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Abstract-Implicit timestepping schemes and the Nonlinear Galerkin (NG) algorithms are com- 
petitors for integrating on the slow manifold, that is, for computing solutions when the timestep- 
limiting high frequencies are physically unimportant and most of the energy is in low frequency flow. 
We show that implicit schemes are always at least as accurate as the lowest nontrivial NG method, 
and can be made superior to even high order NG schemes by shortening the time step. 

1. INTRODUCTION: MULTIPLE TIME SCALES 

The spectral discretization of a PDE reduces it to a system of coupled ODES of the form 

ak,t + iwkak = fk, (1.1) 

where ak(t) is the k th Fourier or normal mode coefficient, Wk(t) is the frequency of the kth mode, 

and d(t) is the lath component of the sum of the nonlinear terms and the external forcing [I], and 

subscript t denotes time differentiation. Examples, with the spectral basis {exp(ilcz)}, include 

the Korteweg-deVries (KdV) equation, for which w = -k3, and Burgers’ equation, for which 

w = -ik2. 

The numerical challenge is that (1.1) is often very “stiff.” That is, the time scale for some wave 

modes, l/Wk, is very short. If the high frequency variability is physically important, then one 

needs a very small, 0( l/w,,, ) time step to resolve it, where w,,, is the frequency of that mode 

which has the highest frequency in the truncated spectral basis. 

Often, however, the high frequency variability is irrelevant. Numerical weather forecasting is a 

good example. The forecast equations allow high frequency gravity waves, but daily observations 

are too sparse to allow accurate prediction of these waves, which fortunately have very little 

energy. The low frequency motion, the Rossby waves, has most of the energy and can be forecast 

accurately. Therefore, the goal of forecasting is not to model flows in all possible points of the 

gravity-and-Rossby phase space, but only to predict motion on the so-called “slow manifold” 

which consists of pure Rossby motion [2]. 

In many other physics and engineering situations, one is also interested only in the “slow 

manifold.” An explicit time-marching scheme then requires one to use a time step which is orders 

of magnitude shorter than needed to resolve the slow flow. The standard remedy is to use an 

implicit scheme, such as the Crank-Nicholson method, which is stable for an arbitrarily large time 
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step r. One can then tailor the time step to the slow flow, and not to the physically uninteresting 

high frequency motion. 

In the last five years, there have been more than twenty papers written on an alternative 

family of algorithms collectively known as the “Nonlinear Galerkin” (NG) method. Although 

independently rediscovered in the late 80’s [3,4], the method was first employed by Daley [5] 

eight years earlier. He compared the lowest order NG method with what it is now the standard 

scheme for weather forecasting-explicit treatment of the nonlinear terms, Crank-Nicholson for 

the linear terms-in integrations of a multilevel, spherical harmonics forecasting code initialized 

with operational meteorological data. 

To his great surprise, Daley found that the Nonlinear Galerkin method, although just as 

accurate and efficient as the semi-implicit scheme, was no better. This surprised him because 

the semi-implicit method is just a brute-force timestepping algorithm, applicable to fast motions, 

slow motions and everything in between as long as the time step is sufficiently short to resolve 

the important time scales. In contrast, the NG method is tuned to the slow manifold; it has no 

meaning or accuracy for flows in which the timestep-limiting high frequencies are important. 

To explain the surprising effectiveness of the semi-implicit scheme, we shall analytically com- 

pute the slow manifolds generated by Nonlinear Galerkin methods of various orders and by various 

implicit schemes for the simple problem 

iut + iwu = f(&t), (1.2) 

where in order to have both fast and slow time scales, we shall assume E < w. This is simply 

one component of the general system (1.1). For the discretization of the Navier-Stokes equations 

and/or the primitive equations of forecasting, f(st) depends on all the other spectral coefficients, 

but for the fast modes, this dependence is very weak and is in any event irrelevant to the derivation 

of the NG method. 

2. THE METHOD OF MULTIPLE TIMES AND THE NONLINEAR 
GALERKIN ALGORITHMS 

The NG schemes are derived by applying the singular perturbation scheme known as the 

“Method of Multiple Scales.” The slow manifold of (1.2) is that particular solution which varies 

only on the same slow 0(1/s) time scale as the forcing, f(d). Therefore, on the slow manifold, 

the time derivative is 0(&/w) smaller than the other two terms in the equation. Continuing this 

reasoning gives the Baer-Tribbia series [6] 

where T is the slow time variable, T z it. This formally applies to the system (l.l), also, 

provided we subscript both u and f with mode numbers. Whenever the series converges or is 

summable, (2.1) may be taken as the definition of the slow manifold. 

The NG schemes of various orders m are defined to be the result of replacing the ODES for 
the fast modes by m terms of the multiple scales series (2.1). We shall denote the mth order as 

NG(m). For completeness, NG(0) will indicate total disregard of the fast modes, or equivalently, a 
standard Galerkin approximation which is truncated to the slow modes only. (The cutoff between 

fast and slow modes is somewhat arbitrary except that the slow modes have w N O(e), whereas 
the fast modes have frequencies w > E.) In the later NG papers [7], w is always imaginary, but 
the algorithm is the same (and equally effective) whether w is real or complex. 

