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Abstract

The paper examines the equilibrium stability problem for a simple class of elastic space trusses in the shape of a reg-
ular pyramid. Joints located at the vertices of the base polygon are fixed while the joint at the apex is subjected to a
proportionally increasing load acting in either the vertical direction, in the horizontal plane, or along a generic oblique
direction. Exact closed-form solutions are derived for each load condition under the common hypotheses of linear
material law, small or moderate axial deformation in bars and large nodal displacements. Despite their seeming sim-
plicity, these mechanical systems exhibit a wide variety of post-critical responses, not exhausted by the classical snap-
ping and bifurcation phenomena. In addition to regular primary and secondary branches, the equilibrium paths may
include neutral branches, namely branches entirely composed of bifurcation or limit points. Besides their immediate
theoretical interest, these branches are particularly difficult to handle by the standard numerical procedures of non-lin-
ear analysis, so the given solutions may represent severe benchmark tests.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The shallow symmetric two-bar planar truss depicted in Fig. 1a, subjected to a vertical load at its top
joint, is no doubt the most popular example of a structural system where snap-through is the prevailing
form of instability. It is currently associated to the name of von Mises (1923, 1925), who first used this mod-
el to explore kinds of structural instability more general than Euler�s buckling of a single bar. However, it
would be unfair to relate this scheme to the snap-through phenomenon only. In fact, as clearly highlighted
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(a) (b)

Fig. 1. The two-bar planar truss: (a) symmetric case, (b) general case.
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by Pecknold et al. (1985), significant changes in the structural response can be obtained by introducing
some slight modifications to the static scheme or to the load pattern. Thus, for instance, if the height to
base ratio of the truss, H/B, is increased (and the hypothesis of symmetry is released), the two-bar planar
truss may exhibit a bifurcation instability. Moreover, if a linear elastic spring is placed along the symmetry
axis, then a strain-hardening behaviour emerges in the post-critical response, but, if a perturbing horizontal
load is added to the vertical one, then bifurcation points change into (more or less sharp) turning points.
The latter result is not surprising, if we consider that the horizontal load is to all intents an imperfection in
the sense of Koiter (1976). In this case, the symmetry of the model is lost, and its post-critical behaviour
becomes a combination of those exhibited by the perfect system when a vertical load or a horizontal
one acts separately. When a geometrical imperfection is considered, the equilibrium path is composed of
primary and secondary branches not connected to each other (for the closed-form solution of the asymmet-
ric two-bar truss of Fig. 1b, see Ligarò and Valvo, 1999). Finally, further modifications to the original
scheme were independently introduced by Crisfield (1991) and by Bazant and Cedolin (1991) to reproduce
more involved types of structural instabilities such as snap-back.

Unlike the two-dimensional case, when dealing with stability problems of space structures, the lack of
closed-form solutions, even in cases of particularly simple spatial systems, constitutes a serious gap, so that,
recourse to numerical procedures of non-linear analysis, notwithstanding their degree of sophistication, al-
ways remains accompanied by a halo of uncertainty.

This paper is concerned with the large displacement analysis of a class of elastic space trusses in the
shape of a regular pyramid. These structures represent the simplest three-dimensional generalisation of
the �perfect� two-bar system mentioned above. Pyramidal trusses possess an immediate practical interest
since they are currently used in many present-day civil constructions, either as main parts or as minor ele-
ments. For instance, if the number n of the composing bars is 3, we find a common tripod-like structure
loaded on its upper joint. For n = 4 and a large height to base ratio, the truss may represent the cap of
a mast or, if the load acts transversally, the extremity of a three-dimensional cantilever beam or of the
jib of a tower crane. Finally, for n = 5 or n = 6 and a small height to base ratio, the truss may schematise
a molecule of a single-layer geodesic dome or of a generic-shaped reticulated shell.

The paper is organised as follows: in Section 2, a complete description of the mechanical model and the
system of loads is given. Assuming the latter to be conservative, the governing set of the non-linear equi-
librium equations is obtained by recourse to the principle of stationary total potential energy. Section 3
analyses the conditions for the existence of stable equilibrium configurations. Regions of the coordinate
space associated with stable equilibrium states are determined and conditions are discussed for which bifur-
cation and/or snapping instability may occur. Section 4 is dedicated to the search for those configurations
where the system is in equilibrium in absence of any applied load. As a result, kinematic paths and states of
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self-stress are determined at the same time. Knowledge of the above configurations is of great importance in
stability analysis, since they constitute points of obligatory passage for the equilibrium paths associated
with any reference load vector. In Section 5, the non-linear equilibrium problem is solved with reference
to three different loading conditions: first, we consider a proportional vertical load acting on the top joint,
then we analyse the case of a horizontal load and, finally, we consider a load acting along a generic oblique
direction. The analytical expressions of the equilibrium paths (primary and complementary branches) are
given in closed-form for all the aforementioned cases. Finally, some concluding remarks are given in
Section 6.
2. Formulation of the problem

Let us consider a space truss made of n P 3 identical elastic bars, which in the reference configuration C0

are placed along the lateral edges of a regular pyramid (Fig. 2a). Let H be the height of the pyramid, B the
radius of the circle C which circumscribes the base polygon and L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 þ B2

p
the length of the bars.

