b) [53–56]. Additionally, the efficiency of this
modification is affected by the surrounding sequences of Gly-Xaa-
4Hyp [56]. This evidence indicates that substrate preferences may be
higher among P3Hs compared to P4Hs. The function of 3Hyp is poorly
understood. Mutations or defects in any component of the P3H1/
CRTAP/CypB complex result in an overmodification of procollagen dur-
ing its biosynthesis, which is mainly an increase in glycosylation of the
collagen molecule. Improper molecular packing of this overmodified
collagen may increase bone fragility, ultimately leading to OI [8,15,19].
3-Hydroxylation is possibly involved in the quality control of collagen
and may contribute to the binding with other ECM molecules such
as small leucine-rich proteoglycans and minor collagens like FACITs
(Fibril-Associated Collagens with Interrupted Triple helices).

LHs target some of the Yaa position lysine residues in Gly-Xaa-Lys
tripeptide units of the collagenous domain, as well as sequences
in both the N- and C-noncollagenous telopeptide regions (Fig. 1a).
This posttranslational modification allows the subsequent glycosyla-
tion of hydroxylysine. Hydroxylysines and O-linked glycosylation of
hydroxylysines within procollagen molecules ultimately are crucial
for the formation of intra- and inter-molecular crosslinks [57–60].

Interestingly, all hydroxylases have three different isoforms in
vertebrates, each of which have differences in tissue distribution, sub-
strate preference, additional functions and potential for complex
formation with other proteins. P4H exists as a 2:2 stoichiometric
heterotetramer. P4H is generally called the α subunit and exists as
three isoforms, namely α(I), α(II) and α(III). All α subunits require
a β subunit, known as Protein Disulfide Isomerase (PDI), to form an
enzymatically active complex [61]. PDI is a rER resident oxidoreduc-
tase and a molecular chaperone. The PDI β subunit is required to
maintain the solubility of the P4H α subunit and to keep the complex
within the rER [62]. This complex intermittently interactswith unfolded
procollagen chains and may keep them retained inside the cell when
hydroxylation is inhibited [63]. The three isoforms, α(I)2β2, α(II)2β2

and α(III)2β2 show different expression levels and patterns [64–68].
The P4H α(I)2β2 is the major expressed form [65]. The α(I) subunit
null mice exhibit embryonic lethality and basement membrane defects
caused by the loss of type IV collagen assembly [66]. The P4Hα(II)2β2 is
found in chondrocytes and capillary endothelial cells [65]. The P4H
α(III)2β2 has lower expression levels thanα(I) andα(II) [68]. Similarly,
it has been shown by northern blot analysis that P3H1, P3H2 and P3H3
have distinct tissue distributions [69]. P3H1 is mainly expressed in
fibrillar collagen rich tissues, whereas P3H2 is located in basement
membrane rich tissues such as kidney [56,69]. P3H3mRNA is abundant
in the brain but also shows a more general expression pattern [69].

P3H1 is the best characterized protein compared to the other
isoforms. P3H1 forms a tight complex with CRTAP and CypB in a 1:1:1
stoichiometry and this complex performs multifunctional roles during
procollagen biosynthesis such as general molecular chaperone, prolyl
hydroxylase and peptidyl–prolyl cis–trans isomerase (PPIase) [15–17].
The absence of any component of the P3H1/CRTAP/CypB complex
leads to OI [15,18–27]. Knock-outmice of P3H2 show embryonic lethal-
ity (Pokidysheva, E. unpublished data), and human mutation in P3H2
results in autosomal-recessive high-grade axial myopia [70]. Very little
is known about P3H3. It has been reported as being epigenetically
silenced in breast cancer together with P3H2 [71], and knock-out mice
of P3H3 are viable (Ishikawa, Y. unpublished data).



Fig. 1. Schematic illustration of the posttranslational modifications during biosynthesis of type I procollagen before triple helix formation. The newly synthesized proα chain ex-
tends to the luminal part of rER. a) Prolyl 4-hydroxylation and lysyl hydroxylation occur on the proα chain. b) The proα chain is prolyl 3-hydroxylated after prolyl
4-hydroxylation. c) Some of the hydroxylysine residues are glycosylated to galactosyl-hydroxylysine and glucosyl-galactosyl-hydroxylysine.
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LHs have three isoforms LH1, LH2 and LH3. LH2 has two splice
variants, the shorter form LH2a and the longer form LH2b [72]. More-
over, LHs have been suggested to form homodimers and be associated
with the rER membrane [73–77]. LH3 possesses not only lysyl hy-
droxylase activity but also hydroxylysyl galactosyltransferase and
galactosyl hydroxylysyl glucosyltransferase activities [78–82] al-
though the galactosyltransferase activity is marginal [83]. LHs also
show different tissue distributions which vary during the course of
mouse development [84–86]. LH1 is highly expressed at the embry-
onic developmental stage and the other two LHs are expressed
throughout embryonic and adult development. LH3 has a general tis-
sue distribution whereas LH2 shows more specific localization in
muscles and heart [84]. Additionally, the shorter form LH2a has a
more restricted distribution compared to the longer form LH2b in
humans [72]. The LH1 and LH3 null mice showed early postnatal
death and embryonic lethality, respectively [87,88]. LH1 null mice
demonstrated fibrillar collagen tissue defects such as altered aorta
and skin morphology. On the other hand, LH3 null mice showed af-
fected basement membranes caused by premature aggregation of
type IV collagen. The loss of both functions of LH3 must be crucial
for the basement membrane quality control. Mutations in LH2 result
in Bruck syndrome, an autosomal recessive connective tissue disor-
der, which affects a crosslink formation due to the lack of lysyl hy-
droxylations in the telopeptide [89,90].

