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I. INTRODUCTION 

Let n and k be positive integers with n > 1, let C(n) denote the multi- 
plicative group consisting of the residue classes mod n which are relatively 
prime to n, and let C,(n) denote the subgroup of kth powers. Write 
v = vk(n) = [C(n): C&)1, and let 

1 = go < g1 < . . . < gy-r 
be the smallest positive representatives of the v cosets of C,(n). In a 
previous paper [II 1, we obtained various upper bounds for g,,, = g&z, k). 
Here we investigate the distribution of the members of C(n) among the 
various cosets g,C,(n), and we obtain information on the gaps between 
successive members of a given coset. 

First we derive several asymptotic formulas for N&h, H), the number 
of x satisfying h+ 1 I x I H and x E gS C,(n), where h, H are integers 
with 0 I h < H. Using one of Burgess’s estimates for character sums 
([3], Theorem 2), we find a result (Theorem 3.7) which generalizes and 
strengthens earlier theorems of Jordan [IO] and the author ([II], Theorem 
7.24). From this, we deduce various corollaries. For example, if 
H-h 2 d3/‘)+’ for some 6 > 0, then 

N,(h, H) = (vn)-’ cp(n)(H- h){l + 0,. a(n-di3)} (1.1) 
for 0 5 s I v - 1, where q is Euler’s function. (Throughout this paper, the 
notation O6 E , ,... indicates an implied constant depending at most on 
6, E, . . . , while 0 implies an absolute constant.) Under a certain assumption 
about the prime factorizations of n and k, a result similar to (1.1) can be 
proved with the weaker hypothesis H-h 2 n(1/4)+6 (see Theorem 3.11). 
This can be applied to strengthen considerably certain theorems of RCdei 
12.21 and C. T. Whyburn [13] on the “densities” of the cosets g,C,(p) in 
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the interval [l, $/‘I, where p is a large prime. (See the remarks after 
Theorem 3.11.) 

Now consider an arbitrary but fixed coset g,C,(n), let u = q(n)/v, and 
let ho < h, < . . . < h, be the a+ 1 smallest positive members of this coset, 
so h, = n + h,. We show that if 6 > 0 and nc3/‘)+’ I j I a, then 

hi = ~ { 1+ o,,,(n-6’3)}, 

and this result can sometimes be extended (see Theorem 3.19). (Note: we 
prove that CI > nl-’ for each E > 0 and n sufficiently large, so (1.2) holds 
for “most” values of j if 6 is small.) We then obtain results of the form 

max {hj-hjel: 1 I j I a} = Ok,a(n(3’8)f”) (1.3) 
for each 6 > 0 (cf. Theorem 3.23), and we show that hj - hi- 1 I d for 
“most” values of j. In the other direction, we prove that for each k 2 2, 
there are infinitely many n such that 

max {hj-hj_,: 1 5 j I a} 

> exp (log 4 log n (log k)(log dk)- 1) log n - log log n - (log log n>z 

(1.4) 

We show that for v > 1, the maximum number of consecutive members 
of C(n) in a given coset gS C,(n) is O&Z(~/*)+~) (in some cases 0,(nc’14)+E)) 
for each E > 0, and in fact we obtain slightly sharper results (see Theorem 
3.15). These results generalize a theorem of Burgess [4]. 

Finally, we examine the problem of estimating the sum 

G;(n, B> = G;(n, By k S> = ,tl (hi-hi- 1)’ (I-5) 

for real 8 2 1. The values of this sum give a measure of the average 
“dispersion” of the members hi of a given coset. It is easy to show that 

G(n, p> 2 dd -p 2 G-l n. (1.6) 

In the case v = 1, when a = rp(n) and h,,, . . . , h, are simply the q(n) + 1 
smallest positive integers prime to n, Hooley has shown that 

for 1 < p < 2, while G(n, 2) = O(n(,og log n)‘). (See [7]; cf. also [8], [9], and 
an earlier paper of Erdos [6].) For the case v > I, we are unable to give 
a direct generalization of Hooley’s method, but we do use some of his 
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ideas. In addition, we use the following elegant character-sum estimate 
communicated to the author by Dr. D. A. Burgess: 

xil 1 lil x(x + 0 lj s nq44 1% @ = oew+ew, u-71 

where x is any non-principal residue character mod n, /r 2 I, and d(n) is 
the number of positive divisors of n. Burgess’s proof of (1.7) is given in 
Section V. (It was previously known ([5], pp. 253, 265) that when n is 
prime and 0 -C /r -C n, the sum (1.7) equals n/r -/r2. This is easy to prove, 
but the proof of (I .7) is substantially harder for composite K) 