The apex joint is assumed to be free to move and subjected to a load kp, where k 2 (�1, +1) is a real
multiplier and p = [px, py, pz]

T is a reference load vector (the superscript T denotes the transposition). Joints
located at the base vertices, identified in counter-clockwise order by the integers 1,2, . . . ,n, are fixed at rest.
All joints behave as ideal frictionless hinges, so bars are subjected to axial forces only.

The bars are made of a homogenous and isotropic linearly elastic material. Let E denote the Young�s
modulus and A the cross-sectional area. Bars are identified by the same labels of the base joints to which
they are connected. We assume that the Euler load of each bar is so large that the bars never buckle.

In the three-dimensional space of the model, two interchangeable coordinate systems are introduced.
First, we consider the rectangular Cartesian coordinate system {O, x, y, z} with the origin O at the centre
(a) (b)

Fig. 2. The pyramidal truss: (a) reference configuration C0, (b) current configuration C.
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of the base polygon, such that the z-axis contains the height of the pyramid and the apex has a positive
coordinate, and the x-axis passes through joint 1. Further, a cylindrical coordinate system {O, r, h, z} is
introduced according to the transformation
½r; h; z�T ¼ ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
; arctanðy=xÞ; z�T; ð1Þ
where r 2 [0, +1), h 2 [0, 2p) and z 2 (�1, +1). In what follows, we will call �horizontal� those vectors
(forces, displacements and so on) which are parallel to the xy-plane, and �vertical� those parallel to the
z-axis.

With the above assumptions, the position vector of the apex joint in the reference configuration C0 is
X ¼ ½X ; Y ; Z�T ¼ ½0; 0;H �T; ð2Þ
while the position vectors of the base joints are
Xi ¼ ½X i; Y i; Zi�T ¼ ½B cos Hi;B sin Hi; 0�T; i ¼ 1; 2; . . . ; n; ð3Þ
where
Hi ¼ 2p
i� 1

n
; i ¼ 1; 2; . . . ; n ð4Þ
is the angle between the position vector Xi and the x-axis.
After deformation, the structure reaches a variable configuration C (Fig. 2b), in which the position vec-

tors of the base joints
xi ¼ Xi; i ¼ 1; 2; . . . ; n ð5Þ

remain unchanged, while the apex joint reaches the new position
x ¼ ½x; y; z�T ¼ ½r cos h; r sin h; z�T ¼ Xþ u; ð6Þ

where
u ¼ ½u; v;w�T ¼ x� X ¼ ½r cos h; r sin h; z� H �T ð7Þ

is the displacement vector. Each variable configuration is determined by the knowledge of the position of
the apex joint, so the coordinates r, h and z play the role of the Lagrangian coordinates of the system.

As measures of deformation and stress in the bars, we adopt the Green–Lagrange strain tensor and the
work-conjugate second Piola–Kirchhoff stress tensor, respectively. Thus, the axial components of strain are
ei ¼
l2

i � L2

2L2
; i ¼ 1; 2; . . . ; n; ð8Þ
where
l2
i ¼ ðx� xiÞTðx� xiÞ ¼ r2 � 2rB cosðh� hiÞ þ B2 þ z2; i ¼ 1; 2; . . . ; n ð9Þ
are the squares of the bar lengths in the configuration C, while the axial components of stress are
ri ¼ Eei; i ¼ 1; 2; . . . ; n. ð10Þ
The strain energy of the system, W, is the sum of the contributions
W i ¼
1

2
EALe2

i ; i ¼ 1; 2; . . . ; n ð11Þ
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relative to the n bars. By substituting (8) and (9) in (11), and carrying out the summation, we obtain
W ðr; h; zÞ ¼
Xn

i¼1

W i ¼
1

2
EAL

Xn

i¼1

e2
i ¼

nEA

8L3
½ðr2 þ z2 � H 2Þ2 þ 2B2r2� ¼ W ðr; zÞ; ð12Þ
which, rather unexpectedly, turns out to be a function of the r and z coordinates only. As a consequence,
the geometric n-fold rotational symmetry of the initial configuration turns into an axial symmetry for the
structural problem. Thus, apart from possible asymmetries introduced by a non-axisymmetric applied load,
we expect the elastic response of the system to be independent of the coordinate h.

As the load
kp ¼ k½px; py ; pz�
T ¼ k½pr cos hp; pr sin hp; pz�

T ð13Þ
does not depend upon C, it is conservative, so we can define the load potential energy
V ðk; r; h; zÞ ¼ �kpTu ¼ �kðpxr cos hþ pyr sin hþ pzzÞ þ kpzH . ð14Þ
By summing the contributions (12) and (14), we obtain the total potential energy of the system
Pðk; r; h; zÞ ¼ W ðr; zÞ þ V ðk; r; h; zÞ. ð15Þ

The stationary conditions for P with respect to the Lagrangian coordinates,
fr ¼
oP
or
¼ nEA

2L3
rðr2 þ z2 � H 2 þ B2Þ � kpr cosðh� hpÞ ¼ 0;

fh ¼
1

r
oP
oh
¼ kpr sinðh� hpÞ ¼ 0;

fz ¼
oP
oz
¼ nEA

2L3
zðr2 þ z2 � H 2Þ � kpz ¼ 0

8>>>>>>><
>>>>>>>:

ð16Þ
constitute the governing set of non-linear equations whose solutions are the equilibrium configurations of
the system for variable k. In the four-dimensional space spanned by k and by the Lagrangian coordinates, r,
h, and z, the solutions of (16) constitute a set of points, referred to as the equilibrium path of the system. The
geometrical properties of the path are strictly related to the mechanical response of the structure under the
assigned load condition (see, in particular, Sewell, 1966; Wempner, 1971).
3. Stability analysis

3.1. Neutral equilibrium surfaces

Before going to present the solutions of (16), we want to discuss the conditions for which the equilibrium
state of the system in the configuration C is stable. To this aim, the Hessian matrix K of P needs to be eval-
uated in the considered configuration. As is well known, the equilibrium is stable if K is positive definite,
neutrally stable if K is positive semi-definite, and unstable if K is indefinite. In the first case, all eigenvalues
of the Hessian matrix are positive; in the second case, only one eigenvalue is zero while the remaining are
positive; finally, in the third case, at least one eigenvalue is negative.

On the equilibrium paths, configurations of neutrally stable equilibrium correspond to critical points,
which in turn may be either limit points, where the load parameter k is stationary, or bifurcation points,
where the tangent to the path is no longer unique due to the presence of one or more intersecting secondary
branches (single or multiple bifurcation) (see, for instance, Sewell, 1968; Thompson and Hunt, 1984). Since
the mechanical behaviour of the system differs greatly in each of the aforementioned situations, a deeper
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investigation about the nature of the criticality is essential. This task requires the eigenvectors of K to be
determined as well.

By further differentiation of (16) we obtain
K ¼

frr frh frz

fhr fhh fhz

fzr fzh fzz

2
664

3
775 ¼ nEA

2L3

3r2 þ z2 � H 2 þ B2 0 2rz

0 r2 þ z2 � H 2 þ B2 0

2rz 0 r2 þ 3z2 � H 2

2
664

3
775. ð17Þ
The load potential energy V is linear with respect to the displacement u, so the Hessian matrix does not
depend on the applied load; consequently, if any region exists in the coordinate space associated to stable
equilibrium states, this will be independent of the load. From (17) we see that K does not depend on the
coordinate h, so the regions of stable equilibrium are axisymmetric about the z-axis; moreover, since the
substitution of +z with �z does not alter the sign of (17), the stability regions are symmetric with respect
to the xy-plane as well.

By solving the characteristic equation, det(K � xI) = 0, where I is the identity matrix, the eigenvalues of
K are determined as
x1 ¼
nEA

2L3
2r2 þ 2z2 � H 2 þ B2

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2 þ B2

2

� �2

þ 4r2z2

s2
4

3
5; ð18aÞ

x2 ¼
nEA

2L3
ðr2 þ z2 � H 2 þ B2Þ; ð18bÞ

x3 ¼
nEA

2L3
2r2 þ 2z2 � H 2 þ B2

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � z2 þ B2

2

� �2

þ 4r2z2

s2
4

3
5. ð18cÞ
By setting x1 = 0 in (18a), x2 = 0 in (18b) and x3 = 0 in (18c), respectively, we obtain the equations:
ðX1Þ z ¼ �z1ðrÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H 2

3
� B2

2
� r2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2

3
� B2

2

� �2

þ 2B2r2

3

svuut
; ð19aÞ

ðX2Þ z ¼ �z2ðrÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2 � r2

p
; ð19bÞ

ðX3Þ z ¼ �z3ðrÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H 2

3
� B2

2
� r2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2

3
� B2

2

� �2

þ 2B2r2

3

svuut
; ð19cÞ
which in the xyz-space represent three closed surfaces. As expected, these are surfaces of revolution about
the z-axis and symmetrical with respect to the xy-plane. The configurations where the apex joint of the pyr-
amid lies upon one of the above surfaces are of neutrally stable equilibrium; therefore, we will term X1, X2

and X3 the neutral equilibrium surfaces. In passing, we note how the above surfaces depend uniquely upon
the characteristic lengths of the model.

The surface X1 separates the xyz-space into two parts. The inner part, denoted by X�1 , contains the origin
O and represents the set of points where the eigenvalue x1 assumes negative values, while the outer com-
plementary part, denoted by Xþ1 , is the locus of points where x1 is strictly positive. By setting z = 0 in (19a)
and solving for r, we obtain the value of the equatorial radius of X1, R1 = H; conversely, by putting r = 0 in
(19a) and solving for z, we find the distance Z1 = z1(0) between the origin O and the poles, Pþ1 and P�1 ,
where the surface X1 intersects the positive and negative sides of the z-axis, respectively:
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Z1 ¼ z1ð0Þ ¼
H=

ffiffiffi
3
p

if H < H 0;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

if H P H 0.

(
ð20Þ
In (20), H 0 ¼
ffiffiffiffiffiffiffiffi
3=2

p
B is a particular value of the height of the truss, whose physical meaning will soon be-

come evident. In both cases given by (20), R1 > Z1, so the surface X1 appears to be �squeezed� along the axis
of revolution, like an oblate spheroid.

