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Abstract 

This paper deals with a generalization of the following simple observation. Suppose there 
are distinct elements a, b of the chain complete poset (P, <) such that P( < a) C P( < b) and 
P( > a) L P( > h); if P( < a) and P( > a) are both fixed point free (fpf), then P is also fpf (we 
say P is trivially fpf), otherwise, P has the fixed point property (fpp) if and only if P\(u) has 
this property. We introduce a new quasi-order on a poset (P, < ), called the ANTI-order denoted 
by <<, where x<<y holds if and only if every element strictly comparable with x is also strictly 
comparable with y. A set X C P is an ANTI-good subset of P, if X is maximal (with respect 
to inclusion) and its elements are <<-maximal and pairwise <<-incomparable. A poset (P, <) is 
caccc if it is chain complete and every countably infinite antichain has a supremum (infimum) 
whenever the antichain is bounded above (below). The caccc property is preserved by retracts 
and the intersection of a decreasing chain of caccc subposets also has this property. We show 
that for a caccc poset (P, Q ) an ANTI-good subset is a retract and it is uniquely determined 
up to isomorphism. Moreover, if P is not trivially fpf, then P has the fpp if and only if an 
ANTI-good subset has the fpp. A strictly decreasing sequence, I7 = (Pi;: 5 < A), of subsets of 
a caccc poset P is called an ANTI-perfect sequence of P, if P = Pa and, for each [ < i,, PC+, 
is a <<r-good subset of PC, where <<: is the ANTI-order on P;, and P; = n{P,: q < [} when 
5 is a limit ordinal, and Pj: is a <<;-good subset of itself. We call Pi an ANTI-core of P. 
Our main result is that an ANTI-core of a caccc poset is a retract. The proof of this will be 
given separately in the second part of the paper [5]. In this part we establish the existence of 
ANTI-perfect sequences. 

Keywords: Retract; Fixed point property; ANTI-order; Caccc poset 

1. Basic definitions and background remarks 

We shall always denote by P an arbitrary nonempty partially ordered set (poset) 
with a partial order <. For any x, y E P, XII y denotes that x and y are comparable, 
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i.e. either x 6 y or y d x; otherwise, we say that x and y are incomparable and write 
x I y. As usual, x < y means x d y and x # y, and in this case we say that x and y 
are strictly comparable. If a E P and X &P, we define X( < a) = {x E X: x < a} and 
X( > a) = {x EX: x > a}. When a subset of X C P is considered as a poset, its order 
is always the induced order, < n (X xX). We say that a subset X of P is dominating 
in P if, for any a E P, there is x E X such that a < x. y E P is called an upper bound 
(lower bound) of X C P if x < y(x > y) for all x E X. For X, Y C P, an element y E Y 
is called the supremum of X in Y, denoted by supr X, if y is an upper bound of X 
and y d z whenever z E Y and z is an upper bound of X. In this definition we do 
not require that X be a subset of Y. The infimum of X in Y is defined dually and is 
denoted by inf r X. If Y = P, these are just the usual supremum and infimum and, in 
this case, we write supX and inf X instead of supP X and infp X. The poset (P, <) 
is complete if every subset of P has both an infimum and a supremum. It is chain 
complete (cc) if every nonempty chain has an infimum and a supremum. 

We shall introduce a variety of different orders (or quasi-orders) on subsets of the 
poset P. To avoid ambiguity, when we use a technical term, like lower bound or 
antichain or chain for these other orders we always indicate which particular order is 
intended by prefixing the term with the appropriate order relation. For example, we 
write gx-antichain to indicate an antichain with respect to the ANTI-order gx of the 
subposet X, and similarly for other terms. If there is no such prefix, then it is to be 
understood that this always refers to the usual order < on P. 

A sequence in P is a mapping from a set A of ordinals to P which we write in 
the form of (xv : q E A). The sequence is eventually bounded above (below) in Y C P 
if there is [EA and YE Y so that xv 6 y (y <x,) hold for all SEA with i < q. 
The sequence (x,, : 9 E A) is increasing (decreasing) if q 6 [ 3 x,, < x~(x~ > xc) for 

y,i~A. 
A mapping f : P t P is order preserving if x d y + f(x) 6 f(y) for any x, y E P. 