The prolyl 3-hydroxylation is likely to occur following the prolyl
4-hydroxylation. On the other hand, the temporal order of prolyl
4-hydroxylation and lysyl hydroxylation is not clear. The luminal lo-
cation of P4Hs and the membrane association of LHs might be impor-
tant for efficient posttranslational modifications (Fig. 1a and b),
however further studies are required to shed more light on temporal
and spatial aspects of the procollagen hydroxylations. The major con-
clusion is that these three different hydroxylation events are crucial
for the formation of a functional triple helical structure.

2.1.1.2. O-linked sugar modification of hydroxylysine residues. Some
hydroxylysine residues are further modified with two different carbo-
hydrates, β-galactose and α-glucose. These modifications are catalyzed
by three transferases, GLT25D1 (glycosyltransferase 25 domain
containing 1), GLT25D2 [83,91,92] and LH3 (Fig. 1b and c) [79,80].
GLT25D1 and GLT25D2 are a soluble rER luminal and a transmembrane
protein, respectively. They function as galactosyltransferases [83]. LH3
acts as both a galactosyltransferase and a glucosyltransferase, but the
galactosyltransferase activity of LH3 is marginal [78,80,82,83]. The
studies of LH3 [81,88] suggests that the attachment of O-linked sugars
are biologically important for the (pro)collagen molecule, nevertheless
its function is still unknown. In vitro enzyme activity studies suggest
that this sugar attachment takes place on unfolded procollagen chains
[78,80,83], however there is no clear evidence to support this hypoth-
esis in vivo. Further studies are required to better understand this
procollagen maturation process.

2.1.1.3. N- and C-propeptide folding and chain selection. Folding of
both N- and C-propeptides, as well as the chain selection through the
C-propeptides, occurs before the initiation of the triple helix formation.
During the folding process of the propeptides, especially of the C-
propeptides, general rER resident molecular chaperones and folding
enzymes (BiP/Grp78, Grp94, PDI, calreticulin, calnexin and CypB) are
active players (Fig. 1c) [4,26,93–97]. Type I procollagen folding is sug-
gested to take place with the C-propeptides closely associated with
the rER membrane [98]. The C-propeptide attaches to it directly or in-
directly (Fig. 1c). This seems reasonable because two dimensional
diffusion on the rER membrane leads to a higher probability of three
different chains assembling together than a trimolecular reaction in
three dimensional space of the rER lumen. Disulfide bond formation,
peptidyl–prolyl cis–trans isomerization and N-linked glycosylation are
cooperatively involved in the folding of the C-propeptide with support
from a general chaperone [39,40].

Three properly folded C-propeptides assemble and form the nu-
cleus for the triple helix formation [99]. PDI has been reported as an
important enzyme/chaperone for proper chain selection because the
C-propeptide forms not only intrachain disulfide bonds but also
interchain disulfide bonds [95–97]. Recently, the crystal structure of
the C-propeptide of type III procollagen was solved, thereby answering
the long standing question about the disulfide bonding of eight
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cysteines [100]. PDI has been called a major disulfide catalyst during
procollagen biosynthesis. However, there aremore than 20 oxidoreduc-
tases (PDI family proteins) that reside in the rER [101]. ERp18 and
ERp46 might also be involved in the type III collagen C-propeptide
and type IV and VI procollagen folding [102]. The conclusion here is
that the folding of collagen propeptides (at least for fibrillar collagens)
is a crucial prerequisite for the next step, chain propagation. The
C-propeptides of theα1 andα2 chain of type I collagen contain a single
N-linked glycosylation site. This Asn-Ile-Thr sequence is highly con-
served among fibrillar procollagens (type I, II, III, V and XI) [103,104].
Mutagenesis studies of the α1 chain of type I procollagen showed that
unglycosylated α1 chains did not alter assembly, folding and secretion.
The sensitivity against C-propeptidase was slightly decreased. This
N-linked glycosylation may have a function for the maturation of type
I procollagen secreted from the rER [105].

2.1.2. Triple helix formation and chain maturation
After completion of the chain selection through the C-propeptides,

triple helix formation proceeds from the carboxyl-terminal nucleus
toward the amino-terminal end in a zipper-like fashion (Fig. 2a)
[106,107]. The collagenous sequence frequently contains proline res-
idues and the Yaa-position in the Gly-Xaa-Yaa repeats are often occu-
pied by 4-hydroxyproline. The imino acid proline is unique among
the amino acids because it has two different peptide bond conforma-
tions, the cis and trans forms, which have similar energies, however
all peptide bonds in the triple helix need to be in the trans conforma-
tion. While the initial peptide bond formed on the ribosome is likely
trans, cis bond formation does occur and was observed in nascent
α-chains (unfolded chain) of type I procollagen [108]. This suggests
that the unfolded procollagen chains have enough time to isomerize
prolines to their cis–trans equilibrium state. The rate-limiting step in
triple helix formation is the cis–trans isomerization of prolyl peptide
bonds and prevention of this isomerization results in a decreased
rate of procollagen folding [7,106,107,109–111].

