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ABSTRACT 

The asymptotic theory of the matrix Riccati equation is developed using non- 
variational arguments. The cone of positive semi-definite matrices is shown to be 
invariant under the motions of the Riccati equation and questions of monotonicity 
and stability are resolved for motions starting in this cone. 

We shall consider here the theory of the matrix Riccati equation. This  theory was 

in part stated in Kalman and Bucy [I] and proved in Kalman [2]. The  proofs in the 
latter paper were variational in nature and dependent  on the theory of a particular 
control problem. In this paper we provide new and quite general proofs of this 
theory which are variation-free, as well as delineating some new results. 

Because of the importance of asymptotic behavior of the Riccati equation for a wide 

variety of problems, a new derivation written for a mathematical audience seemed of 

interest. Most  of this paper will appear later in tile book by Bucy and Joseph [3]. 

NOTATION AND DEFINITION~ 

We denote matrices by capital latin letters, numbers  by lower-case latin letters, 
while boldface, lower-case latin letters denote vectors. A '  denotes the transpose of A. 
The  matrix Riccati equation is given by 

P -. F(t) P + PF'(t) - Pit'(t) R-~(t) H(t) P + G(t) QH(t) G'(t), 

P(to) == F, (1) 

where P is an n x n matrix, F a symmetric n x n matrix, F(t) an n X n matrix, 

H(t) an s x n matrix, G(t) an n x r matrix, and R(t) and Q(t) a positive-definite 
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s x s matrix and a positive-semidefinite r • r matrix. Further, the matrices F(t), 
H(t), G(t), Q(t), and R(t) will be assumed continuous functions of time and often, 
when the context is clear, the explicit time dependence will bc surpressed. 

By C we denote the cone of symmetric positive-semidefinite n • n matrices and 
~' the interior of C, the cone of positive-definite symmetric matrices. A partial ordering 
~> of symmetric n • n matrices is induced by the cone C as A >~ B(A > B) if, and 
only if, A --  B e C(d).  

In the sequel, two regularity conditions will be indispensable to ensure regular 
asymptotic behavior; they are: 

DEFINITION A. The  pair (F(t), G(t)) is Q completely controllable iff for every t o 
there exists a t l  > t o such that 

~ : fts cl)(tl , s) G(s)Q(s) G'(s) cl)'(s, ta) Co(tl , to) ds -.>0 

or invertible [where ~(t ,  s) is the fundamental matrix ofF(t)].  

DEFINITION B. The  pair (F(t), tl(t)) is R completely observable iff for every, t 1 
there exists a t o < t 1 such that 

HTR(tl , to) -  ftt[ (I')'($, tl)11'($)R-1($)H($)ffl)(s, t,) ds > 0  

or invertible. 
T h e  concepts of controllability and observability have natural interpretations in 

the theory of Filtering and Control; see for example Kalman and Bucy [1]. Further,  
these concepts are connected to the classical conditions of normality and discon- 
jugacy; see Bucy [4]. 

1. GLOBAL EXISTENCE 

We will first establish global existence and uniqueness by demonstrating a weak 
a priori bound on the solutions of (1) as 

LEMMA 1. Let H(t, N, to) be a solution o f ( l )  with H(to , F, to) -- F ~ C then for all 
t > t o sufficiently small 

t 
0 ~ H(t,  F, to) ~ cP(t, to) FaY(t, to) + f ~(t, r) G(r) Q(r) G'(r) 4'(t, r) dr 

to 
_:- ~(t,  to) rgv(t ,  to) + Co(t , to) (2) 

with q~( t, to) the fundamental matrix ofF(t). 
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Proof. Since (I) satisfies a local Lipshitz condition, H(t, F, to) exists and is unique 
for t -- t o sufficiently small. Denoting ~b as the fundamental matrix of 

F(t) -- H(t, F, to) H'(t) R-x(t) H(t), 

it follows that 

/-/(t, r ,  to ) - -  ~b(t, t0)/'~b'(t, to) -i- f ~b(t, a) [G(a) Q(a) G'(a) 
to 

+ U(a, I', to) II'R-I(a) H(a) U(a, F, to) ] ~b'(t, ,,) d~, 

so that H(t, 1", to) >~ 0 for t sufficiently small. From (1) it follows that 
t 

H(t, I', to) - q~(t, to) Fq)'(t, to) f qS(t, a) [G(a) Q(a) G'(a) 
to 

-- n(~,  F, to) H'(a) R -'(a) H(a, F, to) ] r a) da 
t 

qS(t, to) Fq~'(t, to) --~ f qS(t, or) [G(a) Q(cr) V'(a)] q~'(t, a) de. 
to 

[.EMMA 2. Equation (1) has a global unique solution. 