The surfaces X2 and X3 are real if and only if H P B, but for H = B both the surfaces shrink to the origin
O. The surface X2 is manifestly the sphere with centre at the origin O and radius R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

< R1, so
that the distance between its poles, Pþ2 and P�2 , and the origin is simply
Z2 ¼ z2ð0Þ ¼ R2. ð21Þ
The equatorial radius of X3 is R3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH 2 � B2Þ=3

q
¼ R2=

ffiffiffi
3
p

< R2 < R1, while the distance between its
poles, Pþ3 and P�3 , and the origin is
Z3 ¼ z3ð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

if H < H 0;

H=
ffiffiffi
3
p

if H P H 0.

(
ð22Þ
In both cases of (22), R3 < Z3, so the surface X3 appears to be �pulled� along its axis of revolution, like a
prolate spheroid. As before, we indicate with X�2 and X�3 , respectively, the regions of the coordinate space
where the eigenvalues x2 and x3 assume negative values, and with Xþ2 and Xþ3 their complementary parts.

Fig. 3a and b show the meridians of the neutral equilibrium surfaces in the rz-plane for the values
B = 100 cm, H 0 ¼

ffiffiffiffiffiffiffiffi
3=2

p
B � 122:474 cm and two different values of the height H.

By keeping B fixed and changing H, the neutral equilibrium surfaces X1 and X3 assume a continuous
sequence of different shapes, which in the extreme cases are very similar to an apple-shaped ellipsoid
and to a spindle-shaped ellipsoid, respectively. Fig. 4a–d show a cutaway view of the neutral equilibrium
surfaces for increasing values of H.

It is quite simple to verify that X�3 � X�2 . More precisely, if H < H0 the surface X3 is internally tangent to
the sphere X2 at the poles (Pþ2 � Pþ3 and P�2 � P�3 ), while if H > H0 the two surfaces have no common
points. In the first case, two eigenvalues vanish simultaneously at the points of tangency; these will corre-
spond to two double critical points. Likewise, we may verify that X�2 � X�1 . In particular, if H < H0 the
sphere X2 is entirely enclosed within the region X�1 , while if H > H0 the sphere X2 is internally tangent
to surface X3 at the poles (Pþ1 � Pþ2 and P�1 � P�2 ); these, due to the simultaneous vanishing of two eigen-
values, will be related to two double critical points. When the height of the pyramid is H = H0, the three
surfaces of neutral equilibrium, X1, X2 and X3, are tangent to each other at their poles (Pþ1 � Pþ2 � Pþ3 and
P�1 � P�2 � P�3 ), where they possess a common horizontal tangent plane; since here three eigenvalues vanish
simultaneously, the points of tangency will correspond to two triple critical points. All in all, based upon the
last observations, H0 can be quite rightly defined the critical height of the pyramid.

In conclusion, the region of the xyz-space where all the eigenvalues assume positive values, Xþ1 , is the
stability region, where equilibrium of the system is always stable. The points where the equilibrium path
will intersect the surface X1 will correspond to the first critical load, while the intersections of the path with
the surfaces X2 and X3 will correspond to critical points of higher order. Consequently, x1 is the minimum
eigenvalue which need to be monitored to prevent any possible instability phenomenon.

3.2. Eigenvectors corresponding to zero eigenvalues

In order to establish a distinction between bifurcation and limit points, the eigenvectors corresponding
to zero eigenvalues need to be determined. The eigenvector ak = [akr, akh, akz]

T paired to the eigenvalue xk,
given by each of (18a,b,c), for k = 1,2,3, is obtained by solving the set of linear equations
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Fig. 3. The meridians of the neutral equilibrium surfaces: (a) H = 110 cm < H0, (b) H = 140 cm > H0.
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ðK� xkIÞak ¼ 0 ð23Þ
together with the normality condition
a2
kr þ a2

kh þ a2
kz ¼ 1. ð24Þ
If xk = 0, the equation set (23) becomes
½3r2 þ z2
kðrÞ � H 2 þ B2�akr þ 2rzkðrÞakz ¼ 0;

½r2 þ z2
kðrÞ � H 2 þ B2�akh ¼ 0;

2rzkðrÞakr þ ½r2 þ 3z2
kðrÞ � H 2�akz ¼ 0;

8>><
>>: ð25Þ
where zk(r) is given by (19a) or (19b) or, finally, (19c). Thus, the three eigenvectors result



Fig. 4. The neutral equilibrium surfaces: (a) H = 90 cm < B = 100 cm, (b) B < H = 100 cm < H0, (c) H = H0 � 122.474 cm, (d)
H = 140 cm > H0.
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ða1Þ

a1r ¼ �
r2 þ 3z2

1ðrÞ � H 2

2rz1ðrÞ
a1z;

a1h ¼ 0;

a1z ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2 þ 3z2
1ðrÞ � H 2

2rz1ðrÞ

� �2
s ;

8>>>>>>>><
>>>>>>>>:

ð26aÞ
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ða2Þ
a2r ¼ 0;

a2h ¼ 1;

a2z ¼ 0;

8><
>: ð26bÞ

ða3Þ

a3r ¼ �
r2 þ 3z2

3ðrÞ � H 2

2rz3ðrÞ
a3z;

a3h ¼ 0;

a3z ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r2 þ 3z2
3ðrÞ � H 2

2rz3ðrÞ

� �2
s .

