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We screened a series of antibodies for their exclusive binding to the human hair follicle bulge. In a second step
these antibodies were to be used to identify basal keratinocytes and potential epithelial stem cells in the human
epidermis and in engineered skin substitutes. Of all the antibodies screened, we identified only one,
designated C8/144B, that exclusively recognized the hair follicle bulge. However, C8/144B-binding cells were
never detected in the human epidermal stratum basale. In the bulge C8/144B-binding cells gave rise to
cytokeratin 19-positive cells, which were also tracked in the outer root sheath between bulge and the hair
follicle matrix. Remarkably, cytokeratin 19-expressing cells were never detected in the hair follicle
infundibulum. Yet, cytokeratin 19-expressing keratinocytes were found in the epidermal stratum basale of
normal skin as a subpopulation of cytokeratin 15-positive (not C8/144B-positive) basal keratinocytes.
Cytokeratin 19/cytokeratin 15-positive keratinocytes decreased significantly with age. We suggest that
cytokeratin 19-expressing cells represent a subpopulation of basal keratinocytes in neonates and young
children (up to 1.5 years) that is particularly adapted to the lateral expansion of growing skin. Our data show
that cytokeratin 19 in combination with cytokeratin 15 is an important marker to routinely monitor epidermal
homeostasis and (at least indirectly) the self-renewing potential of engineered skin.
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INTRODUCTION
Epidermal self-renewal in native skin indispensably requires
adult epidermal stem cells (SCs). This is equally true for all
sorts of surgically harvested as well as laboratory grown skin
grafts. Epidermal SCs are thought to reside in the basal layer
of the interfollicular epidermis and are supposed to be
unipotent SCs that give rise to only one cell lineage, namely
keratinocytes (Brouard and Barrandon, 2003). Furthermore,
there is convincing evidence that multipotent epithelial SCs
are located in the bulge region of the hair follicle (HF;
Blanpain et al., 2004; Morris et al., 2004). These cells have
the potential of generating at least three different cell lineages
including hair matrix cells, sebaceous gland cells, and
epidermal keratinocytes (Alonso and Fuchs, 2003).

Although significant advances were made in identifying
and locating the epithelial stem cell compartment in rodent
skin (Cotsarelis et al., 1990; Taylor et al., 2000; Oshima et al.,
2001; Braun et al., 2003; Blanpain et al., 2004; Fuchs et al.,
2004; Morris et al., 2004), stem cell data regarding human
skin are still vague. A number of putative stem cell markers,
such as b1-integrin (Jones and Watt, 1993; Jones et al., 1995),
a6-integrin in combination with CD71 (Li et al., 1998;
Webb et al., 2004), CD34 (Trempus et al., 2003; Blanpain
et al., 2004), AC133 (Belicchi et al., 2004), p63 (Pellegrini
et al., 2001; Koster and Roop, 2004), keratin (K)15 (Lyle et al.,
1998), ABCG2 (Terunuma et al., 2003; Triel et al., 2004), and
BMI-1 (Park et al., 2003) have been suggested. However,
convincing evidence that these markers exclusively identify
cells that have the capacity to self-renew and to maintain
long-term tissue integrity and function is mostly missing.

Clinical follow-up studies demonstrate that epidermis
generated from cultured epidermal autografts can self-renew
for decades (Carsin et al., 2000), indicating that a sufficient
number of viable stem cells was initially present and survived
in the transplanted graft. On the other hand there is also
evidence that freshly transplanted cultured epidermal auto-
grafts are lost, due to the melting graft phenomenon, when
grafts contain an insufficient number of viable epidermal
stem cells (Matsumura et al., 1998).
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According to the literature there are different views on
how keratinocyte stem cells are organized in human skin.
They may be arranged as epidermal proliferative units
(Mackenzie, 1970; Potten and Morris, 1988), or be derived
from skin appendages. Also, homeostatic regulation may
cause suprabasal (K10 expressing) keratinocytes to retro-
differentiate into unipotent self-renewing keratinocytes (Li
et al., 2004), for instance in a wound with a shortage of self-
renewing keratinocytes.

On the basis of the above considerations we aimed at
searching for tools suited to evaluate the quality and self-
renewing potential of engineered human dermoepidermal
skin grafts. We present data showing that the C8/144B
antibody is the only one in our antibody screening that
recognizes a distinct cell population in the HF bulge. This cell
population gives rise to K19-positive cells which may
produce matrix cells that contribute to hair growth. We also
provide evidence that K19-expressing cells represent a
subpopulation of keratinocytes in the human stratum basale
during proliferative lateral skin expansion. We have devel-
oped a one-step dermoepidermal transplantation model
which reveals that K19 is a valuable marker to monitor the
quality, homeostasis, and self-renewing capacity of engi-
neered skin substitutes. Notably, we found that the situation
in human skin differs in many aspects from that in mouse.