A retraction on P is an order preserving mapping f: P + P which is idempotent, i.e. 
f (f (x)) = f(x) for any x E P. The image of a retraction on P is called a retract of 
P. If f: P + P and f(x) =x, we say that x is a fixed point of f. A subposet X C P 
has the fixed point property (fpp) if every order preserving mapping on X has a fixed 
point; otherwise, X is fixed point free (fpf). In particular, the empty set is fpf. The 
following criterion due to Abian and Brown [l] is often useful when considering fixed 
points in a cc poset: 

1.1. An order preserving mapping f on a cc poset P has a jxed point ty there is 
XEP such that xllf(x). 

Retracts also play an important role since it is well known that 

1.2. If P has the fpp then every retract of P also has this property. 

A procedure which is frequently effective to determine if a finite poset P has the fpp 
is dismantling (see [2]). This procedure leads to a retract, called the core of P, which 
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is generally smaller and has the fpp iff P has this property. This method has been 
generalized to the infinite case by Li and Milner in [6,7]. We start with a new order 
a on P, called the PT-order of P, which is defined by writing x 9 y iff every maximal 
chain which passes through x also passes through y, or equivalently, z(]x + zll y for 
all z E P. A good subset of P is a d-dominating g-antichain X. In [6] it was shown 
that 

1.3. If P is cc, then (i) there exists a good subset; (ii) any good subset is a retract 
of P; (iii) any two good subsets are order isomorphic; (iv) P has the fpp ifjc a good 
subset has this property. 

A retract of a cc poset P is also cc, and we showed in [6] that the intersection of 
a decreasing sequence of cc subposets in P is also cc. Therefore, we may iterate this 
construction repeatedly taking good subsets to make the poset smaller and smaller and 
at limit stages we take intersections. The formal definition for this procedure is the 
following. A perfect sequence ZZ = (Pg : 5 d A) of a cc poset P is a strictly decreasing 
(with respect to containment) sequence of subsets of P so that Pg+l is a $-good 
subset of Pe for < < 2, where dt is the PT-order generated by the induced order on 
PC, Pg = n{Pll: q < <} for a limit ordinal 5 < I, and Pi is <3).-good, i.e. PL is a Z$.- 
good subset of itself. 2 is called the length of the perfect sequence and PA is called the 
core of P obtained by the perfect sequence. Since chain completeness is preserved by 
retracts and the intersection of decreasing chain of cc posets, it follows that a perfect 
sequence n and its core are well defined. 

A perfect sequence is a generalization of dismantling to the case of infinite posets. 
However, in general, nice properties associated with dismantling are no longer pre- 
served for perfect sequences. The one-way injinite fence F, is a typical example to 
show what can go wrong. F,,] is the poset on (a, : n < co) shown in Fig. 1, in which 
a,, < a,,+1 for even n and a,, > a,,+1 for odd n and there are no other comparabilities. 
Trivially, the core of F, is the empty set, and so is not a retract. However, under 
certain conditions perfect sequences do behave well as in dismantling. In [6,7] we 
showed that 

1.4. Zf P is a cc poset with no injinite antichain then 
(a) any two cores of P are isomorphic; 
(b) the core of P is a jinite retract of P; 
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(c) P has the fpp ifs the core has the jbp; 
(d) any two perfect sequences of P have the same length and the length is jinite. 

Perfect sequences also keep some of nice dismantling properties under certain weaker 
conditions. In [4], we proved 

1.5. Let Il = (Pl; : 5 ,< A) be a perfect sequence of a cc poset P. If P contains no 
tower (see [4] for the definition) and no one-way injinite fence then: each PC (l < A) 
is a retract and P has the jbp ifs Pt has the fpp; in particular P has the fpp iff the 
core PjL has the fpp. 

