LINEAR ALGEBRA AND ITS APPLICATIONS 6, 155-158 (1973) 155

On the Similarity between a Linear Transformation and its Adjoint

D. Ž. DJOKOVIĆ* University of Waterloo Waterloo, Ontario, Canada

Communicated by I. N. Herstein

INTRODUCTION

Let A be a square matrix over a field K and A' its transpose. It is well known that A and A' are similar, i.e., there exists a square nonsingular matrix S over K such that $A' = S^{-1}AS$. Moreover, one can choose S to be symmetric (see [3], p. 67; [4], p. 76; [5]; [6]; [7]).

Let $\alpha \to \overline{\alpha}$ be an automorphism of K such that $\overline{\alpha} = \alpha$. We shall write $\mathbf{A}^* = \mathbf{A}'$. A is said to be hermitian if $\mathbf{A}^* = \mathbf{A}$. If A and \mathbf{A}^* are similar we shall prove that they are similar via a hermitian matrix. With some additional restrictions this was proved in [1].

SIMILARITY OF A and A^*

Let V_1 and V_2 be *n*-dimensional vector spaces over K and $\phi: V_1 \times V_2 \to K$ a nondegenerate sesquilinear form.

For $A \in \text{End}(V_1)$ we define $A^* \in \text{End}(V_2)$ by

$$\phi(xA, y) = \phi(x, yA^*).$$

THEOREM 1. If A and A* are similar then there exists a vector space isomorphism $H: V_1 \rightarrow V_2$ such that

$$A^* = H^{-1}AH \tag{1}$$

and

© American Elsevier Publishing Company, Inc., 1973

^{*} Research supported by a summer research stipend of the University of Waterloo.

$$\phi(x, yH) = \phi(y, xH) \tag{2}$$

holds for all $x, y \in V_1$.

COROLLARY 1. Let A be an $n \times n$ matrix over K which is similar to A*. Then there exist a hermitian nonsingular matrix H such that $A^* = H^{-1}AH$.

COROLLARY 2. Let A be an $n \times n$ matrix over K. Then there exists a symmetric nonsingular matrix S such that $A' = S^{-1}AS$.

Proof of Corollary 1. We need only to fix a basis of V_1 and the dual basis of V_2 and pass to the matrices. Eq. (2) implies that the matrix of H is hermitian.

Proof of Corollary 2. Take $\bar{\alpha} = \alpha$ in Corollary 1.

Proof of Theorem 1. By decomposing V_1 into direct sum of indecomposable cyclic subspaces we can assume without loss of generality that V_1 is of type 1 or type 2 described below.

Type 1. V_1 is cyclic (with respect to A) and its order is f^m where f is a monic irreducible polynomial such that $f = \overline{f}$.

Type 2. $V_1 = W_1 \oplus W_2$, where W_1 and W_2 are cyclic of orders f^m and \bar{f}^m , respectively, and f is a monic irreducible polynomial such that $t \neq \bar{f}$.

We shall consider these two types separately:

LEMMA 1. Theorem 1 is true if V_1 is of type 1.

Proof. Let $S: V_1 \to V_2$ be an isomorphism such that $SA^* = AS$. There is a unique isomorphism $S^*: V_1 \to V_2$ such that

$$\phi(x, yS) = \phi(y, xS^*), \qquad x, y \in V_1.$$

Since

$$\phi(x, yS^*A^*) = \phi(xA, yS^*) = \overline{\phi(y, xAS)} = \overline{\phi(y, xSA^*)}$$
$$= \overline{\phi(yA, xS)} = \phi(x, yAS^*)$$

we have $S^*A^* = AS^*$.

If $\lambda \in K$ then also

$$(\lambda S + \bar{\lambda} S^*) A^* = A(\lambda S + \bar{\lambda} S^*),$$

i.e., $HA^* = AH$ where $H = \lambda S + \overline{\lambda}S^*$. It is easy to check that this H satisfies Eq. (2).