Peptidyl prolyl cis–trans isomerases (PPIase) catalyze the conforma-
tional change from cis to trans prolyl peptide bonds. Three PPIase families
exist in the cell: cyclophilins, FK506 binding proteins (FKBP) and
parvulins. There are six FKBP family members and one member of the
Fig. 2. Schematic illustration of the triple helix and COPII vesicle formation of type I proc
membrane. b) The PPIases catalyze triple helix formation and c) the triple helix is stabilized
and e) the cytoplasmic proteins elongate this special COPII vesicle.
cyclophilin family present in the rER [43,112]. Cyclophilin B (CypB) has
been proposed as a major triple helical catalyst [7,110,111] and forms
complexes with many collagen related proteins in the rER such as PDI,
P3H1/CRTAP, calreticulin/calnexin, Hsp47 and LH1 [17,42,113–115].
CypB forms a tight complex with P3H1/CRTAP, but free CypB was also
shown to exist in sedimentation experiments of gelatin binding rER pro-
teins [15]. Equilibrium dissociation constants (Kd) were in the μM range
for PDI and the P-domain of calreticulin [42,115]. These weak interaction
networksmight bewidespread in the rERand further studies are required
to understand the function of CypB in these complexes.

FKBP13, 19, 22, 23, 60 and 65 are rER resident FKBP family proteins.
FKBP65has been characterized as a procollagen chaperone and as a pos-
sible elastin associated protein. FKBP65 was initially proposed to be a
tropoelastin chaperone [116] and later was identified as a procollagen
chaperone during biosynthesis and maturation [117,118]. FKBP65 con-
sists of four FKBP domains, similar to FKBP13, and possesses a rER reten-
tion signal. The PPIase activity of FKBP65 was marginally inhibited by
FK506, which is an inhibitor against the PPIase activity of FKBPs, and
did not exhibit significant enhancement of type III collagen refolding
in vitro [117]. However, FKBP65 functioned as a molecular chaperone
for type I and III collagen [118]. This protein prevents fibril formation
of type I collagen and provides an increase in the thermal stability of
type I and III collagen. These results suggest that FKBP65 interacts
with the triple helical structure and avoids premature association
between procollagen molecules in vivo.

Mutations of either PPIB (gene for CypB) or FKBP10 (gene for
FKBP65) lead to OI and mutations in FKBP10 are also related to Bruck
syndrome [18,24,32,33,37,38,119]. A recent publication suggests that
FKBP65 might be involved in the activity of LH2 to hydroxylate lysines
in the telopeptide region [37]. Recently it was shown that human
mutations in FKBP14 (gene for FKBP22) cause the kyphoscoliotic
type of Ehlers–Danlos syndrome and myopathy [120,121]. This type of
Ehlers–Danlos syndrome is characterized by severe muscle hypotonia
at birth, progressive kyphoscoliosis, marked skin hyperelasticity with
widened atrophic scars, and joint hypermobility. Deficiency in LH1
(PLOD1) also results in this type of Ehlers–Danlos syndrome
[122–124]. The FKBP22 protein is composed of one FKBP domain, two
calcium binding EF-hand domains and a rER retention signal at the
ollagen. a) The three posttranslationally modified α chains assemble near/at the rER
by the molecular chaperones. d) TANGO1 initiates the procollagen specific COPII vesicle

image of Fig.�2
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carboxyl terminal end [112]. Bacterial FKBP22 was studied by several
groups [125–127], however the function of human FKBP22 is not well
understood.

During the zipper-like triple helix formation of procollagen, there
is a junction between folded and unfolded chains. This junction is
likely to be unstable. The P3H1/CRTAP/CypB complex interacts with
both folded and unfolded chains and kinetic data showed that the
dissociation rate constant (kd) of this complex was faster than that
of the collagen specific molecular chaperone Hsp47 against folded
type I collagen [17]. The P3H1/CRTAP/CypB complex is therefore pro-
posed to be a molecular chaperone for this junction until Hsp47 and/
or FKBP65 further stabilize the newly formed triple helix (Fig. 2b and c).

Hsp47 is called a collagen specific molecular chaperone and is only
upregulated by heat shock stress in the rER [128,129]. Hsp47 belongs
to the serine protease inhibitor (SERPIN) superfamily but does not
possess protease inhibitory activity [130]. This protein recognizes
the triple helical form of collagen [131,132] and traverses from the
rER to the Golgi with procollagen [133]. Once Hsp47 reaches the
Golgi, it dissociates from procollagen and is thought to be captured
by its rER retention signal and recycled to the rER via COPI vesicles
in a pH dependent manner [134,135]. Recently the binding region of
Hsp47 to collagen was determined by the crystal structure and NMR
measurements with collagen model peptides [136,137]. Hsp47 was
shown to directly bind to folded type I, II, III, IV and V collagens by
surface plasmon resonance analysis [138]. The strongest affinity was
found for sequences with Thr/Pro-Gly-Xaa-Arg-Gly and at least one
of these sequences is present in all twenty nine types of collagens
[139–141]. Hsp47 knock-out mice show that embryonic lethality and
mutations in Hsp47 lead to OI in humans and dachshunds [29,30,142].
Therefore Hsp47 plays an important role in the quality control of folded
procollagens. If the cell recognizes aggregatingmisfolded collagens, the
unfolding protein response (UPR) is activated to eliminate them.