2. Introduction 

In this paper we shall use a different quasi-order on P, the ANTI-order, and we 
use this to introduce the concepts of ANTI-good subsets, ANTI-perfect sequences and 
ANTI-cores. These concepts look formally similar to the corresponding notions asso- 
ciated with the PT-order. But they are essientially different, and the ANTI-order is 
more difficult to handle than the PT-order. In this section we give the definitions and 
establish the existence of ANTI-perfect sequences for caccc posets. The rather long 
proof of the main result (Theorem 2.1) will be given separately in Part II [5]. 

The ANTI-order concept was motivated by the following consideration. Dismantling 
has no effect on a ramified finite poset P, that is a poset in which every non-maximal 
(non-minimal) element has at least two upper (lower) covers. The core of a ramified 
poset P is just P itself, and so is not particularly useful in deciding whether or not P 
has the fpp. However, we may be able to use dismantling again, if we can change the 
poset P in some way without changing its fpp status. Schroder [9] observed (it is a 
special case of Theorem 3.4(3)) that: 

If there is a pair of distinct elements (x, y> in a jinite poset P such 
that P( < x) s P( < y) and P( > x) 2 P( > y), then Either (a) P( < x) and 
P( > x) are both fpJ; in which case P is also fpJ; Or (b) P has the fpp 
or not according as the subposet P\{x} has this property or not. 

This means that, if there is such a pair {x, y} in P, whether or not P has the fpp 
can be answered if we know how to answer the question for smaller posets. The point 
is that the ordinary dismantling might again be effective on these smaller posets. If 
there is a pair of distinct elements {x, y} such that every element strictly comparable 
with x is strictly comparable with y and if condition (a) above is satisfied, then we 
say that P is trivially fixed point jiee. 

This idea works for 6 of the 10 ramified posets listed in Rutkowski [8] (see Fig. 2). 
In Qi, we take x = 2, y = 1, since both are minimal elements and all elements strictly 
greater than 2 are strictly greater than 1. Ql( > 2) is dismantable since (6,4,8,5,7) is 
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a dismantling procedure. Hence Qr( > 2) has the fpp. Then, Qr has the fpp iff Q,\(2) 
has fpp. But Qr - (2) does have this property since (5,7,8,4,6,0,3,1) is a dismantling 
procedure. Therefore, Qr has the fpp. A similar argument works for the other 5 posets 
in Fig. 2 (choose x = 9 and y = 1 for Q2 and Q3; x = 9 and y = 7 for Q4; x = 2 and 
y = 1 for QS and Qs). 

The ANTI-order ge on a subset Q of P is a quasi-order generated by the induced 
order 6 n(Q x Q) in the following way: for any x, y E Q, xgQy holds if and only 
if any element of Q strictly comparable with x is also stricly comparable with y. We 
write x <<Q y when xsQy but ysQx. If Q=P, we shall omit the subscript and simply 
write << or<<. 

We illustrate with an example, let Q7 = {x, : n < o} U{yn : n < o} and define an 
order d on Q7 such that {x, : n < co} and {yn : II < o} are antichains, yn < x, iff 
n > m. Fig. 3 shows the order < and the corresponding ANTI-order <. In the order 

@7. a, {-&I : n < co} is a <<-decreasing chain and {y, : n < co} is an <<-increasing 
chain and there are no <-comparabilities between x’s and y’s, - 