Our result is that for each s > 0, 

The result for /3 > 2 can be improved in some cases (see Theorem 6.1) 
and various specific inequalities can be given when I < p 5 2. If n = p is 
prime, we can use yet another result of Burgess ([I], Lemma 2) to improve 
(1.8) as follows: 

II. NOTATION 

Unless stated otherwise, small Latin letters other than e and i represent 
integers, and p always denotes a prime number. When we have occasion 
to refer to the prime factorization of n, we always write n = py’ . . . pFr, 
where p1 K . . . c pr and aj 2 I for allj. With reference to this factorization 
of n, we write k = p{* . . . pfrk’, where& 2 0 for all j and (k’,pl . . .p,) = I. 
We detme 

Also, let 
” = 

min {Uj,~~+ 1} if pj is odd, 
min ~Uj,~j ~ 2} if pj = 2. 

’ = “(‘) = 
2 if n is even and k is odd, 
1 otherwise. 

The hypothesis that max {Ye,. . . , ~~1 5 2 is stated in many of our theorems. 
Note that this hypothesis holds if n is cubefree, or if 2 ,/’ (n, k) and k is 
squarefree. 

We write 

nk = J& & nO = f! Pj. 

It is easy to see that 
nb 5 min {n, 2knoj, no 5 2q. 
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We shall generally write v and gj rather than v&z) and gj(n, k), and we 
also write LY = a&) = &z)/v. We proved in ([Ill, Lemma 4.3) that 

9 denotes Euler’s function, p is the Mobius function, x always denotes 
a residue character, and x0 is the principal character with respect to the 
modulus in question. $ denotes a typical character mod n such that 
tik = x0. Taking G = C(n), H = Ck(n) in ([II], (3.5) and (3.3)), we get: 

(2.3) There are exactly v characters $. 

AI, AZ>. . . denote positive absolute constants, while AI(& EI,. . .), . . . 
denote positive constants depending at most on J, 6,. . . . A statement of 
the form “Ifj 2 AI, then. . .” means “Ifj 2 AI for some AI > 0, then.. .” 
An empty sum means 0, an empty product 1, and w] is the largest integer 
s/l 

III. VARIOUS ASYMFTOTIC FORMULAS 

In the following lemma, all residue characters are to the modulus n. 
Recall that r is the number of distinct prime factors of FZ. 

(3.1) LEMMA. For 0 5 s 5 v- 1 and integers h,H with 0 5 h -K H, let 
NJh, H) be the number of x satisfying h+ 1 s x 5 H and x e gS Ck(n). 
Then 

where 

and 

W!) 

(3.3) 

ProojI This follows easily from ([II], Lemma 3.9). Q.E.D. 

(3.6) LEMMA. For each real /3 > 1 and 8 > 0, we haue 

r = q?, em = o&9, ew 
In particular, v = OkJnt). 

ProojI Let Pj be the $h prime (PI = 2). Clearly 
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Let j(fl, &) be the smallest j 2 1 such that Pj 2 p”‘. It follows that 
JXA e)- 1 

p&ye 5 n (/3Pj-) = .41(/l, 8). 
j=l 

The rest follows from (2.1) and (2.2). Q.E.D. 

(3.7) THEOREM. Let 0 s s 5 v- 1, 0 5 h -c H, E > 0, and let t be any 
podive integer. Zf t = 1 or t = 2 or max { yA,. . . , yr] 5 2, then 

NJh,H) = (~n)-~q(n)(H-l~)+OJ(H-h)~-~“n~~~+~~’~~~~*~). 