RESULTS
Two types of epithelial cells can be distinguished in the hair
follicle bulge of normal human skin

We have analyzed skin biopsies from human individuals
(aged 1 day to 49 years). We intended to identify antibodies
specifically binding to the human HF bulge, a region known

to contain multipotent skin epithelial stem cells (Cotsarelis
et al., 1990; Taylor et al., 2000; Oshima et al., 2001; Braun
et al., 2003; Fuchs et al., 2004). In a second step we
employed selected bulge-specific antibodies to search for
keratinocyte stem cells within the stratum basale. Antibodies
directed to the following antigens were tested: b1-integrin,
a6-integrin, CD71, ABCG2, p63, Ki67, K15, antigen detected
by C8/144B, K19, CD34, melanoma chondroitin sulfate
proteoglycan, PLZF, BMI-1, CD200, follistatin, Dkk3, and
Wif-1 (Table 1).

The only antibody, which exclusively bound to the HF
bulge, was clone C8/144B from Dako (Baar, Switzerland;
Figure 1a; Table 1). The C8/144B monoclonal antibody was
originally generated against a short intracytoplasmic peptide
of CD8. There are reports claiming that C8/144B recognizes
K15 in the bulge region of human HFs (Lyle et al., 1998).
Using confocal microscopy we confirmed that C8/144B
indeed specifically binds to the HF bulge (Figure 1b and c;
Table 1). Thus, we consider C8/144B the most reliable
human HF bulge marker presently available.

The human HF bulge was also recognized by an antibody
to K19, however, K19-positive cells were also detected along
the variable region of the HF down to the HF matrix (Figure
1a). Importantly, K19-positive cells were never seen in the
infundibulum above the bulge (Figure 1a), suggesting that
HF-derived, K19-expressing cells do usually not give rise to
epidermal cells (under nontraumatic conditions).

K19-positive cells originate from CD8/144B-expressing cells in
the hair follicle bulge of normal human skin

The data shown in Figure 1a raise the possibility that K19-
positive cells originate in the HF bulge and migrate from there

Table 1. Presumptive keratinocyte stem cell-specific antibodies

Binding in human HF Binding in human epidermis

Antigen Reference Antibody (clone) Bulge ORS/IRS Basal layer Suprabasal

CD34 Blanpain et al. (2004) 581, My10, 8G12 + + � �

CK19 Michel et al. (1996) RCK108 + + + �

CK15 Ohyama et al. (2006) LHK15, SPM190 + + + �

CK15 Lyle et al. (1998) C8/144B + � � �

p63 Koster and Roop (2004) 4A4 + + + +

Dkk3 Ohyama et al. (2006) Polyclonal � � � �

Wif-1 Ohyama et al. (2006) Polyclonal � � � �

MCSP Legg et al. (2003) LHM-2 + + + �

CD133 Belicchi et al. (2004) AC133 + + + �

Follistatin Ohyama et al. (2006) 85918 + + + �

b1-Integrin Jones and Watt (1993) 7F10 + � + +

PLZF Costoya et al. (2004) 2A9 + + � +

BMI-1 Park et al. (2003) 22F6 + + + +

ABCG2 Triel et al. (2004) 5DS � + + +

ORS/IRS, outer root sheath/inner root sheath
The presumptive keratinocyte stem cell-specific antibodies, tested on interfollicular epidermis and the hair follicle outer root sheath.
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to the HF matrix. Therefore, we also performed double
immunofluorescence using C8/144B and K19 antibodies and
confocal microscopy on HF bulge sections (Figure 1c–e).

We identified a region in the asymmetrically organized
bulge, which consisted almost exclusively of cells recognized
by the C8/144B antibody (Figure 1b). As the optical sections
approached the region underneath the C8/144B-positive cells
(toward the centrally located hair shaft), a short zone of cells
was detected by both the C8/144B (FITC conjugated) and the
anti-K19 (PE conjugated) antibodies resulting in a yellow
fluorescence (Figure 1c and d). Towards the inner cell layers
of the bulge, cells recognized by C8/144B became rare,
whereas K19-expressing cells were more abundant (Figure
1e). These data imply that C8/144B-binding and K19-
expressing cells are organized in distinct layers in the human
HF bulge. The existence of a small transitional zone in which
both markers are expressed in the same cells suggests that
K19-positive cells are directly derived from C8/144B-binding
cells.

A scheme summarizing these results is shown in Figure 1f.
In accordance to other published data, our findings suggest
that there are two distinct populations of epithelial cells in the
human HF bulge (Blanpain et al., 2004). However, in contrast
to Blanpain et al., who described a CD34-positive cell
population restricted to the mouse HF bulge, we detected
CD34-expressing cells all along the outer root sheath in the
human HF.

C8/144B does not recognize interfollicular keratinocytes

Upon testing the C8/144B antibody no cells were recognized
in human interfollicular epidermis. This was invariably the
case in human skin derived from different sites, such as
foreskin, scalp, abdomen, back, and retroauricular (Table 2).
This finding suggests that (multipotent) stem cells in the HF
bulge are distinct from (unipotent) stem cells located in the
epidermis.

To gain more insight into their K15 specificity, we
compared C8/144B with two commercially available, K15-
specific antibodies, designated LHK15 and SPM190. Proteins
were extracted from HaCaT cells, which are known to
express K15 on cell culture plastic (Werner and Munz, 2000)
and analyzed in western blots. The LHK15 antibody clearly
recognized a band of 55 kDa (Figure 2). SPM190 also showed
the same prominent band, however, also weakly detected
some additional proteins. Interestingly, C8/144B also showed
weak binding to the diagnostic protein (Figure 2). Differences
in the affinity of the three antibodies to K15 may account for
these variations in staining intensities.