Proof. The  d priori upper bound of Lemma 1 provides a Lipschitz constant on 
any finite interval no matter how large. 

Since the solution of (1) exists and is unique, it induces a two-parameter semi- 
group of operators T,.t0 defined on positive-semidefinite cone C by Tt.toP== 
H(t, 1", to) and the content of Lemma 1 is simply that 

T~.to C -~ Ct.~o 
where 

Ct.to = {A e C i A <~ cI)(t, to) F~(t, to) - Co(t, to) forsome F ~ C. 

We remark that this is essentially the same argument given in Kalman and Bucy [1] 
and is given here for completeness. Recently, this argument has been shown to imply 
global existence of an infinite dimensional generalization of the Riccati equation by 
Falb and Kleinman (see [5]). 

2. EXPLICIT SOLUTIONS AND GEOMETRY 

Our aim is to obtain an explicit solution to (1), and in order to do this as well as to 
establish some more refined properties of T~.t0, we introduce the following linear 
2n-dimensional Hamiltonian system; 

dx 
dt F'(t) x ~- It'(t) R-l(t) H(t) y, 

dy 
d--i- - G(t) Q(t) G'(t) x § V(t) y. (3) 
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Denote  by S(t, to) the 2n x 2n fundamental matrix of 

[ -- F'(t) H'(t) R a(t) 
II(t) =: \G(t)Q(t) C'(t) Y(t) H(t)) , 

with 

(On(t, to) Oa~(t, to)] 
S(t, to) = ~O~,(t, to) O~2(t , to)]' 

where Oii(t, to) are n • n matrices. Since H(t) is Hamiltonian, it is well known and 
easy to check that H'(t) J + JH(t) =- 0 where 

o i .  
:=( o) 

and I~ is the n • n identity matrix. S(t, to) has the interesting and useful feature 
of being symplectic or canonical as: 

DEFINITION 1. A 2n • 2n matrix A is symplectic iff A'JA  == J. 

LEMMA 3. For every t > to, S(t, to) is symplectic. 

Proof. Let ~'(t, to) -= S'(t, to) JS(t, to) - j then Z'(t, to) - 0 and 

dZ(t, to) - S'(t, to) (II'(t) J 4- JH(t)) S(t, to) :- 0 
dt 

as H is Hamiltonian and consequently Z'(t, to) = 0 or S(t, ta) is symplectic. 

We note in passing that the symplectic matrices form a group, .4 symplectic implies 
A '  and `4-1 symplectic; see Siegel [6]. Now the following theorem provides the solution 
to (1) in terms of solutions of the linear system (3). 

THEOREM ]. For I" >~ 0 the solution of Eq. (1) is given by 

H(t, F, to) = Lr(t, to) DT~(t, to) 

where 

Lr(t, to) = Ozl(t, to) + Oz2(t, to) and Dr(t, to) = On(t, to) + O~z(t, to) F. 

Further, I" > 0 implies l-I(t, I', to) > 0 while I" >~ 0 with (F(t), G(t)) completely Q 
controllable implies FI(t, I', to) > 0 for t > t(to) [where Co(to, t(to) ) > 0]. 
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Proof. We shall show Dr(t, to) is invertible for all t ~ t o and F ~ 0 for suppose 
otherwise then, there exists t ~ / t  o , F~ and ~q a nontrivial n-vector so that 

but 

Dr~(t, to) n = 0; 

f h ds, (4) x'(tl) y(tl) :-- x'(to) Y(to) a. [i G'(s) x(s) ~ ~ i~ H(s) y(s) "~-~m12 
to 

with x(s), y(s) the solution of (3) with X(to) = ~h y(to) = F~. But by assumption 
x(tl) = 0, so that 