If we can choose λ so that H is nonsingular then the proof is finished. Assume that H is singular for every $\lambda \in K$. Since A is cyclic and S^*S^{-1} and A commute there exists $g \in K[X]$ such that $S^*S^{-1} = g(A)$ (see [2], p. 107). Since H is singular for $\lambda = 1$ we deduce that -1 is an eigenvalue of S^*S^{-1} . Hence, there exists an eigenvalue α of A such that $g(\alpha) = -1$. This implies that g + 1 = fh for some $h \in K[X]$. It follows that all the eigenvalues of S^*S^{-1} are -1. Since H is singular for all $\lambda \in K$ we must have $\overline{\lambda} = \lambda$ for all $\lambda \in K$. Hence, ϕ is a symmetric form. In this case we prove that $S = S^*$ and we can take H = S.

If $x, y \in V_1$ then y = xp(A), say, for some $p \in K[X]$. We have

$$\phi(xS^*, y) = \phi[xS^*, xp(A)] = \phi[x, xp(A)S] = \phi[x, xSp(A^*)]$$
$$= \phi[xp(A), xS] = \phi(y, xS) = \phi(xS, y)$$

for all $x, y \in V_1$. Since ϕ is nondegenerate we must have $S^* = S$ which completes the proof.

LEMMA 2. If $V_1 = W_1 \oplus W_2$ is of type 2 then Theorem 1 is true.

Proof. We have also $V_2 = W_2^{\perp} \oplus W_1^{\perp}$. The restrictions of ϕ to $W_1 \times W_2^{\perp}$ and $W_2 \times W_1^{\perp}$ are nondegenerate. Since W_1 and W_1^{\perp} have the same order, namely f^m , there exists an isomorphism $S: W_1 \to W_1^{\perp}$ such that

$$xSA^* = xAS, \qquad x \in W_1.$$

There exists a unique vector space isomorphism $S^*\colon W_2 \to W_2{}^\perp$ such that

$$\phi(y, xS) = \overline{\phi(x, yS^*)}$$

for all $x \in W_1$ and $y \in W_2$. Since

$$\phi(x, yS^*A^*) = \phi(xA, yS^*) = \phi(y, xAS) = \phi(y, xSA^*)$$

$$= \phi(yA, xS) = \phi(x, yAS^*)$$

we get $S^*A^* = AS^*$.

There exists a unique isomorphism $H: V_1 \to V_2$ which extends both S and S*. It satisfies also the condition $HA^* = AH$.

Eq. (2) follows from

$$\phi(y, xH) = \phi(y, xS) = \phi(x, yS^*) = \phi(x, yH),$$

$$\phi(x, yH) = \phi(x, yS^*) = \overline{\phi(y, xS)} = \overline{\phi(y, xH)},$$

where $x \in W_1$ and $y \in W_2$ are arbitrary.

This completes the proof of Lemma 2 🔳 and also of Theorem 1. 📕

THEOREM 2. Let ϕ be a nondegenerate hermitian form on an n-dimensional vector space V over K. If $A \in \text{End}(V)$ is similar to its adjoint A^* then there exists an hermitian nonsingular transformation H such that $A^* = H^{-1}AH$.

Proof. Take $V_1 = V_2 = V$ in Theorem 1.

REFERENCES

- 1 J. W. Duke, A note on the similarity of a matrix and its conjugate transpose, *Pacific J. Math.* **31**(1969), **321–323**.
- 2 N. Jacobson, Lectures in Abstract Algebra, Vol. II. Van Nostrand, Princeton (1963).
- 3 N. Jacobson, Some groups of transformations defined by Jordan algebras III, J. Reine Angew. Math. 207(1961), 61-85.
- 4 I. Kaplansky, Linear Algebra and Geometry, a Second Course, Allyn and Bacon, Boston (1969).
- 5 H. Radjavi, Products of hermitian matrices and symmetries, Proc. Am. Math. Soc. 21(1969), 369-372.
- 6 O. Taussky and H. Zassenhaus, On the similarity transformations between a matrix and its transpose, *Pacific J. Math.* 9(1959), 893-896.
- 7 O. Taussky, The role of symmetric matrices in the study of general matrices, Linear Algebra and Its Applications 5(1972), 147-154.

Received August, 1970

158