K19-positive cells are a subpopulation of K15-expressing
keratinocytes in the interfollicular epidermis of normal human
skin

In very young skin (from neonate to 1.5-year old) K15 was
expressed in all keratinocytes of the stratum basale (Figure
3a), whereas in the skin of older patients it was expressed in
cells of the lower parts of the rete ridges only (Figure 3b).
Suprabasal keratinocytes did not show K15 expression. These
data are in accord with previous studies (Waseem et al.,
1999; Ghali et al., 2004; Porter et al, 2000; Webb et al.,
2004) and imply that in human interfollicular epidermis K15
is not necessarily a stem cell marker but rather a marker for

Basal lamina

Matrix

C8/144B
C8/144B + CK19
CK19

Epidermis

Bulge
ORS

1 2 3

Mx

Bu

CR C8/144B CK19

Figure 1. Two different cell types can be distinguished in the human hair

follicle bulge. (a) Double immunofluorescence employing C8/144B (green)

and anti-K19 (red) antibodies on scalp skin of a 3-year-old child. The positions

of the three cross-sections through the hair follicle are indicated by 1, 2, and

3. C8/144B exclusively binds to cells of the HF bulge (Bu and 1). K19-specific

antibodies recognize cells in the bulge and all along the outer root sheath (2)

down to the HF matrix (Mx and 3). Nuclei are counterstained with the

Hoechst dye 33342 (blue). None of the two antibodies binds to the constant

region (CR) above the HF bulge. (b–e) Serial confocal sections show the

asymmetric organization of the HF bulge and reveal C8/144B-binding

multipotent stem cells (green). Boxes (white frames) indicate the magnified

region depicted underneath. (c, d) A thin layer of C8/144B and K19-double-

positive cells (arrows in d, and yellow cells in the magnified field in d)

becomes obvious underneath the layer of C8/144B-positive cells. (e) Bulge-

derived, K19-expressing cells at the lower end of the bulge region. (f) Scheme,

summarizing the immunofluorescence patterns (Bu, bulge; CR, constant

region; Mx, hair follicle matrix). All scale bars: 50 mm.
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basal keratinocytes anchored to a functional basement
membrane.

K19-positive basal keratinocytes were found in all body
sites investigated (Table 2). Importantly, K19 was expressed
in an age-dependent manner. The number of K19-positive
basal cells accounted for 50–70% of basal keratinocytes in
newborn skin (Figure 3c), 10–30% in infant skin (8 days to 2
years), and was hardly detectable in adult skin (18–49 years;
data not shown).

K19-positive cells represented a subpopulation of K15-
expressing basal keratinocytes (Figure 3d). K19/K15-expres-
sing basal keratinocytes were almost always arranged in
clusters (Figure 3d). K20 staining demonstrated that about
0.1% of all K19-expressing cells were Merkel cells (data not
shown).

Basal keratinocytes-expressing K19 are indicators of an intact
epidermal homeostasis in dermoepidermal substitutes
engineered in vitro

To evaluate the fate of K19-expressing cells on a plastic
substrate in culture, epidermal keratinocytes derived from
children and adults (Table 2) were immunostained with K19
antibodies. At 2 days after plating, keratinocytes were
completely spread out on the substrate. Several K19-positive
cells were arranged in pairs (Figure 4a) indicating that the first
mitoses had occurred. After 4 days in culture, K19-positive

Table 2. K19 and K15 expression in basal
keratinocytes in correlation with donor sites and
donor age

Scalp Abdomen

Years CK15 CK19 CK15 CK19

1.5 ++ + 8 days +++ +++

1.8 ++ � 10 months +++ +

2.2 ++ � 17 years ++ �

6.3 ++ � 18 years ++ �

6.3 ++ � 41 years ++ �

7.5 ++ � 49 years ++ �

14 ++ �

Back

CK15 CK19

1 days +++ +++

Retroauricular Foreskin

CK15 CK19 years CK15 CK19

21 days +++ +++ 1 +++ ++

11 years ++ � 6 ++ �

12 years ++ � 15 ++ �

K19 expression is detectable in skin of children not older than 2 years,
whereas K15 is expressed in all sites, at all ages indicated.
+, 5–10% of basal keratinocytes.
++, 20–30% of basal keratinocytes.
+++, 50–70% of basal keratinocytes.
�, no basal keratinocytes recognized.

C8/144BSPMLHK

90 kDa

50 kDa

Figure 2. Testing different K15-specific antibodies by immunoblotting. Three

different antibodies, LHK15, SPM190, and C8/144B were used. LHK15 and

SPM190 clearly recognized a band of 55 kDa. C8/144B also showed some

weak binding to the 55 kDa band. Equal volumes (25ml) of the identical lysate

were loaded.