ProoJ By (2.3), Lemma 3.1, and the Cauchy-Schwarz inequality, 

Ns(h,H)-(vn)-lq(n)(H-h)j < v-l 

From (34, it follows that if v = 1, we have 
[&(h,H)-(vn)-$(n)(H-h)/ < 2r. (3.9) 

Now suppose that v > 1. The sum on the right-hand side of (3.8) can then 
be estimated using the method of proof of ([II], Lemma 7.2) (some minor 
and obvious changes are required). The principal tool is ([3], Theorem 2). 
By this method, we obtain from (3.8) the inequality 

l~~(h,H)-(vn)-‘~(n)(H-h)l 
< v-l{r+A2(E, t)23~/*v(H-h)l-l/fn~(f+1)/4fz)+~} 

5 ~~~~~ f)23~/~(~-~)l-~~~~~(~~l)/4fz~+~, (3.10) 
providedt=lort=20rmax{yA,..., y,} 5 2 (in the latter case, there is 
no restriction on t). By (3.9), (3.10) also holds (for any t) when v = 1, and 
the theorem follows from (3.10) and Lemma 3.6. Q.E.D. 

Theorem 3.7 has a number of interesting applications. First we prove 
(1.1) and another similar result. 

(3.11) T~OREM.Leto~~~v-l,h~O. 

(a). g H- h 2 A4(ij)nc3’*)“for some ~5 > 0, then 
iVs(h,H) = (vn)-1q(n)(H-h){l+Ok,a(K”3)j. (3.12) 

(b). Suppose max {yA,. . . , y,} 5 2. v H-h 2 A5(~)nc1’4)” Jar some 
6 > 0, then 

where 
(3.13) 
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.ProoJ Clearly rz/~(rz) 5 2r. Hence by Lemma 3.4 and Theorem 3.7, 
Ns(h,H) = (v~)-1~(~)(~-~)~l+o~,~,~((~-~)-~”~~(~+~)’4r*)+~)}, 

(3.14) 
providedt=lort=20rmax{yA,...,y,.}<2. 

To prove (a), take f = 2 and e = 8/6 in (3.14), and use the inequality 
nk 5 n. 

To prove (b), first suppose that 8 2 l/6. Then 
H-h 2 ~~(~)~{3/8)+(~-(1/6)), 

and (3.13) follows from (3.12). Now suppose that 0 x d x l/6. Since there 
is no restriction on f, we can take t = [1/2&j + 1 and let 

& = --P/2 -a2+ 2P/(l+2ii), 
so .s > 0. Since rzk 5 rz, the error term in braces in (3.14) is 

Ok, An ((1/4)+~)(-l/~)+((t+l)/4rz)+e) = Ok &p/9* Q.E.D. 

To give an example of how Theorem 3.11 can be applied, let us suppose 
that rr is a prime p with p E 1 (mod k), so v = (k, p- 1) = k by (2.2). 
Take h = 0 and PJ= [p112]. By (3.12), the “density” H-‘iVJO, II) is 
k-l{1 +Ok(pw1’24)}. Using Theorem 3.7, we can even show that this 
density is k- ’ + OE(p(- ‘Do)” ) for each .s > 0. For large p, these results 
are much stronger than certain theorems of Redei [12] and Whyburn [13] ; 
however, these authors used comparatively elementary methods. 

Theorem 3.7 also yields the following generalization of a theorem of 
Burgess [4] : 

(3.15) THEOREM. Let mk, &n) be the maximum number of consecutive 
members of C(n) in the coset gs Ck(n), and let E > 0. If v > 1, then 

max {mk,s(n): 0 5 s 5 v-l} = oe(ni3’8’+E). 

Ifv> 1 andmax{yA ,..., y,js2, then 

max {mk,s(n): 0 < s < v-l} = 0E(n~1’4’+9a 

ProojILetv>l,andfixs(O<s<v-l).LetO<h<PI,andsuppose 
that for each x satisfying h + 1 5 x < H and (x, n) = 1, we have 
x E gs c,‘(n). Then 

NJh,H) = 5 1. (3.16) 
.x=h+l 
(x,n)=l 

We observe that the sum on the right is identical with NO(h, H) when 
v = 1, so by Lemma 3.1 and (2.3), 
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5y (3.5) and Lemma 3.6, 
/RJh, II)/ < 2’ = O&z;). 

Taking t = 2, we get the first result. If max {yA,. . . , ~~1 < 2, we can take 
t = [(4&)-r”]+ 1 to get the second result. Q.E.D. 