The main difference between the PT-order 4 and the ANTI-order << on P is that, 
for x, y E P, x a y means that every element comparable with x is comparable with y 
while x<<y requires that every element strictly comparable with x is strictly comparable 
with y. Although they look similar, they behave quite differently. For instance, when 
x, y E P, x a v implies x(ly, but x<<.v implies x l_ y if x # y. 
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For a subset Q C P, We will be particularly interested in <Q-maximal elements, 
i.e. elements x E Q such that x <<Q y does not hold for any y E Q. An ANTI-good 
subset X of Q (or a s-good subset of Q) is a maximal gQ-antichain of gQ- 
maximal elements. When Q = P, we simply say that it is an ANTI-good subset or 
a <<-good subset. We can understand this concept in a different way. We define an 
equivalence relation ‘Q on sQ-Max, the set of all gQ-maximal elements of Q, by 
writing that x ZQ y iff both x&y and ysQx hold. Then a set which intersects each 
“Q-equivalence class in exactly one element will be an ANTI-good subset of Q. For 
example, in Fig. 3, the singleton {xg} is an ANTI-good subset of QT. Unlike in the 
case of the PT-order, we do not require that an ANTI-good subset of Q should be a 
s-dominating set. For the example in Fig. 3, none of the y’s are less than or equal 
to (w.r.t. CC) x0 , the only <<-maximal element. 

In general, an ANTI-good subset might behave badly, for instance it could even be 
empty, in which case it does not reveal much information about the original poset. To 
make an ANTI-good subset really ‘good’, we shall introduce caccc posets. P is said to 
be conditionally No-antichain complete (cat) if every denumerable antichain in P has 
an infimun (supremum) whenever it has a lower (upper) bound. If P is cat and cc we 
call it a caccc poset. It is easy to show by transfinite induction that, in a caccc poset 
P, every infinite antichain with an upper (lower) bound has a supremum (infimum). 
Thus, it makes no difference if we redefine a caccc poset to be a cc poset in which 
every infinite antichain bounded above has a supremum and every infinite antichain 
bounded below has an infimum. 

We will prove that (see Theorem 3.4), for a caccc poset P, any ANTI-good subset 
X is a retract of P. Also, we show that, 

Either (i) there is some a E P\X such that both P( < a) and P( > a) are 
j’jJ in which case P itself is trivially fpJ Or (ii) P has the fpp ifj’X has 
this property. 
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This result provides a technique to determine whether or not a caccc poset has the 
fpp. We illustrate the method with an example. Suppose Qs = {x} U{x, : n < co} U{y,, : 
n < co} is ordered so that {x, : n < o} is a decreasing chain with x as an infimum, 
{yn : n < co} is an antichain, y,,, < x, iff m > n and there are no other comparabilities. 
The poset (Qs, <) and its ANTI-order < are shown in Fig. 4. 

(Qs, <) is a caccc poset and X = {$U{xn : n < o} is an ANTI-good subset. An 
element a E Qs -X is some y,,, and Qs( > a) = {x0,x1,. . . ,xn} is a finite chain and so 
does have the fpp. By the above result, it follows that Qs has the fpp iff X has this 
property. But X does have the fpp since, as a subposet of (Qs, <), it is a complete 
chain. Thus, (Qs, d ) has the fpp. Of course, we can use other methods to reach the 
same conclusion. For instance, it is immediate from the Abian-Brown Theorem 1.1 
that a cc poset with a greatest element has the fpp. 

Sometimes, it is still difficult to determine whether or not an ANTI-good subset has 
the fpp. But we may iterate the construction and take an ANTI-good subset of the 
ANTI-good subset and continue. At limit stages, we take intersections. This procedure 
is just like the construction of a perfect sequence based on the PT-order. Formally, we 
define an ANTI-perfect sequence of a caccc poset P to be a strictly decreasing (w.r.t. 
containment) sequence, II = (Pg : 5 6 A.), of subsets of P such that P = PO and, for 
each < < A, Pg+l is a $-good subset of Pt, where sr = gp; is the ANTI-order on 
the subposet P:, PE = n{Pv : q < 5) when 5 is a limit ordinal,‘and P,J is ANTI-good, 
i.e. PI is a <;,-good subset of itself. The terminal set Pi is called an ANTZ-core of 
P. Corollaries 3.6 and 3.8 ensure that the caccc property is inherited at each stage of 
the construction and so an ANTI-perfect sequence and an ANTI-core of a caccc poset 
are well defined. 