Figure 3. K19-expressing cells are a subpopulation of K15-positive

keratinocytes. (a) All basal keratinocytes of the abdominal epidermis of a 10-

month-old child express K15 (green). (b) Basal keratinocytes derived from the

back of an 8-year-old child express K15 in the tips of the rete ridges. (c) About

50% of all basal keratinocytes isolated from the back of a 1-day-old neonate

express K19 (red). (d) Double immunofluorescence using K15 (green) and K19

(red) antibodies on the epidermis derived from the retroauricular skin of a 3-

week-old child. Note that K19-positive cells are a subpopulation of K15-

expressing cells. Nuclei are counterstained with the Hoechst 33342 dye

(blue). All scale bars: 50 mm.

www.jidonline.org 483

L Pontiggia et al.
Evaluating Engineered Human Skin Substitutes

http://www.jidonline.org


cells were still arranged in colonies (Figure 4b). After 7–10
days, the keratinocytes had become confluent in culture and
about 30–50% of the cells expressed K19 (Figure 4c). The
significant increase of K19-expressing keratinocytes derived
from young children (up to 5 years) is shown in Figure 4d. In
contrast, adult keratinocytes never gave rise to this high
numbers of K19-expressing cells. In keratinocyte cultures
derived from 40 to 50 years old patients we found 3–5% of
K19-posive cells 7, 9, and 15 days after plating (Figure 4d).
These data suggest that the in vitro outgrowth of K19-positive
keratinocytes decrease with increasing age. They also
underscore the value of K19 expression as a marker to
monitor the self-renewing and regenerating potential of a
given epidermal substitute.

To determine the epidermal regenerative capacity of
keratinocytes, primary cells were grown into multilayered
epidermal constructs. Keratinocytes were plated onto col-
lagen type-I hydrogels populated by dermal fibroblasts on
which they developed into multilayered epidermal equiva-
lents within 3 weeks (Figure 5a). These exhibited a basal layer
of densely packed cells, followed by 10–15 layers of
differentiating keratinocytes and some layers of terminally
differentiated cells forming a stratum corneum (Figure 5a).
Upon organotypic dermoepidermal culture on collagen
type-I hydrogels, homeostatic regulation caused excess
K19-positive keratinocytes (previously expanded on plastic)
to be eliminated by their release into terminally differentiated
strata. However, a substantial number of K19-expressing cells

remained in the basal layer (Figure 5b). A basal lamina-like
structure had been deposited, as demonstrated by antibodies
to laminin 10 (Figure 5c). Furthermore, K15 was not
expressed in the basal cells of these constructs (data not
shown), indicating that the in vitro grown epidermis still lacks
some significant organizational properties in vitro. However,
as these substitutes perfectly survived after transplantation
onto immunoincompetent nude rats, it is clear that (although
K15 was not expressed in these basal keratinocytes) a self-
renewing keratinocyte compartment was existent. Ki67-
expressing, that is proliferating keratinocytes, were present
4 weeks after seeding and were located almost exclusively
basally (Figure 5d). In contrast to the situation on cell culture
plastic, only a small percentage (3–5%) of K19-expressing
cells was positive for Ki67, indicating cell proliferation (see
also Figure 6h).

These findings are consistent with the view that K19-
positive keratinocytes in the stratum basale reveal a ‘‘young’’
epidermis, and are indicators of intact tissue homeostasis in
engineered skin substitutes.

Basal K15/K19-expressing cells are indicators of epidermal
homeostasis in skin resulting from grafted in vitro engineered
dermoepidermal substitutes

We sought to determine the regenerative potential and
homeostasis of dermoepidermal composites after transplanta-
tion. Full thickness skin defects were created on immunoin-
competent Nu/Nu rats and sheltered against the surrounding
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Figure 4. K19-positive keratinocytes proliferate under non-homeostatic conditions on cell culture plastic. (a) Doublets of K19-expressing keratinocytes. (b)

K19-positive and K19-negative colonies of human keratinocytes can be observed 4 days after plating. (c) A confluent layer of keratinocytes 8 days after plating. A

total of 30–50% of the cells express K19. (d) Quantification of K19-expressing cells isolated from children (from neonate to 5 years) at four different time points,

reveals a steadily increasing number of K19-positive keratinocytes on cell culture plastic. Notably, adult (40 to 50-year old) keratinocytes show 10 times less

K19-positive cells after 7 days in culture. Dark columns represent results with infant keratinocytes (infant KC). Bright columns represent results with adult

keratinocytes (adult KC).
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skin by implanting a transplantation chamber, a modified
Fusenig chamber (Fusenig et al., 1983), to prevent wound
healing through rat-derived cells (Figure 6a).

The only dermoepidermal skin grafts that were rapidly
and sufficiently vascularized after transplantation, and hence
readily integrated into the wound, were those based on
collagen type-I hydrogels. Importantly, these grafts could
be transplanted in only one single surgical intervention.
Histological analyses 21 days after transplantation revealed
an epidermis with a near to normal stratification and
discernable rete ridges (Figure 6b). The human origin of the
transplanted keratinocytes was confirmed using a mouse anti-
human nuclei monoclonal antibody (Figure 6c). K19-positive
cells were relatively abundant and formed monolayered
clusters, firmly attached to a basement membrane-like