The ER associated degradation (ERAD) pathway has been shown to
be activated by procollagen aggregation of unfolded collagen chains,
whereas triple helical procollagen aggregates were taken up by the
autophagy mediated lysosomal degradation system [143]. Thus, it is
evident that the rER closely monitors procollagen structures for cell
protection, suggesting that procollagen quality control is highly sophis-
ticated. In conclusion, triple helical acceleration by PPIases and matura-
tion by triple helical chaperones are cooperative reactions ensuring that
the rER retains appropriate rates of folding.

2.1.3. Secretion—special COPII vesicle formation at ER exit sites
In mammalian cells, proteins synthesized in the rER traverse to

the Golgi apparatus, continuing through to the trans-Golgi network
(TGN), and finally to the ECM. They are packed into transport vesicles
to move from one compartment to another. The first step is from the
rER to the Golgi and these vesicles are called COPII vesicles [144].
COPII vesicles are approximately 60–80 nm diameters in size, and
move from the ER exit sites to the Golgi with loaded cargo molecules
[145,146]. Once at the cis-Golgi several models have been suggested
by which proteins can pass through the Golgi to TGN. These include
‘cisternal maturation’, ‘vesicular transport’ and ‘rapid partitioning’
[147–150]. Folded procollagen is highly elongated (300 nm × 1.5 nm
for type I collagen) and does not fit into classical COPII vesicles, thus a
special vesicle formation for collagen has been suggested [151,152].

Recently, a knockout mouse study of the transmembrane protein
TANGO1 showed that the lack of TANGO1 resulted in a defect in se-
cretion of various types of collagens, such as type I, II, III, IV, VII and
IX, and a delay of chondrocyte and bone maturation [153]. Cell biolo-
gy studies have suggested that the SH3 domain, which is located at
the N-terminus of TANGO1 and resides inside the rER, recognizes
type VII collagen and assists in the formation of collagen-like COPII
vesicles [154,155]. Special cargo formation may be triggered by the
binding of the SH3 domain of TANGO1 to procollagen molecules
(Fig. 2d). The cytoplasmic domain of TANGO1 then recruits
Sec13/31 and Sec23/24 to form extended COPII vesicles [156–159].
The regulation of these Sec proteins has been proposed to be an im-
portant factor for the formation of these extended COPII vesicles for
procollagen transport (Fig. 2e) [160–162]. The cytoplasmic protein
complex CUL3–KLHL12 regulates the size of expanding COPII vesicles
by monoubiquitylation of Sec31 in mouse ES cells (Fig. 2e) [163]. The
Sec13/sec31 are also suggested to form a suitably large cargo tubule
for procollagen transport by in vitro experiments [164], but this
mechanism of regulation is unknown. The ubiquitylation of Sec31
might be essential for procollagen trafficking to regulate and create
large cargo carriers.

Another important protein seems to be Sedlin, which controls the
GTPase Sar1 cycle and affects procollagen trafficking at the rER exit
site [165]. Results show that a knockdown of Sedlin specifically af-
fects procollagen secretion while total protein secretion was not sig-
nificantly changed [165]. A suggested model is that TANGO1 recruits
Sedlin, which promotes an efficient Sar1 cycle (Fig. 2e). Sar1 recruits
the COPII coat proteins at the rER exit site [166]. These recent studies
lead to the conclusion that procollagen transport requires protein–
protein interactions and signaling between the rER and the cytoplasm
to form special cargo vesicles.

The procollagen molecules are then finally secreted into ECM. It is
unclear at what stages a pre-fibril assembly of these molecules occurs.
It is likely that this assembly occurs in the post Golgi compartment
[151,167], but that this assembly is actively inhibited by Hsp47 and
other chaperones in the rER [17,118,135]. It is clear that for type VI
collagen the assembly into tetramers is an intracellular event [168].
For fibrillar collagens, the oxidation of lysine residues by lysyl oxi-
dases in preparation for cross linking and proteolytic cleavage of the
propeptides for efficient fibril formation are also required. These pro-
cesses still include various black boxes and further characterizations
of proteins that assist in the maturation of procollagen are necessary.

2.2. Open questions regarding procollagen biosynthesis

Collagen is themost abundant protein in the humanbody and there-
fore cells must use a large amount of energy for procollagen biosynthe-
sis. Although collagen has a relatively simple structure, procollagen/
collagen biosynthesis needs many rER resident proteins. This suggests
that cells must consume additional energy to maintain these collagen
related proteins. Additionally, the rER has a high protein concentration
whereby the total protein concentration in the compartment can reach
up to 100 mg/ml [169]. At least fifteen rER resident proteins are in-
volved in this complex protein synthesis. Their ensemble is closely or-
ganized and highly effective in managing this molecular crowding.
The studies of the functions of rER proteins and protein–protein interac-
tion networks are essential aspects for the understanding of this com-
plex event.