Consider the following example of an ANTI-perfect sequence and the corresponding 
ANTI-core. Let P = {x, : n < CO} iJ{yn : n < CO} U{y} be ordered so that {xn : n < w} 
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is a one-way infinite fence, {y,, : n < co} is a decreasing chain with y as an infimum, 
y < x2,, and x2,,+, < y, for all n < o and there are no other comparabilities except for 
those demanded by transitivity. The poset (P, <) is shown in Fig. 5. It is complete 
and therefore caccc. Let PO = P and G&, be the ANTI-order generated by <. Since 

P( < x0) = {Y> =P( <x2) andP(~~0)={x1,~0}C~(>~2)={~1,~3,yO,y~~, we have 

x0 <O x2. We claim that PI = P\{xo} is a <<,-antichain. Assume a, b E PI and a # b. 
Since allb implies that a and b are <<o-incomparable, we may assume that a _L b and 
then we need only consider two possibilities: a = x,, and b = y,,, for some m,n < o 
withldn<2m,ora=x,andb=x,forsomem,n<owithldn~m-2.Inboth 
cases, x,-l is an element strictly comparable with a but incomparable with b; in the 
first case, y,+i is an element strictly comparable with b but incomparable with a; in 
the second case, .x,+1 is such an element. Therefore, a and b are &,-incomparable. 
This means that PI is a s-good subset of P = PO. Now, let <i be the ANTI-order 
on PI, i.e. <I = &, . Using the same argument, we can see that P2 = P\{xo,xI} is 
a <<,-good subset of PI. Continue this procedure. Let P, = P\{xo,xl,. . .,x~_I} for 
n < w and let P,, = n{P,,: n < co} = {y} U{yn: n < co}. P, is ANTI-good, since it is 
a chain. Thus, III = (P, : n < co) is an ANTI-perfect sequence of length o and P,, is 
the ANTI-core generated by the ANTI-perfect sequence. 

The one-way infinite fence F,, (Fig. 1) is an awkward caccc poset; it has an empty 
ANTI-core. Let PO = F, and let the ANTI-order be <<. It is easy to see that a0 << a2 
and PI = F,,\{ao} is an ANTI-good subset of PO. Let P, = F~~~\{ao,a,,...,a,_~} and 
P,, = n{Pn : n < co} = 0. Then II = (PC : 4 < w) is an ANTI-perfect sequence which 
generates an empty ANTI-core. Our main result says that if we exclude F,, then an 
ANTI-core of a connected caccc poset must be a retract. 
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Theorem 2.1. Let ll= (Pt : 4 d iL) be un ANTI-perfect sequence of a connected caccc 
poset P which contains no one-way infinite ,f&tce. Then PC is a retract of P ,fbr every 
[ < 2, in particular, the ANTI-core P;, is u retract of P. 

We shall give the proof of this theorem in a separate paper [5]. In this paper we 
shall establish the existence of ANTI-perfect sequences in caccc posets. 

We believe that the ANTI-core has some connection with the fpp and we make the 
following conjecture (which is true for the case when 1 is finite by Theorem 3.4). 

Conjecture. Let n = (P;l : ( 6 i) be an ANTI-perfect sequence of a connected caccc 
poset P which contains no one-way infinite fence. If there are q < i. and x E P, - Pvil 
such that both P,!( < x) and Pa( > x) are fpf, then P is fpf; otherwise, P has the fpp 
iff the ANTI-core Pj, has this property. 

3. ANTI-perfect sequences 

In this section we show that an ANTI-perfect sequence is well defined for caccc 
posets. For this we need to show two things (1) that an ANTI-good subset of a caccc 
poset is also caccc and (2) the intersection of a decreasing sequence of caccc posets 
is caccc. In order to prove (1) we first show that an ANTI-good subset of a caccc 
poset is a retract (Theorem 3.4) and then show that the caccc condition is preserved 
by retracts (Lemma 3.5). 

The following lemma is obvious and its proof is left to the reader. 

Lemma 3.1. If’x, y E P, x # y and x<<y, then x and y are incomparable, P( < X)C 
P(<y)andP(>x)CP(>y). 