Ki-67- CK19

Lam 10

CK19

Figure 5. Evaluation of engineered epidermis equivalents. (a) Histological

section and H/E staining of an in vitro engineered human epidermis

equivalent grown on a collagen type-I gel which contains human dermal

fibroblasts, 4 weeks after plating. The epidermis equivalent consists of a

stratum basale, 10–15 keratinocyte layers, and a stratum corneum. (b) K19-

expressing keratinocytes are apparently not yet polarized and are somewhat

scattered in the basal layer. Homeostatic regulation in an organotypic graft

causes excess K19-positive keratinocytes (created during their propagation on

cell culture plastic) to be terminally differentiated, and hence eliminated,

during stratification. (c) Laminin 10 staining shows that a basement membrane

is about to be deposited. (d) Ki67/K19 double staining. Proliferating, Ki67-

expressing, keratinocytes are located basally. The arrow indicates a rare Ki67/

K19-double-positive keratinocyte. All scale bars: 50mm.
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Figure 6. K19-positive human keratinocytes are indicative of an intact

epidermal homeostasis in a grafted dermoepidermal skin substitute. (a)

Dermoepidermal skin substitutes consisting of an epidermal equivalent and a

collagen type-I hydrogel containing dermal fibroblasts was transplanted on

the back of immunoincompetent Nu/Nu rats. At 3 weeks after transplantation,

an intact human epidermis covered the former full thickness wound. (b) H/E

staining of cryosections through the grafted area 3 weeks after transplantation

shows a near normal skin histology apart from missing skin appendages. The

epidermis reveals an almost normal stratification with already developing rete

ridges. It is tightly connected to the underlying dermis. (c) The antibody

specific to human nuclei confirms the human origin of the epidermis (green

fluorescence). (d) K19-positive cells (red) are organized in clusters. Note that

K19-positive cells are restricted to the well-defined stratum basale. These cells

are strictly adhering to the continuous basement membrane (green) which

here is visualized by a laminin-5 antibody. (e) In contrast to the

nontransplanted engineered graft, K15 (green) is now expressed in all

keratinocytes of the basal-cell layer. K19-expressing cells (red) are a

subpopulation of K15-positive keratinocytes. (f) Human dermal fibroblasts

(green) are recognized by the human CD90 (Thy-1)-specific antibody,

whereas the rat tissue underneath stains negatively. (g) Within the clusters of

K19-expressing cells only few, if any, cells were proliferating as shown by

antibodies to the cell-cycle marker Ki67. (h) The vast majority of K19-

expressing keratinocytes are slowly proliferating (or nonproliferating) as seen

in human skin, in engineered constructs in vitro, and after their

transplantation in vivo. In contrast, when dissociated and grown on cell

culture plastic, almost every K19-expressing cell becomes Ki67-positive, thus

indicating intensive cell proliferation. All scale bars: 50 mm.

www.jidonline.org 485

L Pontiggia et al.
Evaluating Engineered Human Skin Substitutes

http://www.jidonline.org


structure, as demonstrated by K19/laminin 5 double
staining (Figure 6d). The number of K19-expressing cells, 3
weeks after transplantation was comparable to the number
found in the skin of 0–2 years old children. Importantly, this
was also true for grafts derived from keratinocytes of adult
donors.

In contrast to nontransplanted skin substitutes, trans-
planted grafts exhibited a continuous layer of basal cells
expressing K15, with K19-positive cells representing a
subpopulation of these (Figure 6e). This is identical to the
situation in native skin (Figure 3d).

Obviously, human dermal fibroblasts, initially submerged
in polymerizing collagen type-I, remained viable and
proliferated after transplantation, as a near normal dermal
layer of human origin was clearly distinguishable from the
underlying rat tissue using an antibody recognizing human
fibroblasts, 3 weeks after transplantation (Figure 6f). Thus,
dermoepidermal grafts after transplantation matured into
tissues closely resembling normal human skin.

Co-staining the stratum basale with Ki67 and K19-specific
antibodies and the subsequent quantification of double-
positive cells revealed that in human skin, in engineered
grafts (in vitro), and in transplanted engineered substitutes
(Figure 6g), the number of double-positive cells was about
5% of all K19-positive keratinocytes (Figure 6h). These
findings are in accord with the hypothesis that the vast
majority of K19-expressing keratinocytes are slowly prolifer-
ating (or nonproliferating). In contrast, 90% of the K19-
expressing keratinocytes derived from young children (up to 5
years), when grown on cell culture plastic, became Ki67-
positive and hence proliferating (Figure 6h). As a conse-
quence these ‘‘young’’ (and initially quiescent) K19-positive
cells were finally dominating the culture.

Comparing K19 expression with other potential keratinocyte
stem cell markers

We were wondering whether K19-positive keratinocytes
were also recognized by other described keratinocyte stem
cell markers. In particular the combination of a6-integrin and
CD71 (transferrin receptor) antibodies appears to be relevant
in this respect. a6-Integrin-bright (bri)/CD71-dim keratino-
cytes have been published to be enriched for keratinocyte
stem cells (Li et al., 1998; Tani et al., 2000). Our
Fluorescence activated cell sorting (FACS) analyses revealed
that the a6-integrin-bri/CD71-dim fraction shows indeed
significantly more K19-positive keratinocytes (up to 3�
more) than the initially prepared, total keratinocyte popula-
tion (Figure 7). The a6-integrin-dim population contained
almost no K19-positive cells (data not shown).