2.2.1. Maturation of proline: combination of modification
and isomerization

Proline and glycine are the most common amino acids in the
collagenous sequence. The posttranslational modifications of proline
residues have an important contribution to procollagen biosynthesis.
As described earlier, three different prolines exist in the collagenous
sequence: proline, 4-hydroxyproline and 3-hydroxyproline. The rate-
limiting step in triple helix formation is the cis–trans isomerization of
peptide bonds of proline residues. PPIases catalyze the conformational
change from the cis to trans peptide bond. There is one cyclophilin
and six FKBP family proteins in the rER. Therefore each proline in the
collagenous sequence has theoretically three variants and eight po-
tential isomerization possibilities (seven PPIases and uncatalyzed
isomerization). There is no information about substrate specificities
or preferences between proline types and PPIases. It is likely that
preferences of these PPIases exist and this would provide new in-
sight into the process of procollagen biosynthesis.
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2.2.2. Is CypB the major physiological catalyst during triple helix
formation?

Early in vitro [110] and fibroblast studies with cyclosporin A
which is an inhibitor of the PPIase activity of cyclophilins [7,111]
showed a clear catalytic effect due to inactivation of CypB activity. Re-
cently, the physiological role of CypB in collagen folding became
somewhat controversial. In vivo studies with CypB null mice [21]
and CypB null cells from recessive OI patients [18,26] questioned
the in vitro conclusion. In the null fibroblast experiments, the authors
concluded that the rate of folding must not be affected because the
collagen overmodifications were not observed [18]. Additionally in
the other study with null fibroblast experiments the hypothesis was
raised that CypB is more important for the rate of trimer formation
[26]. A likely resolution of the controversy against these null fibro-
blast experiments was presented from studies of a mutation in the
American Quarter Horse [42]. A homozygous mutation of a single
amino acid in horse CypB shows the same PPIase activity compared
to wild-type CypB in vitro. However, the rate of folding in horse fibro-
blasts is delayed without the presence of overmodified collagens.
These results were caused by an aberrant CypB–LH1 interaction
[42]. Mutations in CypB therefore have two effects: it reduces the
activity of LH1, and it also delays the rate of folding of the collagen tri-
ple helix. When FKBPs are inhibited by FK506 in fibroblasts, only a
minor delay in the rate of folding of type I collagen is observed [7].
The caveat is that FKBP65 is only partially inhibited by FK506, but
given that FKBP65 is still present in CypB null fibroblasts, CypB is
the major PPIase for collagen triple helix formation considered with
fibroblast studies [7,111]. Seven PPIases may partially compensate
each other for the lack of PPIase activity to maintain the rER homeosta-
sis during procollagen folding. CypB is not only the major PPIase for
collagen triple helix formation, but it is also involved in complex forma-
tion with other collagen related molecules [17,42,113–115]. Further
studies are required to define which function of CypB is crucial during
procollagen biosynthesis.

2.2.3. Is there a different posttranslational modification machinery in
fibrillar collagen producing cells?

Type I collagen is the most abundant type out of twenty-nine types
of collagen. It is present in fibrillar rich tissues such as tendon, skin and
bone. Differences in posttranslational modifications of pepsinized type I
collagen extracted from various tissues are observed by amino acid
analysis and mass spectrometry in spite of the same primary amino
acid sequences [8,42,170]. The amount of hydroxylysine in skin was
determined to be lower than in tendon. O-glycosylation was ob-
served to be lowest in bone compared to skin and tendon. Mass
spectrometry also showed the tissue specific distribution and extent
of prolyl 3-hydroxylation. Therefore collagens potentially have different
posttranslational profiles dependent on the source of tissue.

Most of the Yaa position lysine residues in Gly-Xaa-Yaa in type V, VI
and X collagens are hydroxylated and glycosylated, while only a few
residues are glycosylated in type I and III collagens [171–174]. Each tis-
sue requires a specific property of type I collagen and the biosynthesis
may adjust for the required effect. The main component of tendon is
type I collagen, but skin contains not only type I collagen but also type
III, V and IV collagens. For the strength required in bone, mineralization
of the collagen fibrils occurs.While the primary amino acid sequence in
collagen is composed of Gly-Xaa-Yaa repeats, the repertoire of post-
translational modifications allows for the generation of tissue specific
properties of collagens. This can be accomplished by cell specific expres-
sion of certain collagenmodifying proteins. For example,mRNAof P3H2
is abundant in basementmembrane rich organs such as kidney, sugges-
ting that P3H2 may be involved in type IV procollagen biosynthesis
and quality control [56,69]. LH1 is highly expressed at later embryogen-
esis stages thereby LH1 is possiblymore important for fibrillar collagens
given the fact that fibrillar collagen rich tissues develop rapidly at this
stage [72].
2.2.4. Can collagens be expressed recombinantly in vitro?
If human collagens could be recombinantly expressed and purified

on a large scale, there is great potential for these molecules to be ap-
plied in the field of medicine, for example, material for tissue engi-
neering and growth scaffold for stem cells and iPS cells. Various
approaches have been used to express recombinant procollagens in
several cell types since the early 90s (see review and the most recent
studies [175–178]). There are two major concepts for these studies: a
large scale preparation of fibrillar collagens and a characterization of
minor types of collagens. The former concept is for medical or bioma-
terial applications and the latter is for understanding their functions
because tissue extraction is extremely difficult and the biological rel-
evance of minor types of collagens is still poorly understood. For ex-
ample, the amount of type VII collagen is less than 0.001% in human
skin [179].