We already observed that the set of all <(-maximal elements in P is not necessarily 
g-dominating. Let 

D(P) = {x E P: there is a << -maximal element y such that x<<y}. 

Clearly any <(-good subset X of P <<-dominates the elements in D(P), i.e. for any 
y E D(P), there is x EX such that y<<x. We call D(P) the dominated part of P. 

The following lemmas show that certain elements must belong to every <<-good 
subset. 

Lemma 3.2. Let Z 2 P, and suppose that z = inf Z (z = supZ) exists. of .Z $ Z, then 
z belongs to any <<-good subset. - 

Proof. Let X be a <<-good subset. If z E D(P)\X, there is x EX such that z<<x; if 
z E P\D(P), it is not a <<-maximal element and so there is some y E P such that - 
z << y. Thus in either case, if z @X, there is an element a different from z such that 
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z&z. Then a is also a lower bound of 2. By Lemma 3.1, z and a are incomparable, 
contradicting the assumption that z is the infimum of Z. 0 

Lemma 3.3. Let P be a cat poset, X a <<-good subset of P and x E P\D(P). Then 
(1) VP(<x) # 0 (P(>x) # 0), th en it has a greatest (least) element and this 

belongs to X; 
(2) either P( < x) # 0 or P( > x) # 0. 

Proof. Since x $ D(P), there is a strictly <<-increasing sequence (x, : II < co), where 
xa = x. By Lemma 3.1, {xn : n < o} is a denumerable antichain. 

(1) If c E P( < x), then c < x, for 1 < n < co, since x0 << x,, and so c is a lower 
bound of {xn : n < w}. Since P is cat, a = inf {x, : n < co} exists and c d a. Since c 
is an arbitrary element of P( < x), it follows that a is the greatest element of P( < x), 
and a EX by Lemma 3.2. 

(2) Since x < xi, there is y E P strictly comparable with x1 but incomparable with 
x and so either P( > XI) # 0 or P( < x1 ) # 0. By (1) applied to xi, it follows that 
X # 8. This fact implies that either P( < x) # 0 or P( > x) # 0; otherwise, x<<y for 
any y EX and x E D(P), contrary to the hypothesis. 0 

Let X be a <<-good subset of a caccc poset P. We define a mapping g : P --) X 
as follows. For x EX, g(x) = x; for x E D(P)\X, g(x) is an element in X such that 
x<<g(x). If x E P\D(P) then, by Lemma 3.3, either the greatest element b of P( < x) 
belongs to X or the smallest element a of P( > x) belongs to X. If the first possibility 
occurs we define g(x) = b, otherwise we define g(x) = a. Of course, the definition of 
g depends not only upon X, but also on the choices of the g(x) for x E D(P)\X. We 
call a map of this type an ANTI-good map onto X. The main result of this section is 
the following theorem which shows that every such map is a retraction. 

Theorem 3.4. Let X be a <<-good subset of a caccc poset P and let g be an ANTI- - 
good map onto X. Then, 

(1) ifx,y~Pandx<y, theng(x)dyandxdg(y); 
(2) g is a retraction; 
(3) if there is a E P\X such that both P( < a) and P( > a) are fpJ then P is also 

fpJ otherwise P has the fip isf X has the fpp; 
(4) any two <<-good subsets are isomorphic. 

Proof. (1) We prove that g(x) d y, the proof that x < g(y) is similar. If x E X, 
the result is obvious since g(x) = x. If x E D(P)\X, x-(x) and so, by Lemma 3.1, 
g(x) < y. If x E P\D(P), x and g(x) are strictly comparable. If g(x) < x, then obviously 
g(x) < y. If g(x) > x, then g(x) is the least element of P( > x) and so g(x) ,( y. 