Variants of Theorem 3.15 can be obtained by using the inequality (2.1) 
for nk. In the special case when n = p is prime (and v = (/c, p- I) > I), 
Theorem 3,15 gives 

max {m&p): 0 5 s S v- 11 = 08(p(1’4)+e) 

In [d], Burgess showed that the right-hand side could be replaced by 
O(p1i4 log p). 

From now on, we consider the members of an arbitrary but fixed coset 
gS &(n). Let a = a&r) = &n)/v, and let ha, hi,. . . , h# be the a + 1 smallest 
positive members of gS C&z) arranged in increasing order, so 

1 5 gS = ho < hr <. , . <h~Wlcnch~=n+hO. (3.17) 

Using Iemma 3.6 and the well-known fact that q(n) 2 &(~)n~-~, we get 

a > A,(k, z)n’-’ (3.18) 
for each s > 0. 

First we obtain two asymptotic formulas for ~j. Neither formula is 
proved valid for small values ofj. 

(3.19) THEOREM.& t? > 0. 
(a). v .44(c5)n(3’s)+’ S j S a, then 

hj = $ {l +o&z-d’3)). 

(b). Zf max {yA,. . . , yr] S 2 and A5(Qzc1’4J+d Sj 5 ct, then 

where cSl is dejned as in Theorem 3,ll. 

ProoJ Trivially hj 2 j+ I, so if j 2 A4(@n(3’6)“, it follows from 
Theorem 3.11 (a) that 

j zz ArS(O, hj-1) = (\‘n)-* q(n)(hj-l){l +O&nW”3)]. 



DISTRIBUTION OF kth POWER REBIDUES 405 

Thus for n > &(k, 6), we have 

while if 1 c n s &(k, 6), 

~~ (hj-1)-l ~ hj < 2~ = O~,J(~-J’3). 

Thus (a) follows, and (b) is proved similarly. Q.E.D. 

We now study in detail the differences ~j-~j-~. Our first result is 
trivial but interesting. 

(3.20) THEOREM. Let 6, E be positive. Then hj-hj-~ < nJ for all but 
Ok,z(aleJ+e) values ofj(1 5 j S a). 

ProoJ (By (3.17), we have 

j$l Chjmhj-ll = ** (3.21) 

Let 1 be the number of values of j for which ~j-~j-~ > nJ. By (3.21), 
n z=- In’. By (3.18), there is a constant &,(k, .s) > 1 such that 
n 5 &(k, &)a’ +e. Hence1<&(k,e)a1-J’efor6<l,whileZ=Oif6>l. 

Q.E.D. 

We remark that Theorem 3.20 can be improved slightly by using some 
of our later results. For example, using (1.8) with /I = 2, we can show by 
the same method that hj-hjeI 5 nJ for all but O~,Ja1-2J”) values of j, 
and (I .9) allows a further improvement when n is prime. 

After Theorem 3.20, it seems reasonable to conjecture that 
max {hj-hj-~ z 1 2 j s a} = O~J?I’) (3.22) 

for each E > 0, but we are far from being able to prove this. The next two 
theorems show what we can prove in this connection. 

(3.23) THEOREM. For each c > 0, we have 
max {hj-hj-l: 1 < j 5 a} = O~,~(n~3’*“‘), 

and zy max {Ye,. . . , ~~1 5 2, then 
max {hj-hjwI: 1 <j S a] = Ok,E(rrb1’4)+e). 

ProoJ We apply Theorem 3.7. If t = 1 or t = 2 or max {Ye,. . . , yP} S 2, 
we get 
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so NJ/r, H) > 0 provided that H-h > AII(&, t)~‘n~(“~)‘~‘~“~ (we have 
used Lemma 3.6 and the trivial inequality n/&r) < Y). Since 
~~(hj-1, hj- 1) = 0 for eachj, we get 

max {/rj-/rj-r: 15 j < a} = O~,*(V~~~(‘+‘)‘~‘)+‘~). (3.24) 

The theorem now follows from (2.1) and Lemma 3.6. Q.E,D. 