Twomajor expression systemswere used in these studies: mamma-
lian cell cultures and insect cell expression systems [175]. Human
Embryonic Kidney (HEK) 293 cells have been widely used to express
ECMmolecules because ECM proteins including collagens show low in-
trinsic expression in this mammalian cell [180]. However, almost all
cases require the co-expression of the P4H α and β subunits to obtain
proper secretion, thermal stability and sufficient amounts of recombi-
nant collagens. Moreover, incorrect chain selection and small amounts
of secreted collagen were reported when heterotrimeric collagens
were expressed [178,181,182]. In cancer cells, type I collagen is ob-
served as α1(I)3 homotrimers instead of α1(I)2α2(I) heterotrimers
[183,184]. Asmentioned, certain collagenmodifying proteins show spe-
cific expression patterns in cells thereby these distributions may allow
collagens to generate tissue specific properties. The content of lysyl hy-
droxylation and glycosylation was different in collagens expressed in
HEK 293 cells compared to those extracted from tissue. The HEK 293
cells also have a low expression level of Hsp47 [185].

Extractable collagens from tissue permit the evaluation of the qual-
ity of recombinant collagens, but given the difficulty of extraction of
minor types of collagens, the recombinant products are hard to evalu-
ate. To overcome these issues, further technical innovations and accu-
mulation of information about the correlation among collagen types,
cell types, and collagen biosynthesis related protein expressions are
required.

The biosynthesis of procollagens is a complicated process and a large
number of proteins are involved in this process. Despite significant
progress many questions remain, but the answers may contain a strat-
egy to developmedical or biomaterial applications and to treat collagen
related diseases.

3. Further characterization of the procollagen biosynthesis
machinery

Protein biosynthesis in the rER with maximum efficiency and effec-
tiveness may require at least two factors: 1) that the rER is structurally
and functionally optimized (indirect effects) and 2) that the biosynthe-
sis machinery performs properly (direct effects). In this section, we
show recent studies of the rER involved in procollagen biosynthesis
machinery.

3.1. The role of the rER environment on procollagen biosynthesis

Procollagen biosynthesis occurs in the rER. This compartment has
a defined environment: a certain pH, calcium content, redox potential
and membrane organization. Here we consider how this environment
affects procollagen biosynthesis and secretion.

3.1.1. Organization of rER membrane proteins
Procollagen folding is suggested to take place at the rER membrane

through either direct or indirect interactions [98], so the membrane or-
ganization is important for this process. P180 is a rERmembraneprotein
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and highly expressed in secretory tissues [186]. It was originally
reported as a ribosome binding receptor [187] and more recently
reported to regulate polysome assembly on the rER membrane [188].
The overexpression of P180 showed enhancement of protein secretion
including procollagen whereas the suppression of P180 negatively af-
fected procollagen biosynthesis and secretion [189,190]. Interestingly,
large ECM proteins like fibronectin are also affected by the depletion
of P180. In contrast, smaller ECM proteins such as TIMP-1 and MMP2
were secreted normally [189,190]. Two transmembrane proteins were
shown to be involved in type I procollagen biosynthesis and secretion
during bone formation. Osteopotentia is a rER membrane protein which
controls postnatal osteoblast maturation [191]. The lack of osteopotentia
results in the disruption of the rER ultrastructure and a defect in type I
procollagen biosynthesis. This also leads to a failure of bone remodeling
[191].

OASIS containing a transmembrane region is amember of the CREB/
ATF family [192]. This protein is highly expressed in osteoblasts. OASIS
null mice showed a decreased amount of type I collagen in their bone
matrix. Knockout osteoblast cells showed an abnormally elongated
shape of the rER and loss of type I collagen fibrils in culture [193].
Each of these three membrane proteins provides specific functions:
P180 is involved in polysome assembly, OASIS is identified as an ER
stress inducer and osteopotentia is involved in osteoblast maturation.
These proteins may not interact with procollagen directly but they do
affect the biosynthesis and secretion process. Nevertheless, all defects
in these transmembrane proteins lead to the failure of these processes
and show abnormal rER shapes. This suggests thatmembrane organiza-
tion is an essential parameter for proper procollagen biosynthesis and
secretion.

3.1.2. Calcium content in the rER
Many molecular chaperones and folding enzymes such as BiP/

Grp78, Grp94, PDI calreticulin and calnexin interact with calcium.
Such calcium binding by multiple resident rER proteins is proposed to
make the rER a high calcium storage compartment in the eukaryotic
cell [43,194]. FKBP65 contains two calcium binding EF-hand motifs
and calcium binding is known to provide stability for FKBP65 [195].
The crystal structure of the C-propeptide of type III procollagen shows
bound calcium suggesting that calcium is required for its folding pro-
cess [100]. The mineralization of collagen fibrils with calcium occurs
in thematrix to provide strength to collagen fibrils in bone. The calcium
concentration and/or flow in the rER might be distorted and indirectly
affect procollagen maturation.