DISCUSSION
The goal of this study was to identify markers suited to
evaluate epidermal homeostasis and the self-renewing
potential of skin substitutes, both in vitro and after
transplantation. As the C8/144B antibody binds exclusively
to the HF bulge, the corresponding cells are most likely
identical to multipotent epithelial stem cells (Cotsarelis,
2006). We provide evidence that these cells give rise to

two distinct cell fractions. One C8/144B-binding fraction
remains in place to maintain the multipotent stem cell pool.
The second fraction develops into a transiently existing cell
population which binds both C8/144B and K19-specific
antibodies. These double-positive cells then give rise to K19-
expressing cells which are no longer recognized by C8/144B.
According to the stem cell migration hypothesis (Fuchs et al.,
2001; Oshima et al., 2001), K19-positive cells may represent
unipotent, self-renewing keratinocytes exiting the bulge and
migrating along the outer root sheet to the basis of the HF.
Here they may maintain the pool of matrix cells that
contribute to hair growth.

K19-expressing keratinocytes are not found in the constant
region of the HF above the bulge. Hence, bulge-derived K19-
positive cells may not contribute to epidermal renewal (under
normal, homeostatic conditions). This view is supported by
convincing recent reports showing that bulge-derived stem
cells are not responsible for maintaining the interfollicular
epidermis in homeostatic conditions (Claudinot et al., 2005;
Ito et al., 2005; Levy et al., 2005).

Nevertheless, we found a distinct population of K19-
positive keratinocytes in both the stratum basale of young
individuals and the basal layer of engineered, stratified skin
substitutes. The clustered pattern of these keratinocytes
corresponds to the distribution one would expect for self-
renewing keratinocytes in the stratum basale. Concomitantly,
there are several reports stating that K19-expressing kerati-
nocytes represent self-renewing cells (Lane et al., 1991; Jones
et al., 1995; Michel et al., 1996; Cotsarelis et al., 1999;
Akiyama et al., 2000).
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Figure 7. Comparing K19-positive keratinocytes and a6-integrin-bright/

CD71-diminished cells. Staining primary keratinocytes for a6-integrin, results

in two major cell populations, one of which shows low a6 expression

(a6-dim), whereas the other exhibits high a6 expression (a6-bri). A sub-

population of a6-bri cells expresses low levels of CD71 (a6-bri/CD71-dim).

a6-bri/CD71-dim cells are thought to contain keratinocyte stem cells. FACS

analyses reveals that these a6-bri/CD71-dim fraction contains 49%

K19-positive keratinocytes, whereas only 1% of the total keratinocyte

preparation are K19 positive.
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On the basis of our data the following questions arise:
What are the properties of the distinct set of K19-positve
keratinocytes in the human stratum basale? Why are K19-
expressing cells so dramatically reduced with age?

K19-positive keratinocytes are highly abundant in the
epidermis of fetuses and neonates (Van Muijen et al., 1987;
Kwaspen et al., 1997). We show here that K19-positive
keratinocytes are still detectable in the stratum basale of 1.5-
year-old children. The epidermis of these individuals is
characterized by rapid lateral growth. We suggest that K19-
positive cells represent a population that is adapted to this
rapid lateral expansion of the epidermis and represents a
keratinocyte population that is uncommitted to terminal
squamous differentiation. As with progressing age this lateral
growth ceases, this type of cell is no longer required.
Stratification and permanent regeneration (vertical mainte-
nance), however, are ongoing in adult skin. This of course
also requires self-renewing keratinocytes, which in adult skin
are extremely rare or K19-negative. It still remains to be
determined where in the adult, interfollicular self-renewing
keratinocytes are derived from. As in the adult, significant
numbers of K19-expressing cells are located in the HF, it
cannot be excluded that these cells contribute to the basal
epidermal cell pool, should there be a shortage of self-
renewing cells. An additional interesting possibility is that in
humans keratinocyte stem cells may derive from sweat glands
(which are distributed almost throughout the entire human
skin), an issue that still is only moderately investigated.

How do K19-expressing human keratinocytes compare to
K19-positive keratinocytes in mouse? The murine K19 gene
shows high homology to its human counterpart, and the gene
is located in the acidic keratin cluster on mouse chromosome
11 (Lussier et al., 1990). In both species precursor cells in
different tissues display high K19 levels (Brembeck and
Rustgi, 2000). However, in mouse K19 is expressed in the HF
but is absent from the interfollicular epidermis at hairy sites
(Michel et al., 1996). Once again this difference has to be
taken into account when comparing biological phenomena
in both species.

Conventional cell culture conditions provide an environ-
ment in which dissociated (single) primary keratinocytes have
to newly establish their epithelial phenotype. The regulatory
mechanisms of stratification and tissue homeostasis are
greatly disturbed under these culture conditions. These
conditions may represent a situation of extreme wound
healing under which initially quiescent K19-expressing cells
enter a state of proliferation. In contrast, organotypic
(dermoepidermal) culture of keratinocytes, using collagen
hydrogels that contain fibroblasts, induces epidermal
stratification and tissue homeostasis. As a consequence
surplus K19-positive cells (having accumulated during cell
expansion on a plastic substrate) are now eliminated by
terminal differentiation. Yet, a physiologically reasonable
number of basal K19-expressing keratinocytes remains in the
basal layer.