We note that he = gs -C (~+/z,-,)-/z~-~ = &-/z~-~, so 
ho = o&&fj3’8~+e) (3.25) 

for each E > 0, and if max {yA,. . . , yr} < 2, then 
h (J = Ok, &#‘4J+E). (3.26) 

These results improve the inequalities (1.6) and (1.7) of [11] (in which ne 
was replaced by rr). 

It is also interesting to note that Theorem 3.23 can be improved in 
certain ways. For example, if we use a somewhat similar method of proof 
and the fact that JV&, hj) = j-1, we find that if 0 < I <,j 5 CY and 
j-Z = Ok, e(rrh3’8)“), then hj- hl = Ok, E(n~3’8)‘zE). 

The following result partially complements Theorem 3.23 : 

(3.27) THEOREM. For each k 2 2, there are infinitely many n such that 

max {hj- hj- I : 1 5 j < W} 

for each cofet gs ck(n). 

ProoJ From (3.21), it follows that for any k and H, 
max~hj-hj-~:i~j~~~~n/a=vn/~(n). (3.28) 

Let k 2 2, let Qj be the jth prime z 1 (mod k), and take n = Q1.. . Q,. 
By (2.2), we have 

vn/q(n) > v = kr. (3.29) 
Using a strong form of the prime number theorem for arithmetic pro- 
gressions, we get 

log n = i log Qj = $$ {l + Ok(e-cuog Qr)l’z)}, 
j=l 

(3.30) 

where c is a positive absolute constant. From this it follows easily that 
log Qp 2 AI*(k) log log n, so by (3.30), 

log Qr = log log fr +log ~(k)+Ok(e-c(k)(‘o~‘o~n)“z), (3.31) 
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where c(k) is positive and depends only on k. By the prime number 
theorem, 

Combining this with (3.31) and (3.29) we get the result from (3.28). 
Q.E.D. 

We now consider the sum G(n, p) = G(n, /I, k, S) defined in (1.5). 
Theorem 3.23 allows us to deduce easily the first two parts of 

(3.32) THEOREM. For my real j3 2 1 und c > 0, we hme: 

(a). G(n, /I) = Ok, @, Jn((3P+5)‘8)+e). 
(b). Ifmax {YA,. . . JJ < 2, r/ren G(n, /I) = ok, &P+3)‘4~+~). 

(c). G(n,/?) 2 npctl-fl 2 vfl-ln. 

Prooj By (3.21) these results are all obvious when b = 1. Now assume 
/I > I. Then clearly 

G(Pl,/?) 5 G(Fl, 1) max {(hj-hj-~)'el: 1 Sj < CX}, 
and (a), (b) follow from (3.21) and Theorem 3.23. To obtain (c), we use 
Holder’s inequality: 

We remark that Theorem 3.32(c) may be almost best possible, since our 
conjecture (3.22) would yield G(n, fl) = ok,fl,~(nl+‘) for any /I 2 1 and 
& b- 0. 

The remainder of this paper is devoted to improving the upper estimates 
for G(n, /I) given in Theorem 3.32. 

IV. THE SUM G(tz,b): PRELIMINARY LEMMAS 

In this section, we use an adaptation of an ingenious method due to 
Hooley [7]. We continue to work with an arbitrary but fixed coset 
gSCk(n), and we introduce some notation which will be used throughout 
the remainder of this paper. We define 

A4 = max {hj-hj-l: 1 Sj 5 a}, (4.1) 
and for each I 2 1, we let Tl denote the number ofj for which hj - hj- l = I 
(so T, = 0 for Z > A4). For 2 = 0, 1, let 

Sf) = Tl+2tT+l+3rTl+z+ . . . . (4.2) 
Observe that 

q = Si”)-Sft)l for I> 1, (4.3) 



408 NORTON 

and 
(4.4) 

(4.5) LEMMA. For uny real /I > 1 und any integer m 2 1, 

Proox We have 

5 mb-ln+S$)mb+jj i Sj”‘l’-l. 
l=m+l 

The last sum is 

For lZm+2, we have 

Combining our results, we get 

Finally, we note that S$‘) = T= + Tm+ I + . . , is the number ofj for which 
hj-hj-1 2 m, SO by (3.21), n 2 rn$‘). Q.E.D. 

We now need to estimate Sil) from above. 