0 j! n it~. + f " G'(s) x(s) '1 ~ = !!R-,m ds . I,o.~ + II H(s) y(s) .o 
to 

or H(s) y(s) = O, s e (to, t); hence 

ax(,)  
dt -- F '(s) x(s) + H'(s) R-t(s) H(s) y(s) . . . .  F'(s) x(s) 

and 0 : - - x ( t l ) - - O ' ( t  o , tl) n which implies ~ is trivial since �9 is a fundamental 
matrix. Consequently Dr(t, to) is invertible, and Lr(t, to) Drl(t ,  to) is well 
defined for all t / ~  t o and - P ) O .  An easy consequence of symplectic nature of 
S~ to) is that Dr(t , to) Lr(t, to) - L'r(t, to) Dr(t, to) or Lr(t, to) l)rl(t, to) is sym- 
metric. Now if Lr(t  , to) Drl(t,  to) -= K(t,  to) then K(t,  to) = F and by elementary 
differentiation K( t, to) satisfies (1) hence by uniquesness H ( t, F, to) - -Lr( t ,  to) DrX( t, to). 
Suppose I" > 0 but suppose ',.~1 ~ ~.2 :!n(t.r.tol - O, then 

,'2, , ,2 
i[ lq ~ I!rl(t .r . to) == li rl IIo'r(t, to)Lr(t.to) = !1 11 I[i "2 

f~ 12 ~- ' H(s) y(s) ,2 ds, + '! G'(s) x(s)  o(,7 ~ R-l(. .  
to 

where n* = Dr(t,  to)Yl and (x(s), y(s)) is a solution of (3) satisfying 
(x(to), y(to)) (n, F~). But 0 < fJ n Itr 2 ~ ]l n* ,z = ~}rr(t,r, to) , which implies 71 = 0 and, 
consequently, 71" = 0 - - a  contradiction; hence H(t,  F, to) > 0. Now suppose I" >~ 0 
but 

f,(to) q)(t, a) G(o)Q(o) G'(~) q~'(t, ~) de > 0 and II 71" !lr~m.r.to) , 0 
to 

for t > t(to) with the same definition of x(s) and y(s) as in (4), we obtain: 

g 

0 II ~*  '~" ~ = I,-,,.~.,o> II ~ !1~- + ,. G'(s) x(s)  = I io( ,>  -*'- , n ( s )  y ( s )  ' ! ~ - 1 ( 8  ) ds. 
d to 
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But H(s) y(s) : :  0, so that 

ax(O 
- Y ' x ( s ) ,  

dt 

x(s) -= ~ ' ( to ,  s) T1, 

and hence 

.t(to) 
II qs'(to, t) ,1 Ilco.o,mo, = n' j cl)(to, s) G(s) O(s) G'(s) crp'(to, s) vl ds = O. 

t o 

However, Co(to,  t(to) ) > 0 by complete controllability which implies rl := 0 which 
implies 11" = 0 or by contradiction H(t,  F, to) > 0 for t > t(to). 

A restatement of Theorem 1 is that Tt.t0 : ( ~ ' ~  ~' and with the assumption of 
complete controllability Tt.to : C ~ ~ for t > q(to). Theorem 1 is the central result 
here as it provides the rigorous justification for the association of a Riccati equation 
with a linear Hamiltonian system as well as describing the motion of the boundary 
points of the invariant set C under the motion induced by the Riccati equation. 

3. MONOTONE PROPERTIES 

In this section we shall restrict ourselves to autonomous systems so that a tutorial 
context may be maintained. The  following theorem characterizes the directions of 
increase and decrease for Zt_toF , for the autonomous assumption replaces the two- 
parameter semigroup by a one-parameter semigroup. 

THEOREM 2. For F ~ 0 and t ~> 0, 

al l ( t ,  F, O) 
at = [D~.(t)] -x (FF + FF' -- F H ' R - a H F  -~- GQG')  Dra(t). 