The lowest nontrivial approximation is 

u_fo 
CiWJ 

[NG(l); “diagnostic approximation”] (2.2) 
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This has a special role because it is the only nontrivial NG scheme which does not require 

computing a time derivative of f. Computing $& for the Navier-Stokes equations is messy 

because f is actually a nonlinear term, the projection of the nonlinearity onto the fast mode. 

Consquently, Daley [5] and most NG papers have used only NG(l). 

All the NG schemes, however, convert the differential system (1.1) into a mixed differential- 

algebraic system: differential equations for the slow modes, and algebraic relations which are the 

mth order truncation of (2.1) for the fast modes. Since all the surviving differential equations 

have w N O(E), it follows that a time step r such that ET N O(l)-that is, a time step just short 

enough to resolve the slow 0(1/s) time scale of the slow manifold-is stable. It follows that 

NG(m) schemes are direct competitors for integrating (1.1) or (1.2), left as a purely differential 

equation system, by an implicit method with T N 0(1/s). 

3. SLOW MANIFOLDS FOR THE MODEL PROBLEM 

For the special case of (1.2) that the forcing is sinusoidal, i.e., 

ut + iwu = exp(iat), (3.1) 

it is possible to compute the slow manifold explicitly both for the differential equation and its 

implicit time discretization, which has the form 

-iiiDu + u = &, (3.2) 

where 6 = l/( wr and D is the difference operator [8]. For the Backwards-Euler (BE scheme), ) 

D u FE u(t) - u(t - T), and for the Crank-Nicholson (CN) scheme, D is the BE operator multiplied 

by the inverse of the averaging operator. Assuming 6 << 1, as true of all practical applications of 

implicit methods, we can apply the method of multiple scales to (3.2) just as to the equivalent 

diferential equation (1.2). Exponential functions are eigenfunctions of both the time derivative 

and of the difference operators, making it possible to sum the Baer-Tribbia series in closed form 

to obtain: 

(3.3) 

Q exact = (1 +:/w), (3.4) 

QBE = (1 - i[l - exp;-&)]/(w/r)i’ 

QCN = {1+ 2 tan;~r),(wr)~7 

QNG(m) = (1 - (-E/W)“) 
{lfE/W} ’ 

(3.5a) 

(3.5b) 

(3.6) 

where the NG(m) scheme is the result of taking the first m terms in the power series expansion 

of Qexact in powers of E. 

4. ANALYSIS 

The errors in the NG and implicit schemes are 

E = Rexp(iEt)s 

iw2 ’ 

RNG(m) = (i)“-‘, 

(4.1) 

(4.2) 
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Figure 1. Maximum pointwise errors in approximating the slow manifold of $ + iwu = exp(ieT), 
plotted versus the product of E with 7. The errors in the NG schemes are independent of T, and 
are thus shown as horizontal lines. 

RBE = y, (4.3a) 

R ..A$ (4.3b) 

In words, the implicit schemes are all as accurate as 0(&/w), that is, as accurate as Daley’s 

“diagnostic scheme,” NG( l), with proportionality constants that become arbitrarily small as 

7 =S 0. 

Figure 1 compares the errors for various timesteps 7. The NG(m) schemes, which are inde- 

pendent of T, are horizontal lines. For this value of E/W (= l/10), increasing m by 1 reduces the 

error by a factor of 10. Nevertheless, even for ET = l-that is, just 27r timesteps to resolve one 

full period of the slow manifold-both implicit schemes are much better than NG(l), and the 

Crank-Nicholson scheme is in fact as good as NG(2). 

Why is this so? A partial answer lies in the time difference form (3.2). When ET is O(l), the 

approximation of the time derivative by the difference may be crude, but even so, D u is no larger 

than O(u). We must divide this difference by 7 to obtain the complete difference approximation, 

but l/r is O(E). Thus, the time derivative term is O(E/W) in comparison to the other two 

terms. Neglecting it gives back the “diagnostic,” NG( 1) approximation (2.2), but derived from 

the difference equation. It is then obvious that both schemes must be at least as accurate as 

NG(l). In the limit that ET + O-not a limit one would take in practice since the whole point of 

implicit and NG schemes is to allow a long time step-the errors in the implicit schemes must go 

to zero since these are general time-integration methods, exact in the limit of vanishing time step. 

It follows that the errors in the BE and CN algorithms must be proportional to the NG(1) error 

with a proportionality constant that tends to zero as the appropriate power of ET: first power 
for the first order Backwards-Euler method and quadratic for the second order Crank-Nicholson 

scheme. 

5. CONCLUSIONS 

Since the high order (m > 1) NG schemes require computing time derivatives of f(~r), and 

therefore grow rapidly in expense and programming complexity with m, it follows that our main 
conclusion is: hurray for implicit methods! As we found analytically in our simple model, as Daley 

found numerically for a very complicated, three-dimensional forecasting model, the Nonlinear 
Galerkin schemes are not superior to implicit and semi-implicit time-marching algorithms. 
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