8>>>>>>>><
>>>>>>>>:

ð26cÞ
In the xyz-space, a2 is a unit vector acting in the circumferential direction, that is, a2 is always tangent to
the parallels of the sphere X2. On the contrary, a1 and a3 are unit vectors lying on the planes h = const. The
components of a1 and a3 are functions of the radius r alone. If r = 0, the expressions (26a) and (26c) are not
defined. In these cases, carrying out the limits for r! 0, we obtain
a1rjr¼0 ¼ 0;

a1hjr¼0 ¼ 0; if H < H 0;

a1zjr¼0 ¼ 1;

8><
>: or

a1rjr¼0 ¼ �1;

a1hjr¼0 ¼ 0; if H > H 0;

a1zjr¼0 ¼ 0;

8><
>: ð27a; bÞ
and
a3rjr¼0 ¼ 1;

a3hjr¼0 ¼ 0; if H < H 0;

a3zjr¼0 ¼ 0;

8><
>: or

a3rjr¼0 ¼ 0;

a3hjr¼0 ¼ 0; if H > H 0.

a3zjr¼0 ¼ 1.

8><
>: ð28a; bÞ
In the intermediate case, H = H0, the three eigenvalues vanish simultaneously at r = 0, so that any triplet
of mutually orthogonal unit vectors may be assumed as the eigenvectors.

Eqs. (26a) and (26c) are also undefined for r = R1 and r = R3, respectively. Carrying out the limits for
r! R1 and r! R3, we find the expressions
a1rjr¼R1
¼ 0;

a1hjr¼R1
¼ 0;

a1zjr¼R1
¼ 1;

8>><
>>: and

a3rjr¼R3
¼ 1;

a3hjr¼R3
¼ 0;

a3zjr¼R3
¼ 0.

8>><
>>: ð29a; bÞ
Fig. 5 shows a plot of the eigenvectors a1 and a3 in the rz-plane, together with the meridians of the cor-
responding neutral equilibrium surfaces. The remaining eigenvector a2 is not shown because it is perpendic-
ular to the representation plane. The same numerical values of the previous figures were used.
3.3. Scalar products and post-critical behaviour

When a single eigenvalue, say xk, vanishes, then a distinct critical point has been reached along the equi-
librium path (Thompson and Hunt, 1984; Kouhia and Mikkola, 1989); however, in order to decide what
kind of instability will actually take place, the scalar product Vk = pTak, between the reference load vector
p and the corresponding eigenvector ak, needs to be evaluated. In fact, if Vk 5 0, the load parameter k is
locally stationary: the critical point is a limit point and loss of stability occurs by snap-through. Instead, if
Vk = 0, the tangent to the path is no longer unique: the critical point is a bifurcation point and instability
manifests itself as buckling.



(a) (b)

Fig. 5. Eigenvectors corresponding to zero eigenvalues: (a) H = 110 cm < H0, (b) H = 140 cm < H0.

S.S. Ligarò, P.S. Valvo / International Journal of Solids and Structures 43 (2006) 4867–4887 4877
For the structural problem under consideration, the scalar products relative to the three eigenvalues
result
V 1 ¼ pTa1 ¼ pra1r cosðh� hpÞ þ pza1z; ð30aÞ

V 2 ¼ pTa2 ¼ �pr sinðh� hpÞ; ð30bÞ

V 3 ¼ pTa3 ¼ pra3r cosðh� hpÞ þ pza3z. ð30cÞ
In particular, since x1 is the minimum eigenvalue, the first scalar product (30a) is the one to be evaluated
to decide what kind of instability is associated to the first critical load. More generally, as previously no-
ticed, there are some points of the xyz-space where two or three eigenvalues may vanish simultaneously.
These correspond to compound critical points (Kouhia and Mikkola, 1999). The post-critical behaviour
of the structure in these points becomes more involved: both forms of instability may coexist and interact.
Accordingly, all the above scalar products need to be considered.
4. Self-equilibrated load-free configurations

In this brief section, we search for those configurations of the pyramidal truss where an equilibrium state
may take place in absence of applied loads, irrespective of the state of stress in the bars. The knowledge of
these configurations is of great importance in stability analysis, since they constitute points of obligatory
passage for the equilibrium paths. In the coordinate space, these load-free equilibrium configurations
may correspond either to isolated points or even to curves, the latter representing finite mechanisms
(Kumar and Pellegrino, 2000; Tarnai, 2003).

By putting k = 0 in (15), the total potential energy P of the system reduces to the strain energy func-
tion W; therefore, to decide about the quality of the equilibrium, namely stable or not, it is sufficient
again to examine the sign of the Hessian matrix K of P, here still given by (17), and the sign of its
eigenvalues.
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The load-free configurations can immediately be determined by solving the equation set (16), where we
let k = 0. Thus, we find four solutions:
r ¼ 0;

z ¼ H ;

(
r ¼ 0;

z ¼ �H ;

(
ð31a; bÞ

r ¼ 0;

z ¼ 0;

�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

¼ R2;

z ¼ 0

(
ð31c; dÞ
whose mechanical meaning is made clear by recalling the definition of the neutral equilibrium surfaces.
In the xyz-space, these solutions represent three isolated points and a closed curve (Fig. 6). In particular,

solutions (31a) and (31b) correspond to the reference configuration, C0, and to its symmetric, �C0, relative
to the xy-plane, respectively. Both points belong to the stability region Xþ1 . At these configurations, the to-
tal potential energy P attains a local minimum, so the equilibrium is stable, but, since W = 0, the bars are
stress-free. Solution (31c) represents the origin O of the coordinate system, which belongs to the region X�3 .
At O, P attains a local maximum, so the equilibrium is unstable, but, since W > 0, now the bars are
stressed. Finally, solution (31d) represents the circle C2 of the xy-plane with its centre at O and radius
R2, namely the equatorial circle of the neutral equilibrium surface X2; this circle is composed of real points
if and only if H P B. All points of this circle are saddle points for P; moreover, since W > 0, the bars are
stressed. These configurations are no doubt globally unstable, but, at a deeper investigation, one can easily
verify that, if each degree of freedom could be activated individually, then the equilibrium would be stable
with respect to the r-coordinate, unstable with respect to z, and neutral with respect to h. Finally, it is an
easy task to recognise how these load-free equilibrium configurations correspond to cases where the pyra-
mid as a whole is flattened in the xy-plane, while the apex joint runs along C2 in the absence of external
loads.
Fig. 6. Self-equilibrated load-free configurations.



S.S. Ligarò, P.S. Valvo / International Journal of Solids and Structures 43 (2006) 4867–4887 4879
5. Equilibrium paths

In this section, we solve the set of the equilibrium equations (16) for three relevant loading conditions.
To better understand the mechanical behaviour of the structure in each case, we give a graphical represen-
tation of the obtained solutions. Strictly speaking, the equilibrium paths should be plotted in the four-
dimensional space spanned by the load multiplier, k, and the Lagrangian coordinates, r, h, and z. However,
we consider appropriate to give also the plots of the paths in the three-dimensional space of x, y, z, where
the curves are immediately identified with the trajectories of the apex joint. For a better understanding, the
pyramidal truss in its reference configuration will be reproduced in the following figures as well.

5.1. Vertical load

The first load condition is characterised by
pr ¼ 0 and pz 6¼ 0. ð32a; bÞ

Since the load does not break the rotational symmetry of the system, we expect the solution to be inde-

pendent of the angle h. Actually, the second equation of (16) turns out to be identically satisfied, while h
disappears from the remaining equations. The solution of the equilibrium equations consists of the two
following groups of expressions
k ¼ 1

2

1

pz

nEA

L3
zðz2 � H 2Þ;

r ¼ 0;

h ¼ undef.;

z 2 ð�1;þ1Þ;

8>>>>>>><
>>>>>>>:

or

k ¼ � 1

2

1

pz

nEA

L3
B2z;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2 � z2
p

;

h 2 ½0; 2pÞ;

z 2 ½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

�.

8>>>>>>>><
>>>>>>>>:

ð33a; bÞ
Eq. (33a) define the primary branch of the path, which in the xyz-space is plotted as a straight line coin-
cident with the z-axis. Eq. (33b) represent a sphere perfectly fitting in the neutral equilibrium surface X2.
Any curve of this sphere is a feasible sequence of equilibrated configurations. However, considering the
direction of the applied load, we may distinguish, for each value of h, a secondary branch coincident with
a meridian and, for each value of z, a tertiary branch represented by a parallel. Therefore, the surface X2

contains an infinite number of secondary branches (the meridians), and an infinite number of tertiary
branches (the parallels).

In Fig. 7 several projections and views of the equilibrium path are given for the following numerical val-
ues: n = 6, B = 100 cm, H = 130 cm, EA = 20000 N, pz = �100 N. The continuous curve represents the pri-
mary branch, while the dashed curve is the secondary one. We also notice that the surface (33b), which is a
sphere in the xyz-space (Fig. 7a–c), appears as an ellipse when plotted in the rzk-space (Fig. 7d–f).

Provided that H P B, the primary branch intersects the three neutral equilibrium surfaces at their poles.
Since four of these points are in pairs coincident, we obtain four critical points in all, that is two simple limit
points, L1 and L2:
k ¼ � 1

3
ffiffiffi
3
p 1

pz

nEA

L3
H 3;

r ¼ 0;

h ¼ undef.;

z ¼ Hffiffiffi
3
p ;

8>>>>>>><
>>>>>>>:

k ¼ 1

3
ffiffiffi
3
p 1

pz

nEA

L3
H 3;

r ¼ 0;

h ¼ undef.;

z ¼ � Hffiffiffi
3
p

8>>>>>>><
>>>>>>>:

ð34a; bÞ



Fig. 7. Equilibrium path of the pyramidal truss subjected to a vertical load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rzk-space, (e) projection on the zk-plane, (f) projection on the rk-plane.
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and two double bifurcation points, B1 and B2:
k ¼ � 1

2

1

pz

nEA

L3
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2

p
;

r ¼ 0;

h ¼ undef.;

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

;

8>>>>><
>>>>>:

k ¼ 1

2

1

pz

nEA

L3
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2

p
;

r ¼ 0;

h ¼ undef.;

z ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

.

8>>>>><
>>>>>:

ð35a; bÞ
When the primary branch is travelled starting from the reference configuration, C0, the limit point precedes
the bifurcation if H < H0, while it follows if H > H0. If H = H0, these critical points coincide at a triple critical

point, namely we obtain a hill-top multiple branching point (Thompson and Hunt, 1984). Finally, we observe
the interesting feature that the positions in xyz-space of the above critical points depend only on the values of
the characteristic lengths B and H, neither on the load nor on the elastic properties of the bars.