Two trimeric intracellular cation-selective (TRIC) channel subtypes,
namely TRIC-A and TRIC-B, are known to act as intracellular calcium
modulators. These proteins are located in the sarco/endoplasmic reticu-
lum, containing three putativemembrane-spanning segments to form a
bullet-shaped homo-trimeric assembly [196,197]. Neonatal lethality is
observed in TRIC-B knock-out mice [196,197]. TRIC-B knock-out cells
showed compromised calcium handling [196], and just recently it was
shown that human mutations in TMEM38B (gene for TRIC-B) lead to
autosomal recessive OI [198]. This is a good example that either mem-
brane or calcium defects affect procollagen biosynthesis.

3.1.3. Redox condition in the rER
More than 20 PDI protein familymembers have been reported to exist

in the rER in addition to oxidases including Ero1α. PDI, a major oxidore-
ductase among the PDI family proteins, forms a heterotetramerwith P4H,
which is crucial during procollagen biosynthesis (see above). There are
redox networks and/or cascades which comprise multiple and multistep
electron transfer pathways for oxidation, isomerization and reduction to
maintain disulfide bonds of nascent proteins in the rER [199–202]. Sever-
al proteins involved in procollagen biosynthesis, as well as procollagen
itself, may also be part of these networks.

The redox environment in the rER is oxidative comparedwith that of
the cytosol, which promotes the formation of disulfide bonds in the
newly synthesized polypeptides for correct folding [203]. As previously
described, hydroxylation of proline residues at the third position of
Gly-Xaa-Yaa sequences of procollagen by P4H is a prerequisite for triple
helix formation. This reaction requires oxygen, α-ketoglutarate, iron
(II) and ascorbic acid. Molecular oxygen andα-ketoglutarate contribute
in the formation of a highly reactive Fe(IV) = O which mediates hy-
droxylation of proline residue. Ascorbic acid plays a crucial role as an
important co-factor to reduce the inactive iron (III) state to the active
iron (II) state in the dioxygenase domains of P4H [48,204–206]. In addi-
tion to the prolyl hydroxylation, the cysteines in the C-propeptides form
intra/interchain disulfides between proα1- and proα2-polypeptide
chains before triple helix formation.

This oxidation of cysteines is mediated by oxidative relays of elec-
trons such as between Ero1α and PDI. Recently it was shown that com-
bined loss-of-functionmutations in three rER thiol oxidases affected the
intracellular procollagen maturation [207]. The content of 4Hyp in the
tissue was decreased with abnormal connective tissue by the rER thiol
oxidases ERO1α, ERO1β and PRDX4 loss-of-function mutated in mice.
The authors concluded these defects were caused by depletion of
ascorbic acid and a noncanonical form of scurvy due to thiol oxidase
deficiency [207]. Thus the regulation and maintenance of the redox
environment is essential for procollagen biosynthesis.

Procollagen biosynthesis is basically performed with the help of a
wide variety of proteins as described. However, these proteins and
procollagen itself are influenced by the environment of the rER. The
rER environment will affect the folding of not only procollagen but
also that of procollagen related proteins. Defects that lead to a change
in the folding environment could lead to changes in the biosynthesis
of procollagens. It is therefore likely that mutations in these seeming-
ly unrelated proteins could cause diseases generally associated with
ECM proteins.
3.2. Disruption of the procollagen biosynthesis

As we described above, the biosynthesis of procollagen is a compli-
cated process and an ensemble of proteins is involved in this process.
A defective product can be produced by cells due to the errors in the
blueprint for the procollagen molecules themselves or the errors in
the blueprint of the machinery.
3.2.1. Mutations in procollages genes
Collagen genes have been identified as causes of a wide variety of

connective tissue disorders affecting almost all tissues and organs
[2,208,209]. Mutations in the genes of collagens can lead to nonsense
mediatedmRNA decay, reducing the amount of collagens being made,
or expression of faulty collagen chains. The procollagen folding ma-
chinery tries to deal with the faulty chains and a large number of pub-
lications describe adverse effects of such mutations [93,210–220]. The
cell has several possibilities to deal with such faulty collagen chains,
depending on the collagen and the nature of the mutation. Some of
these mutated chains are secreted into the ECM with structural de-
fects that can lead to an altered structure of the matrix. Others acti-
vate the unfolded protein response (UPR) by the accumulation of
misfolded proteins inside the rER. In caseswhere this ER stress response
fails, proteins need to be degraded [2,221]. From studies with Hsp47 it
became clear that cells deal with these faulty procollagen molecules
using two strategies. If the faulty collagenmolecules accumulate before
the formation of the triple helix, the ER associated degradation (ERAD)
pathway is used for elimination from the rER. On the other hand, once
the triple helix is formed, but the folded procollagens accumulate in
the rER, procollagens are taken up by the autophagymediated lysosom-
al degradation system [143]. As we described in the section of the rER
environment, there will be additional molecules/machineries in the
rER that assist the procollagen foldingmachinery in cases of malfunction.
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3.2.2. Mutations in genes encoding proteins of the procollagen folding
machinery