(4.7) LEMMA. For h 2 I, define 

GhW =mil {Ns(m,m+h)-(vn)V1q(n)hj*. (4.8) 
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Then for each I 2 2, we have 

12 2, and take h = I- 1 in (4.8). As a function of m, 
1) is periodic with period n, so (since n + h,, - 1 = ha - I) we 

ha-1 

z--u= x {N m,m+Z-l)-(vn)-‘q(n)(Z-l)}‘. (4.10) 
m=h,, 

We shall show that the number of m for which h0 2 m s ha- 1 and 
N&m, m+Z--I) = 0 is at least S fl). (4.9) follows immediately from this 
fact and (4.10). 

Since S,(r)=0 for l>M=max{hj-hj-I: 1 <j<a}, we can assume 
15 h4. For each q such that 15 q 5 M, let B,r be the set of integers m of 
theformrn==h,.-r+t,where l<j<a,hj-hj-I=q,andO<t<q-/. 
B,r is contained in the union of the intervals [hjmI, hj- 1] for which 
hj-hj- r = q, SO the sets Bq are disjoint. Furthermore, if m e Bq, then 
for some j, we have 

hj-~+l < m+l 5 m+(l-I) 5 hj-~+(q-~+(~-l) = hj-1, 
so h0 < m < ha - 1 and IV&m, m+l- 1) = 0. Letting 1 Vi denote the 
number of elements in the set V, we clearly have iB,J = (q-l+ l)Tq, and 
hence the tota number of m for which h0 < m < ha - I and NJm, m + Z- I) 
= 0 is 

2 qcl Bq = $(q-Z+l)Tq = S;‘). 
I I 

(4.11) LEMMA. For each h 2 1, we have 

Gs(n, h) 5 vwz(2’n*‘z + {Fs(n, Iz)}~‘*)‘, 
where 

Q.E.D. 

(4.12) 

ProoJ Applying Lemma 3.1 to (4.8) and using the Cauchy-Schwarz 
inequality, we get 
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By (3.4) and the Cauchy-Schwarz inequality, 

where we have used (2.3). Q.E.D. 

In order to apply Lemma 4.1 I, we need to estimate sums of the form 

jl izil x(x+q2y 

where x is any non-principal residue character mod n. We shall do this 
in the next section. 

V. ESTIMATION OF em SUM (1.7) 
In this section, we shall consistently use the notation 

I. 
2, 

Z,,Zz=l 
to mean summation over all pairs Zr, Z2 such that 1 5 I1 < /r, 1 5 Z2 5 h, 
and lr # 12. 

(5.1) LEMMA. Let n( = pT*. . . pp) and h be positive integers, and let x 
be a non-princ@al character mod n. Write x = xl. . .xr, where ~j is a 
character mod p;J for each j. Then 

where 

ProoJ We have 

The first double sum on the right is just h&n), while the second can be 
written in the form 

The inner sum here can be factored as in the proof of ([2], Lemma 7), and 
the result follows. Q.E.D. 



DISTRIBUTION OF kth POWER RESIDUES 411 

(5.2) LEMMA. Let x be a non-prim&al character mod p” with conductor pb. 
Then x(1+ W) = 1 for all z if and only ifpb\m. 

Proof. Suppose that x( 1 + mz) = 1 for all z. Let pc be the largest power of 
p dividing m, and let y = 1 (mod p’). The congruence 1 + mz = y (mod pa) 
can be solved for .z, so x(y) = 1. Hence pb 5 pc and pblm, Q.E.D. 

The next two lemmas are due to D. A. Burgess. 

(5.3) LEMMA. Let 

z- = xgl xb + 4hK~ -I- 0 

where x is a non-principal character mod pa with conductor pb, and II # 12. 
Let pc be the largest power of p dividing lI - 12. Then 

In particular, 

-pa-’ if c=b-1, 
0 if c< b-2. 

(This inequality holds also when x is princ@al.) 