Most numerical path-tracing procedures would encounter serious difficulties in finding the tangent vec-
tors to the secondary branches at the bifurcation points, as well as in attempting to trace any curve lying on
the sphere, which is made up completely of bifurcation points.

5.2. Horizontal load

The second loading condition is characterised by
pr 6¼ 0 and pz ¼ 0. ð36a; bÞ

Now the applied load breaks the rotational symmetry of the system, so the solution is expected to

depend on the angle h. Actually, the complete solution of the equilibrium equation (16) is given by the
following four groups of expressions
k ¼ 1

2

1

pr

nEA

L3
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � z2

p
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � z2
p

;

h ¼ hp;

z 2 ½�H ;H �;

8>>>>>><
>>>>>>:

or

k ¼ � 1

2

1

pr

nEA

L3
B2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � z2

p
;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � z2
p

;

h ¼ hp þ p;

z 2 ½�H ;H �;

8>>>>>><
>>>>>>:

or ð37a; bÞ

k ¼ 1

2

1

pr

nEA

L3
rðr2 � H 2 þ B2Þ;

r 2 ½0;þ1Þ;
h ¼ hp;

z ¼ 0

8>>>>><
>>>>>:

or

k ¼ � 1

2

1

pr

nEA

L3
rðr2 � H 2 þ B2Þ;

r 2 ½0;þ1Þ;
h ¼ hp þ p;

z ¼ 0;

8>>>>><
>>>>>:

ð37c; dÞ
In xyz-space, the four parts of the solution (37) lie in the vertical plane containing the z-axis and the
direction of the reference load vector. In particular, (37a,b) represent a circle with its centre at the origin
O and radius H, which constitutes the primary branch of the equilibrium path; instead, (37c,d) represent
a straight line of the xy-plane, which constitutes the secondary branch. Both branches are always present,
regardless of the height of the truss. In addition, if H P B, a tertiary branch, represented by the circle C2,
given by (31d), completes the equilibrium path; the remaining load-free equilibrium configurations (31a,b,c)
are already included in solution (37). Fig. 8 shows several projections and views of the equilibrium path
obtained for the same numerical values considered before, except for the load which is now pr = 150 N,
with hp = 75�. Again, the continuous curve represents the primary branch, the dashed curve is the second-
ary one, and the dotted curve is the tertiary branch.



Fig. 8. Equilibrium path of the pyramidal truss subjected to a horizontal load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rzk-space, (e) projection on the zk-plane, (f) projection on the rk-plane.
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S.S. Ligarò, P.S. Valvo / International Journal of Solids and Structures 43 (2006) 4867–4887 4883
Critical points are detected at the intersections between the path and the neutral equilibrium surfaces. In
particular, the primary branch intersects the surface X1, at two bifurcation points, B1 and B4:
k ¼ 1

2

1

pr

nEA

L3
B2H ;

r ¼ H ;

h ¼ hp;

z ¼ 0;

8>>>>>>><
>>>>>>>:

k ¼ � 1

2

1

pr

nEA

L3
B2H ;

r ¼ H ;

h ¼ hp þ p;

z ¼ 0;

8>>>>>>><
>>>>>>>:

ð38a; bÞ
where it meets the secondary branch; moreover, if H P B, the secondary branch also intersects the surface
X2 at two further bifurcation points, B2 and B3:
k ¼ 0;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

;

h ¼ hp;

z ¼ 0;

8>>>>><
>>>>>:

k ¼ 0;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H 2 � B2
p

;

h ¼ hp þ p;

z ¼ 0;

8>>>>><
>>>>>:

ð39a; bÞ
where it meets the tertiary branch; finally, the secondary branch intersects the surface X3 at two limit points,
L1 and L2:
k ¼ � 1

3
ffiffiffi
3
p 1

pz

nEA

L3
ðH 2 � B2Þ3=2

;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH 2 � B2Þ=3

q
;

h ¼ hp;

z ¼ 0;

8>>>>>>>><
>>>>>>>>:

k ¼ 1

3
ffiffiffi
3
p 1

pz

nEA

L3
ðH 2 � B2Þ3=2

;

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðH 2 � B2Þ=3

q
;

h ¼ hp þ p;

z ¼ 0.

8>>>>>>>><
>>>>>>>>:

ð40a; bÞ
The tertiary branch belongs entirely to the surface of neutral equilibrium X2, so it is totally composed of
critical points. Considering that V2 5 0, from (30b), these should be classified as limit points. Actually, k is
stationary along this branch since it is zero thoroughly.

5.3. Oblique load

Finally, we consider the general loading condition
pr 6¼ 0 and pz 6¼ 0. ð41a; bÞ
To discuss this case, we introduce the ratio
l ¼ pz

pr

ð42Þ
between the vertical and the radial components of the reference load vector, p. Thus, when jlj � 1 we have
the case of a horizontal load with a small disturbing vertical load; vice versa, when j1/lj � 1, this load con-
dition represents the case of a vertical load with a small disturbing radial load.