Each protein of the folding machinery has a certain function in this
molecular ensemble during biosynthesis and secretion. The absence
of one member of this ensemble leads to a malfunction of the machin-
ery. Results from studies of recessive Osteogenesis Imperfecta (OI)
illustrate these malfunctions. Five genes LEPRE1, CRTAP, PPIB, FKBP10
and SERPINH1 have been reported as recessive OI genes which encode
for proteins in the ensemble [8,18–42]. The absence of P3H1 and
CRTAP leads to similar changes in the type I collagen molecules:
there is a lack of 3 hydroxylation at Pro986 of the α1 chain and an in-
crease in glycosylation of both collagen chains. The type I procollagen
shows a slower rate of folding and secretion and a slightly higher
melting temperature [19,20,22,23,25,27,28,34]. The absence of CypB
has already been discussed in Section 2.2.2. The absence of FKBP65
and Hsp47 has a different effect on type I procollagen. A lower ther-
mal stability is observed with no changes in 3-hydroxylation or glyco-
sylation. However, a slower rate of secretion was found [30,31,35].
One explanation for these differences is that the P3H1/CRTAP/CypB
complex is involved in processes on the unfolded procollagen chains,
whereas Hsp47 and FKBP65 preferentially interact with triple helical
procollagen. Recently a humanmutation in FKBP14 (gene for FKBP22)
was identified as a causal gene for Ehlers–Danlos syndrome [120].
Human mutations in type III and V collagen genes result in Ehlers–
Danlos syndrome [2,209]. The specific function of FKBP22 in the rER
and its relation to procollagen biosynthesis is still unclear, but it
seems likely that this protein is involved in the biosynthesis of type III
and/or V collagen instead of type I collagen. Further studies are required
to verify that collagen type specific proteins belong to the ensemble.

It is interesting to note that the phenotype of recessive OI is
established in humans, and that null mouse models of these proteins
show disturbances in other tissues as well [222–231].

3.2.3. Why do certain mutations lead to Osteogensis Imperfecta, Bruck
syndrome or Ehlers–Danlos syndrome?

In the previous section recessive OI was used to correlate the absence
of proteins of the folding machinery with defects in the procollagen
molecule. There are defects in the folding machinery that leads to other
related connective tissue disorders, Bruck syndrome and Ehlers–Danlos
syndrome. These molecules are lysylhydroxylases 1 and 2 (LH1 and
LH2). LH1 modifies lysine residues in the triple helical region and
LH2 modifies lysine residues in the telopeptides. A deficiency in LH1
(PLOD1) was shown to result in Ehlers–Danlos syndrome [122–124].
On the other hand, mutation in LH2 leads to Bruck syndrome [89,90].
This suggests that the difference of a missing hydroxylysine in the triple
helix or telopeptides defines the direction of these diseases. FKBP65
may interact with LH2 and amutation in FKBP65 also causes Bruck syn-
drome [33,37,39,119]. This is another indication that the absence of
functionally interacting proteinsmay cause related but different pheno-
types, depending on what part of the machinery is affected.

The genetics of recessive OI and other diseases have provided impor-
tant clues to additional components of this complex biosynthesismachin-
ery. These include the transcription factor OSX (encodes Osterix) [232],
the collagen binding protein SERPINF1 (encodes pigment epithelium-
derived factor) [233,234], the osteoblast-specific small transmembrane
protein IFITM5 [235–237], the cation channel TMEM38B [198] and the
procollagen type I C-propeptidase BMP1 [238]. The exact mechanisms
why the absence of these molecules leads to OI need to be established.
However it is remarkable that in humans most of these mutations result
in a bone phenotype, given the assumption that the collagen folding
machinery is used by all types of collagens.

4. Conclusion

ECMmaturation is essential for the development and homeostasis of
tissues. Collagen plays a crucial role in this context. Procollagen/collagen
biosynthesis is a complicated process, and numerous folding enzymes
and molecular chaperones are involved despite the relatively simple
structure of collagen. Although there are already many steps inside the
cell, procollagen is further processed after secretion. These steps are the
C- and N-propeptide cleavages, cross linking and fibril formations.
These steps are essential to transform procollagen to collagen, which is
then capable of forming stable fibrils or other mature ECM structures.

Most cases of connective tissue disorders are caused by ECM protein
deficiency. In many cases a genotype–phenotype correlation is difficult
to establish from the observed phenotype of ECM molecules. The ma-
chinery proteins in the rER are potential candidates for these situations
because defects in blueprints for the ECM molecules themselves and
their folding machinery can affect the final structure and function. As
we described, procollagens are biosynthesized in the rER requiring
manyproteins and steps to become functional. In thismolecular ensem-
ble, the lack of even one elementmay lead to aberrantmolecules, which
could result in diseases. This suggests that rER proteins are indirectly
involved in the development and homeostasis of tissues. Characteriza-
tion of procollagen biosynthesis and also ECM proteins inside the rER
may provide new insight to understand the mechanism of the connec-
tive tissue disorders and offer new targets for drug development.
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