ProoJ We have 

Hence if pb[ZI - Zz, it is clear that T = &3”). 
Suppose from now on that pb ,+’ I1 - 12. We then have 

‘I- = jl XU +QI - W- z$l x0 +K - W = q - 59 
PI2 

say. Our first objective is to show that TI = 0. If p J’lr - lz, this is clear, 
since then 

If pjZI - &, let H be the set of residue classes y (mod pa) such that 
y zz l+(lr - Z2)z(mod pa) for some z. It is well = known that for each 
y G J& this congruence has exactly @, I1 -Z2) solutions z. Hence 

Now, H is obviously a subgroup of Cv), and by Lemma 5.2, 2 is not 
identically 1 on H. Hence TI = 0 (cf. [ll], (3.6)). 
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Thus T = -Tz. If P~-~~Z~-Z~, then clearly Tz =pa-‘. Suppose that 
pbml ,/’ Z1 -Zx, and let G be the set of residue classes ~(mod p’) such that 
the congruence y = 1 + (Zr - ZJz (mod pa) is satisfied by some z divisible 
by p. If y e G, the number of such solutions z (mod pa) is the same as 
the number of solutions in (mod pa-i) of the congruence 

(JJ- 1)/p = (Zl -Zz)w (modpael), 
namely (pa- ’ , Z1 -Zz). Hence we obtain 

Tz = tF1, 4 -&I y;. xt~l. 

Now, G is a subgroup of Cw), and by Lemma 5.2, x is not identically I 
on G. Hence Tz = 0. Q.E.D. 

(5.4) LEMMA. Let x be a non-princ@aZ character mod n, and let h 2 I. 
Then 

~l~~l~~x+z~~z 5 nh{d(n) log n}’ = OE(nl’eh) 

for each E > 0, where d(n) is the number of positive divisors of n. 

ProoJ From Lemma 5.1, we get 

where x = xl. . .xP and xj is a character mod p;J. Let py be the conductor 
of xj, so the conductor of x is K = pi’. . .pfr. By Lemma 5.3, 

lvtn, h)l < $ fi pT-bJ+min hC$, 
l,,Iz=l j=l 

where cj = cj(Zl - ZJ is the largest c such that p: 1 Z1 - lz. Write K’ = n/K 
= p;lebl. . . pzrebr. Then 

= 2 l~~sh,tt~-~O = 2[h/~l~h-(f/2)[(h/r)+ Q. (5.6) 

Writing h/t = [h/t]+J we get 
W(h, r) = (hz/z)-- h + g(l -j) < h’/t. (5.7) 
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From (5.5), (5.7), and Lemma 5.1, it follows that 

(5.8) 

since n = KK. 
We now estimate the sum (5.8) in a different way. Let X be the primitive 

character mod K induced by x (see [II], Lemma 5.1), and let x* be the 
principal character mod K’, so x(x) = X(x)x*(x) for all x. The sum (5.8) 
becomes 

By the Polya-Vinogradov inequality (cf. the proof of Lemma 5.3 in [II]), 
it follows that 

= nK{d(K’) log K}2 5 nK{d(n) log r~}~. w9 
The lemma now follows from (5.9) when h > K and from (5.8) when 

l<h<K. Q.E.D. 

When n is a prime power, Lemma 5.4 can be replaced by a more precise 
result : 

(5.10) LEMMA. L.et x be a non-princ@al character mod p“, and let h 21 I. 
Then 

with equaZity IY 1 s h s pbm ‘, wherepb is the conductor of 1. 

ProoJ We can regard x as a non-principal character modpb, and by 
periodicity, it suffices to prove the lemma when 1 s h -C pb. 

After Lemma 5.1, we need information concerning the value of 

V(p’, h) = $ f’ x(x + ll)j(x + Z2). 
I,,[*=1 x=1 
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By Lemma 5.3, 

Gf, hl= dP?Wk Pb~-P*-lwYk Pb-9- v% Pb)) 
= pvv(h,pb)-pa-lw(h,pb-l), 

where IY(/z, t) is defined by (5.6). Write /z = ypbel +z, where 0 s z -C pbml. 
Using the first part of (5.7) and our assumption that 1 < A <pb, we 
obtain 

v(p=,h) = -cp(pa)h+pvt-pa-bh2-pa-1z+pa-*z2. 
LLAnrna 5.1 now yields 

z1 1 jl x(x+f = $9(pa)h+pa-b(h-z){pb-1-(h+z)}, 

and the rest follows easily. Q.E.D. 