As for the quality control of engineered skin substitutes,
these basal, K19-positive cells are important indicators of a
young, proliferating, and self-renewing graft.

It has been reported that the C8/144B antibody recognizes
K15 and defines the location of human HF stem cells in the
bulge (Lyle et al., 1998). However, further work demon-
strated that K15 expression is not only restricted to the bulge
but is also expressed in a significant stretch of the outer root
sheath of the human HF and in the stratum basale of human
epidermis (Porter et al., 2000). We show here that the
C8/144B antibody indeed weakly recognizes K15 in
immunoblots, whereas it does not detect keratinocytes in
the human stratum basale. A possible explanation for this
discrepancy is that in human HF bulge cells, a distinct
epitope of K15 is exposed, which is masked in the
keratinocytes of the stratum basale. Furthermore, it is likely
that there are differences in the affinities of the three K15-
specific antibodies used in our immunostainings. Additional
experiments are required to shed some more light on this
issue.

Using collagen type-I hydrogels and a rat transplantation
model we were able to achieve rapid vascularization and
functional integration of complex dermoepidermal skin
substitutes after one single surgical intervention. This was
not possible using porous lyophilized collagen scaffolds
(sponges) for epidermal reconstitution, because vasculariza-
tion was too slow to keep the epidermal substitute alive.

It was also evident that transplantation of engineered
dermoepidermal composites was a crucial step in completing
physiological differentiation and epidermal stratification.
Employing K19 and K15 as markers, it became possible to
show that the organism is an extremely efficient bioreactor
and a perfect regulator of organ structure and function.

In summary it can be said that K19/K15-double-positive
keratinocytes represent a distinct basal-cell population in
growing skin. For engineered skin substitutes, K19 and K15 in
combination are valuable tools to monitor tissue homeostasis
and the potential to self-renew.

MATERIALS AND METHODS
Preparation of skin specimens

Human skin samples were taken from the scalp, the abdomen, the

retroauricular region, or from foreskins. Parents or patients gave their

written informed consent. The medical ethical committee of the

Kanton Zurich approved all described studies. Furthermore this study

was conducted according to the Declaration of Helsinki Principles.

Tissues were embedded in OCT compound (Sakura Finetek/

Digitana AG, Horgen, Switzerland) and placed in dry ice. Cryosec-

tions of 6–30 mm were cut at �30 1C.

Isolation and culture of keratinocytes and fibroblasts

Skin biopsies were digested for 15–18 hours at 4 1C in 12 U ml�1

dispase in Hank’s buffered salt solution containing 5 mg ml�1

gentamycin. Thereafter the epidermis and the dermis were separated

using forceps. The epidermis was further digested in 1% trypsin,

5 mM EDTA for maximal 3 minutes at 37 1C. The dermal tissue was

digested in 2 mg ml�1 collagenase for approximately 60 minutes at

37 1C. Epidermal cells were resuspended in serum-free keratinocyte

medium containing 25 mg ml�1 bovine pituitary extract, 0.2 ng ml�1

EGF, and 5mg ml�1 gentamycin. A total of 4� 106 dermal cells per

Ø10 cm dish were grown in DMEM supplemented with 10% fetal
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calf serum, 4 mM L-alanyl-L-glutamine, 1 mM sodium pyruvate, and

5mg ml�1 gentamycin. Collagenase was from Sigma (Buchs, Switzer-

land), all other compounds were from Invitrogen (Basel, Switzer-

land).

Organotypic cultures

Organotypic cultures were prepared using a previously established

transwell system (six-well cell culture inserts with membranes of

3.0 mm pore size; BD Falcon, Basel, Switzerland). The membranes

were covered with collagen type-I hydrogels which contained

1� 105 human dermal fibroblasts (passage 1). These dermal

equivalents were grown in DMEM for 6 days to allow for gel

contraction. Subsequently 5� 105 basal keratinocytes were seeded

on each dermal equivalent. Triplicate wells were set up for each

dermoepidermal substitute.

Keratinocytes were cultured for 4 days in three parts of DMEM

and one part of Ham’s F12, 0.3% fetal calf serum, 4 mM L-glutamine,

1 mM sodium pyruvate, 5mg ml�1 gentamycin (all; Invitrogen),

0.4 mg ml�1 hydrocortisone, 5mg ml�1 insulin, 5mg ml�1 transferrin,

2 nM triiodothyronine, 180 mM adenine, 5.3 pM sodium selenite,

20 nM progesterone, and 1.8 mM CaCl2 (all; Sigma). After 4 days

the keratinocyte layer was raised to the air/liquid interface and

cultured for 3 additional weeks. During the first week, the culture

medium was a 1:1 mix of DMEM and Ham’s F12 containing the

supplements described above and 2% FCS (Invitrogen). The fetal calf

serum was reduced to 1% during the second and third week.

Cultures were finally processed for transplantation or for cryo- and

paraffin sections.

Transplantation of cultured dermoepidermal composites

Dermoepidermal grafts were transplanted onto full thickness skin

defects created surgically and encased by polypropylene rings,

27 mm in diameter (modified Fusenig chamber; Fusenig et al., 1983).