Proof. Let  

and consider 

so that 

(GQG'  F 
S -- ~ F '  _ H,R_XH ) = J H  

R(t)  = e ~ ' tSeut  --  S 

R ( O ) = O  and aR(t) = e""(H'S + SH) ~ '  = 0 
dt 

(5) 
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since H ' S  -~- S I t  = ( H ' ]  + J H )  H = 0 as H is Hamiltonian. Since R(t)  ---- 0; all t 
we have 

ehr'tSe nt  = S all t 

or in component  form 

GQG'  = O~l(t ) GOG'O,,(t)  !- O~1(t)FO2,(t) -:- O't(t)F'On(t ) --  0~l(t ) H'R-XHOo.,(t), 

F '  = O;,(t) GQG'O,2(t ) t-O',,.l(t)F'O,2(t) i-O~a(t)FO2~(t)-- O'~a(t) H'R-1IfO~.z(t), 

t l ' R - 1 t I  -: O;,,(t) GQG'O,.,(t) -- O~2(t ) FOo2(t) :- O'.,_~(t) F'Or,(t ) --  O~,,(t) tt'R-aHO2o(t). 
(6) 

Now (6) can be used to obtain 

GQG'  + F F  '-- I F '  . -  I ' H ' R - 1 H F  

- D'r(t) {CQG'  + FII( t ,  F, O) -" H(t ,  F, O) F" - II( t ,  F, O) H ' R - 1 H H ( t ,  1", 0)} Dr(t)  

which of course implies (5). 

COROLLARY 2. I I ( t ,  O, O) is monotone-nondecreasing in t. [I.e., t 2> s > 0 
H(t ,  O, o) ~ H(s, O, o)]. 

Proof. For every x, 

12 II x . l~ . .o .o)  

by Theorem 2, so that 

t 

= ]1 x ,,m,~.o.o,ll~, , + f II D71(v) x ]]~'oa dv 
$ 

then 

~2 I 2 
~x ;imt,o,o) ~ x Iln(,~,o.o ) 

and the result follows. 

COROLLARY 3. I f  I" o ~ S --- {A I F A  + A F '  --  A H ' R - 1 H A  + G Q G  ~ 0}, 
H ( t, Fo , to) is monotone-nonincreasing. 

COROLLARY 4. T h e  m a t r i x  

O'r(t) CQG'Dr ( t )  --  D~.(t)FLr(t) .... L ' r ( t )F 'Or( t )  --  Lr( t )  I I 'R -1HLr ( t )  

is constant. 
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4. UNIFORM t~ priori BOUNDS 

In this section, we return the general non-autonomous Riccati equation and con- 
struct majorants and minorants in the ordering of C for the solutions of the Riccati 
equation under assumptions of uniform controllability and observability. Not only 
are these bounds interesting in that they give a geometric picture of the Riccati 
equation motion, but also they will prove useful in the stability considerations of the 
next section. The following definitions is necessary: 

DEFINITION 2. 

there exist positive 
(F, H){(F, C)} is uniformly R{Q} 
real numbers a, fl and a{r} such that 

flI > 

flI > 

for all t o 

observable {controllable} iff 

to 

f ~'(s, to ~) H'(s) R-a(s) H(s) ~(s, to ~ ds > al, 
tO--O 

tO+* 
f r o + . ,  s) a(s) Q(s) O'(s) O'(t o + r, s) ds > a l l ,  
�9 ~ t 0 

(a{r} is often referred to as the interval of observability controllability}). 

LEMMA 4. Suppose (F, H) is uniformly R observable, then for every A < (t -- to), 
where A is the interval of observability, and F ~ O, 

H(t, F, to) ~ W~X(t, t --  ,4) + Co(t ' t --  ,4), 

where 
t *  t 

WR(t, t - -  ,4) = | ~'(s, t) H'R-IHq~(s, t) ds. 
d t - - A  

Proof. Let K be the solution of 

Iis = F K  + K F ' - -  KH'R-1HK,  

K(to) = -To >~ O, 

and A(t) = H(t, Fo, to) --  K(t); then 

zJ = F'(t) ,4 + AP'(t) --  "4H'R-XH,4 + GQG', 

where •(t) = F --  K(t) H'R-XH. Now/7  > / K  as 

t 
A(t) = f ~(t, o) [GQG' ~' AH'R-aH'4] 4;(t, ~) do >/0, (6') 

to 
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with ~(t, o) the fundamental matrix of P -- A(t) H ' R - t H .  However, (1) implies 

Fl(t, Fo , t -- A) = ~( t ,  t -- A) Fo~'( t  , t --  A) Co(t , t - -  A) 

since 

357 

, t  
--  j r (r) [--- H(cr, 1"o, t --  A) H'R- tHH(cr ,  Fo,  t -- A)] ~'(t,  or) 

t--zl 

@(t, t --  ~1) ro@'(t , t - A) -'- Co(t,  t --  A) 

. t  
�9 - j qb(t, a) [--  K(a)  I-I'R-XHK(a)] cl)'(t, a) d(r (7) 

t-e.I 

o ~< K(~) ~</Z(~, t o ,  t --  ,a), 

- K(a)  H 'R-1 t tK( ( r )  > - -  n ( o ,  To ,  t - -  A)  H ' R - X H H ( a ,  To ,  t - -  A). 