(2) By definition, g is idempotent. We need only to show that it is order preserving. 
Let x,y~P and x <y. Then, by (l), x d g(y). If x = g(y), then x EX and so g(x) = 
x = g(y). If x < g(y), then applying (1) again to the pair x, g(y), we conclude that 

g(x) d S(Y)* 
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(3) Assume that there is a E P\X such that both P( < a) and P( > a) are fpf. Let 
t:P(>a)-+P(>u)ands:P(<u) -+ P( < a) be fpf order preserving mappings. If 
a ED(P)\X, a<g(a) and if a E P\D(P), a is not <-maximal and so there is c E P 
such that a << c. Thus, in either case, there is b E P such that a # b and u<<b. Then 
it is easy to see that the mapping h : P --f P is fpf and order preserving, where h 
is defined as follows: h(u) = b; h(x) = t(x) if x E P( > a); h(x) = s(x) if x E P( < a); 
h(x) = a if x I a. 

We assume next that at least one of P( > a) and P( < a) has the fpp for every 
element a E P\X. Since the fpp is preserved by retracts, we need only show that P 
has the fpp if X has this property. Let f : P --) P be an order preserving map- 
ping. Then, (g o f) 1 X is order preserving on X and so it has a fixed point, say 
z = g(f(z)) EX. Let x = f(z) so that g(x) = z. If x E X, then f(z) = x = g(x) = z, 
i.e. z is a fixed point of f. If x E D(P)\X, it follows from the definition of g that 
x<<z and x # z. For any YE P( > x), we have y > z and then f(y) > f(z) = x. 
If f(y) = x, y and f(y) are comparable and so, by the Abian-Brown Theorem 
1.1, f has a fixed point since P is cc. So, we may assume that f(y) > x, i.e. 
f(y)~P( > x), for any YEP( >x). Thus, f 1 P( > x) is an order preserving map- 
ping on P( > x). By a similar argument, we may also assume that f 1 P( < x) is an 
order preserving mapping on P( < x). At least one of these two mappings has a fixed 
point which, of course, is a fixed point off. Finally, suppose x E P\D(P). In this case, 
z = g(x) is either the greatest element of P( < x) or the smallest element of P( > x). 
In other words, zllx= f(z), and so again by the Abian-Brown Theorem f has a fixed 
point. 

(4) Let X and Y be <(-good subsets of P. Since X G D(P), for each x EX, there 
is a y E Y such that x<<y, and since x and y are both <<-maximal elements, y cz x. 
Define y = f(x) to be the unique element of Y such that x g y. By symmetry, f is 
a bijective mapping from X to Y. Suppose that x,x’ E X and x < x’. Since x’e(x’), 
we have x < f(x’), and since x<<(x) it follows that f(x) < f (x’). Therefore, f is 
an isomorphism of X onto Y. ??

Lemma 3.5. The cut and cuccc properties of u poset are preserved by retracts 

Proof. Suppose that X is a retract of a cat poset P and that f : P -+ X is the 
corresponding retraction onto X. Let A be a denumerable antichain in X with a lower 
bound in X. Then A has an infimum, say b, in P. Then f(b) is an infimum of A in X, 
and so X is also cat. Since chain completeness is also preserved by retracts, a retract 
of a caccc poset is also caccc. 0 

Corollary 3.6. An ANTI-good subset of u cuccc poset is also cuccc. 

That our definition of an ANTI-perfect sequence is meaningful for caccc posets 
depends upon the fact (2) that the intersection of a decreasing sequence of caccc 
posets is also caccc. This is an immediate corollary of the following Lemma of [6]. 
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Lemma 3.7. Let 5 be a limit ordinal and let IZ= (P,, : r 6 () be a decreasing sequence 
of subsets of aposet P such that Pg=r){P,: r] < ;“}, and suppose that each P, (q < 5) 
is cc. If X G P and supp,, X (infp,, X) exist for all y < t, then sup,; X (infp; X) also 
exists. 

Corollary 3.8. Let 5 be a limit ordinal and let Il = (P,, : q G l) be a decreasing 
sequence of subsets of a poset P such that PC = n{Pv : y < t}. Zf P, are caccc for 
all q -C r, then Pg is also caccc. 

It follows from the above results that ANTI-perfect sequences for caccc posets are 
well defined. 
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