The rings were sutured on the back of 10-week-old, female athymic

Nu/Nu rats. The transplants were covered with a silicon foil. After 14

days the grafts were excised in toto and processed for cryo- and

paraffin sections. Anesthesia for all procedures was performed using

isoflurane (Abbott AG, Baar, Switzerland).

Antibodies

CD8 (clone C8/144B, 200mg ml�1, 1:30) from Dako (Switzerland AG,

Baar, Switzerland); CD71 (clone berT9, 1:10): K19 (clone RCK108,

1:100); K20 (clone Ks20.8, 1:100); K10 (clone DE-K10, 1:100) from

Santa Cruz (Labforce AG, Nunningen, Switzerland); laminin 5 (clone

P3H9-2, 1:100); p63 (clone 4A4, 1:100); Dkk3 (polyclonal, 1:100);

Wif-1 (polyclonal, 1:100) from Chemicon (Millipore AG, Zug,

Switzerland); K15 (clone LHK15, 100mg ml�1, 1:100; clone SPM190,

100mg ml�1, 1:50); human nuclei (clone 235-1, 1:50); CD49f (clone

4F10, 1:200) from R&D Systems (Abingdon, UK); ABCG2 (clone 5DS,

1:20); follistatin (clone 85918, 1:40); melanoma chondroitin sulfate

proteoglycan (clone LHM-2, 1:500) from BD Pharmingen (Basel,

Switzerland); Ki67 (clone B56, 1:200); CD34, PE conjugated (clone

581, 1:50) from ABD Serotec (Dusseldorf, Germany); CD200 (clone

MRC OX104, 1:20) from Dianova (Hamburg, Germany); human

fibroblast (clone AS02, anti-CD90/Thy-1, 1:100) from Calbiochem

(VWR, Dietikon, Switzerland); PLZF (clone 2A9, 1:50) from Upstate

(Millipore AG); BMI-1 (clone 22F6, 1:100) from Spring Bioscience

(AMS Biotechnology, Bioggio, Switzerland). Goat anti-mouse coupled

with horseradish peroxidase (polyclonal). For double immunofluores-

cence, some of the primary antibodies were prelabeled with Alexa

555-conjugated polyclonal goat F(ab0)2 fragments, according to the

instructions of the manufacturer (Zenon Mouse IgG Labeling Kit;

Molecular Probes/Invitrogen, Basel, Switzerland).

Immunohistochemical staining

Sections and/or cells were fixed and permeabilized in acetone for 5

minutes at �20 1C, air dried and washed 3� in phosphate-buffered

saline (PBS). Thereafter they were blocked in PBS containing 2%

BSA (Sigma) for 30 minutes. Incubation with the diluted first

antibody was performed in blocking buffer for 1 hour at room

temperature. Slides were washed three times for 5 minutes in PBS

and blocked for additional 15 minutes. The secondary antibody was

added for 1 hour. Thereafter sections and/or cells were incubated for

5 minutes in PBS containing 1mg ml�1 Hoechst 33342 (Sigma) and

then washed twice for 5 minutes in PBS. Finally, the probes were

mounted with Dako mounting solution (Dako) containing

25 mg ml�1 of DABCO anti-quenching agent (Sigma).

Western blotting

HaCaT cells (3� 106) were lysed on ice in 1 ml high salt lysis buffer

(1.5 M KCl, 0.5% Triton X-100, 5 mM EDTA) containing a proteinase

inhibitor cocktail (Roche Diagnostics AG, Rotkreuz, Switzerland).

The lysate was centrifuged at 15,000g at 4 1C for 10 minutes and the

pellet was solubilized in 200 ml 9 M urea, 50 mM Tris-HCl pH 7.5 for

20 minutes at room temperature. Twenty ml of 6� Lämmli Loading

buffer containing b-mercaptoethanol was added to 100ml of the

extract, and boiled for 5 minutes. Aliquots (25 ml) of the sample were

loaded per lane and SDS–PAGE was performed. Semi-dry western

blotting was done according to standard protocols. After blocking

(blocking reagent; Roche), the membranes were incubated overnight

with primary antibodies, diluted 1:100 in blocking reagent. After

three washes in Tris-buffered saline Tween-20, the membranes were

incubated for 1 hour with goat anti-mouse antibodies coupled with

horseradish peroxidase, diluted 1:1000 in blocking reagent, fol-

lowed by three washes in Tris-buffered saline Tween-20. Detection

was performed using the ECL Plus kit (GE Healthcare Europe GmBH,

Otelfingen, Switzerland) and a ChemiDoc-It imaging station (UVP).

Fluorescence microscopy

Fluorescence microscopy was performed using a Nikon Eclipse

TE2000-U inverted microscope equipped with Hoechst, FITC, and

TRITC filter sets (Nikon AG, Egg, Switzerland). For confocal imaging,

the Eclipse TE2000-U was upgraded with a Nikon C1 Laser Scanning

Microscope. A helium–neon laser with 543 nm excitation was used

for tetramethyl rhodamine iso-thiocyanate and an argon laser with

488 nm excitation was used for FITC. With the Plan Apo � 40 c/N.A.

0.95 objective 50 optical sections with an increment of 0.5 mm were

captured. The line average was set to 4. Images were processed with

Photoshop 7.0 (Adobe Systems Inc., Munich, Germany).
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