Now (7) implies that 

H(t ,  Fo, t - -  A) ~ Co(t, t - -  A) + K(t ,  Fo , t - -  A) 

since 

K(t ,  F o , t 

follows that K(s, To ,  t - -  A) ~ A ( I  -!- A ' W R A )  -1 A '  where F o >~ 0 it 
A = ~( t ,  to) / 11/2. 

We wish to show 

(8) 

A )  = ~ ( t ,  t - -  11) r o , ~ ' ( t ,  t -. ,~) 

-- [~ (/)(t, ~) K((7, Co, t - -  A) t I ' R - ~ H K ( ~ ,  Fo, t -- A) ~'(t ,  c,) d(7 
d t--zl 

where 

A ( I  + A ' W R A )  -~ A" <~ W ~  ~. 

Let S -1 = I + A 'W~_~A;  then by Shur's relations it follows that 

S = I - -  A ' ( A A '  + W~I) -1 A, 

A S A "  = A A '  - -  A A ' ( A A '  + W~I) -1 A A ' ,  

o r  

A S A "  = A A ' ( A A '  ~ W ~ )  -~ W-~ x. 

Therefore, it follows that 

A S A '  - -  W ~  1 = ( A A ' ( A A  -F W.~l )  -1  - - 1 )  W R  1 = - -  WT~I(AA ' i-  W~RI) -1 W~ ~ <~ O. 
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Now (8) becomes, with F' = Fl(t - -  A, F, to) , 

Fl(t, F, to) ~ Co(t , t --  A) + W~( t ,  t - -  A). 

W -1 exists by uniform observability. 
If (F, H) is completely observable, we shall show that there exists a P ~ C with the 

fixed point property that is II(t ,  P, to) = P as 

THEOREM 3. Suppose in the autonomous case (F, H) is completely observable, then 

lim H(t, O, to) 
t6~--ov 

exists and equals P a constant in C. Further, P is a solution of (1), and is a positive-semi- 
definite solution of 

FP  + PF' - -  P H ' R - 1 H P  + GQG' = O. 

Proof. Corollary 3 shows/-/(t, 0, to) is monotone nondecreasing in t or in -- t o 
in the ordering of C as in the autonomous case complete observability implies uniform 
observability. Lemma 4 shows under the assumption of complete observability 
l l ( t ,  O, to) is uniformly bounded in t o as to~, -- oo and consequently there exists P ~ C 
so that H(t, O, to) ~ P as to~ -- oo. 

Since for A > 0 

r i ( t ,  o, to - 4 )  = n ( t ,  ~ ( t o  , o, to - 4 ) ,  to) (9) 

and by continuity of solutions with respect to initial conditions (9) implies as, 
A--> + oo, 

P =/-/(t, P, to); 

hence P is a fixed-point solution of (1). 
From Theorem 1, if (F, G) is uniformly Q controllable, then II(t ,  F, to) is invertible 

for t > t o + 4 (with 4 the interval of controllability), for F ~ 0, and FI-l(t, 1", to) 
satisfies the Riccati equation 

dl"I-1 
clt 

_ F , I I - I  _ H - i F  _ I-I-1GQG'II-1 -~- H'R-1H, 

/-/-l(t o -~- A) : / / - l ( t  o -~- A,/ ' ,  to) > O, 

and Lemma 4 immediately implies 1-I-l(t, F, to) ~ Col(t, t - -  A) -+- WR(t, t - -  A) 
or; since A ~ B ~ A -1 ~ B -1 for A, B e C (see Beckenbach and Bellman [7]), 
it follows that; 
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LEMMA 5. If (F, G) is uniformly Q controllable, then 

(Col(t, t - - A) -: We(t,  t --- A)) -~ ~ II(t,  F, to) 

for all F "-~ 0 and A .< t --  t o , with ,4 the interval of controllability. 
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5. EXPODENTIAL STABILITY 

Our major result of this paper is Theorem 4, which will be proven under somewhat 
stronger hypothesis than is necessary in order to obtain a quick and tutorial proof. 
Basically the theorem can be extended to situations which are uniformly controllable 
and observable where the system matrices have uniform behavior. This theorem 
illustrates the fundamental importance of the concepts of controllability and obser- 
vability for regular behavior of the Riccati equation. 