Due to the breakage of the axial symmetry, the solution is again expected to be dependent on the angle h.
Actually, the equilibrium equation (16) lead to the following solution



Fig. 9. Equilibrium path of the pyramidal truss subjected to an oblique load: (a) projection on the xz-plane, (b) projection on the xy-
plane, (c) view in the xyz-space, (d) view in the rzk-space, (e) projection on the zk-plane, (f) projection on the rk-plane.
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k ¼ 1

2

1

pr

nEA

L3
rðr2 þ z2 � H 2 þ B2Þ;

r 2 ½0;þ1Þ;
h ¼ hp;

z ¼ roots ½z3 � lrz2 � ðH 2 � r2Þzþ lrðH 2 � B2 � r2Þ�;

8>>>>><
>>>>>:

or ð43aÞ

k ¼ � 1

2

1

pr

nEA

L3
rðr2 þ z2 � H 2 þ B2Þ;

r 2 ½0;þ1Þ;
h ¼ hp þ p;

z ¼ roots ½z3 þ lrz2 � ðH 2 � r2Þz� lrðH 2 � B2 � r2Þ�;

8>>>>><
>>>>>:

ð43bÞ
where �roots� denotes the zeroes of the cubical polynomial in parentheses.
In xyz-space, (43a) and (43b) represent the primary branch of the equilibrium path, a unique curve lying

in the vertical plane containing the z-axis and the direction of the reference load vector. The two expressions
that compose the solution correspond to the two arcs of the curve lying in the half-planes h = hp and
h = hp + p, respectively, which are opposite with respect to the origin O. The path passes through the
load-free equilibrium configurations (31a,b,c). Furthermore, if H P B, the equilibrium path is completed
by a secondary branch given by the circle C2. Some projections and views of the equilibrium path are plotted
in Fig. 9, using the same numerical values considered before. The load is pr = 10 N, pz = �100 N, with
hp = 75�. The continuous curve represents the primary branch, while the dashed curve is the secondary one.

As in the previous cases, critical points are found at the intersections between the path and the neutral
equilibrium surfaces. After some elementary algebra, we arrive at the following bi-quartic equation
r8 þ b3r6 þ b2r4 þ b1r2 þ b0 ¼ 0; ð44Þ

where
b0 ¼
ðH 2 � B2ÞH 6

3ðl2 þ 1Þ2
;

b1 ¼ �
4ðl2 þ 2ÞH 6 � 4ð4l2 þ 1ÞH 4B2 þ 21l2H 2B4 � 9l2B6

4ðl2 þ 1Þ2
;

b2 ¼
4ð3l2 þ 4ÞH 4 � 4ð12l2 þ 1ÞH 2B2 þ 39l2B4

4ðl2 þ 1Þ2
;

b3 ¼ �
10ðl2 þ 1ÞH 2 � ð33l2 þ 1ÞB2

3ðl2 þ 1Þ2
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð45Þ
whose solutions furnish the r-coordinates of the requested critical points.
By discarding the physically meaningless imaginary solutions, we find that the primary branch intersects

each of the neutral equilibrium surfaces in two points, thus giving rise to six critical points in all. The pri-
mary branch intersects the surface X1 at the limit points L1 and L4, the surface X2 at the bifurcation points
B1 and B2, and, finally, the surface X3 at the limit points L2 and L3.
6. Conclusions

The equilibrium stability problem for a wide class of elastic space trusses in the shape of a regular
pyramid was posed. By assuming the joints to behave as ideal hinges and using the common hypotheses
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of large nodal displacements, small or moderate deformation in bars and linear elastic material behaviour, a
simple analytical model was formulated. Since these structures constitute the simplest three-dimensional
generalisation of the planar von Mises truss, the aim of the analysis was that of verifying if a similar rich-
ness of post-critical responses could be observed also for the space model. The governing set of non-linear
equilibrium equations was obtained by recourse to the principle of stationary total potential energy. The
study of the conditions for stable equilibrium states led to the definition of three surfaces such that, when
the top joint lies on them, the truss is in a state of neutral equilibrium. Regions of the coordinate space
associated to stable equilibrium states were determined and the expressions of the eigenvectors associated
to zero eigenvalues were derived, so the conditions for which bifurcation and/or snapping instability occur
could be discussed. Furthermore, the configurations of the system where a state of equilibrium may take
place in the absence of applied loads were analysed. Knowledge of the above configurations assumes a great
importance in stability analysis, since they constitute points of obligatory passage for the equilibrium paths,
irrespective of the reference load vector. The non-linear equilibrium problem was solved with reference to
three different loading conditions. First, we considered a proportional vertical load acting on the top joint;
then we analysed the case of a horizontal load; finally, we considered a load acting along a generic oblique
direction. In each case, the presence of single or multiple critical points along the primary path, or along a
complementary branch, was clearly identified; a deeper investigation was necessary to define the nature of
each critical point and to establish the order they follow along the path. Complementary branches were also
detected, where present.

Just as suspected, the solutions obtained confirm the great variety of the possible post-critical responses
of the examined class of space trusses. Besides the well-known cases of primary and secondary branches,
variously intersecting each other, very interesting cases of neutral equilibrium branches came out. The nat-
ure of these curves, entirely composed of critical points, was revealed. In particular, in the case of a vertical
load, we found secondary branches made up entirely of bifurcation points, which together with the tertiary
branches were able to generate a surface. Analogously, in the remaining two loading cases, we determined a
complementary branch made up of limit points, where the load was identically zero. In our opinion, these
branches result particularly hard to detect and trace by the standard numerical procedures of non-linear
analysis, for which the given solutions may represent severe benchmark tests.
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