THI,ZOREM 4. Suppose (F(t), G(t)) and (F(t), H(t)) are uniformly Q controllable and 
uniformly R observable, respectively, and that 

(1) G(t)Q(t) G'(t) > %1, 

(2) r] q~(t x , t~) H ~< Y(ta --  t2), 

(3) ] H'(t) R-~(t) H(t) l: < 3, 

with % and ~ positive real numbers and ~ a continuous function. Then the unforced equa- 
tion 

df~ 
d~-  = [ F ( t )  - -  P(t) H'(t) R-xn(t)]  f~ (10) 

is uniformly asymptotically stable and the solution of the Riccati equation H(t, P, or) 
satisfies, for t > to, 

'] H(t, F1, to) --  I-I(t, F2 , to) II ~ Ae -~(t-'~ 

with .4 > 0 and fl > 0 depending only on F 1 and F 2 . 

Proof. In view of our assumptions, the map Xto : R n --+ R ~ defined by 

x,o(c ) = r o 4- a, c, to) 

is a continuous function of c, uniformly in t o , where q~ is the solution of (10), and 
is larger than the maximum of the length interval of observability and controllability. 
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In view of this uniform continuity, it suffices to demonstrate the uniform asymptotic 
stability of the system 

where 

• ==/~(t) x, 

P(t)  - F( t )  - -  H(t ,  P, t o - -  a) H ' ( t )  R-a(t)  H( t )  

on intervals of form (to,-4-oo), we prove the uniform asymptotic stability by 
exhibiting a Liapunov function as 

2 1 V(x,  t) = I1 x IF.- (, ,r,, .-o) 

Now, by the choice of a it follows that 

%11X[I ~ ~ V(x , t )~c~ l[[xll  2 

for positive constants % and ~a, in view of Lemmas 4 and 5. Further, an easy calcu- 
lations reveals 

motion (10) t2 
d V  = - -  1! x I,H,RH+n--IGOarI--X ~ - -  f l i l  X 112 < O, 
--d-i- 

for ]3 positive using the h priori bounds for H -x and Assumption 1. Consequently, 
the Liapunov stability theorem implies that (10) is uniformly asymptotically stable 
and, in consequence, exponentially stable by the Perron-Liapunov-Malkin theorem 
(Hahn [8]). Hence, there exist real positive numbers 7 and .4, so that 

!1 Cr(t, a) II ~< Ae-~(t ' -") ,  

where Cr is the fundamental matrix of F(t) --H(t, F, to)H(t)R-l(t)H(t). Now let 

= n ( t ,  r l ,  to) - r i f t ,  r ~ ,  to); 

then 

Hence 

zJ = (F - -  H(t ,  1"1, to) H'R-XH) d + A(F' - -  H - -  R-~HH(t ,  P2 , to)), 

A(to) = / ' 1  - r 2 .  

�9 t [] e -2~'(t-t~ [[ A [[ ---- ]] ~bq(t, to) (F~ - - /2 )  ~bq( , to) [[ ~ ][/~a -- / '2  

and the desired result follows. 
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In the autonomous case, the following corollary characterizes the asymtotic 

behavior as: 

COROLLARY 4. Suppose F, G, H, Q and R, are autonomous but the system is com- 
pletely controllable and completely observable. Then, for every F ~ C, 

H(t ,  F, to) to-~-~ p = lim H(t,  O, to). 
to.-~--oo 

Corollary 4 clearly also holds in the non-autonomous case, under  uniform condi- 

tions, once one shows that limt0 .... .  1-I(t, O, to) exists which is quite easy using a 
variational argument,  but  seemingly difficult by a nonvariational argument.  

We mention that the monotone properties of Section 3 seem difficult to generalize 

to the nonautonomous case. 
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