VI. FINAL RESULTS ON THE SUM G(qj?) 

We can now improve Theorem 3.32(a, b) as follows: 

ProoJ By (4.13), Lemma 5.4, and (2.3), 
F&z, h) = os(v2d+%). 

By (4.12) and Lemma 3.6, 
Gs(n, h) = O@ +eh). 

BY WI, 
q(l) zz 0 (v2&+y-l) c (6.3) 

for 12 2. 
By (3.21), (6.2) is trivial if p = 1. If /I > 1 and m is any positive integer, 

then (6.3) and Lemma 4.5 yield 

G(n,p) = Op,e m~-1~+v2~1+em~-2+vz~1+e lFz+l lp-3). (6.4) 

First suppose that 1 -C /I -C 2. Then by (6.4), 
G(n, j?) = Op, s(mBel n + vz n1 +‘mBm2), 

and this can be approximately minimized by taking v2ne -C m 5 2v’rf. If 
j? = 2, then (6.4) yields 

G(n,2) = O~(mrz+v2~1+‘+v2rr1+ElogA4) 
= Oe(v2 n1 +y, 
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if we take m = 1 and use the fact that A4 5 n. Thus the first part of (6.2) 
follows (if we use Lemma 3.6). 

Now suppose that p > 2, and take m = [v’n’]. By (6.4), 
G(n,fl) c O~,~(~~~-~n~+(~-~)~+v~n’+~M~-~). 

By (3.24), M = OE(v2 nc3’8)+e), and we get the second part of (6.2). 
Finally, if max {yA,. . . , ~~1 5 2, then M = Ok, e(aC1’4)‘E) by Theorem 3.23, 
and the last part of (6.2) follows. Q.E.D. 

Theorem 6.1 can be made more precise when n = pa by using Lemma 
5.10 instead of Lemma 5.4. We shall give only the following interesting 
example : 

(6.5) THEOREM. 

Expa,21< 2p~{avf&) logp+4}. 

ProojI Taking n =p” in (3.3), we easily obtain ]&(A, H)] c 1. Using 
this in the proof of Lemma 4.11, we can replace (4.12) by the inequality 

Gs(pa, h) 5 ~-~{p~‘~+F:‘~(p’, h)}2, 
where Fs(pa, !r) is defined by (4.13). By Lemma 5.10 and (2.3), it follows 
that if /z 2 2, 

By (4.9) and the proof of Lemma 4.5 (cf. (4.6)), it follows that for m 2 2, 

C$p’,2) 5 2mpa+2S$~l(m+l)+2 5 Sj’) 
l=m+Z 

5 2v2p’(l-p-l)-’ log M+2p’ 
x {m-(log m-l-m-1)v2(l-p-1)-1}. W) 

Taking m = 4 and using the fact that A4 5 p’, we get the result. Q.E.D. 

If v 2 3, we can take m = v2 in (6.6) to get 

G(p’, 2) 5 2av2 -I!- 
c ) P-1 

Pa 1% P* (6.7) 

Theorems 6.1 and 6.5 can be further improved in the special case when 
n =p is prime: 

(6.8) THEOREM. Let /I 2 1 be real. Then for euch E > 0, we haue 

qdv zD-zp) if 1</?<2, 
G(p, fl) = o&J4+~~-1~~~‘~~-~~’ p) if 2 s /I < 3, (6.9) 

Ok ~ e(pw+w4~+~ 

[Note: v = v&) = (k, p- i)‘by (2.2).] 
) for P>3. 
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ProojI We have G(p, 1) =p by (3.21), so we assume from now on that 
/I > 1. For any positive integers A, r~, n, define 

Gy)(n, h) = & {NJm, m+h)-(WI)+ q~(n)h}~“‘. 

The method of proof of Lemma 4.7 shows immediately that for each / 2 2, 

(6.10) 

For the remainder of this proof, let n = p be prime. We must estimate 
Gp)(p, /r) from above. By (3.3), &( m, m+h)i < 1, so if we use (3.2) and 
Holder’s inequality in the form 

1+ 1x1 < 21-l’zw(l + /xjz~)l’~~, 
we obtain 

{Ns(m,m+h)-(vp)-1cp(p)h}2w< v~zw22w~1{l+~A~(m,m+~)~2w}. 
From (3.4), (2.3), and a similar application of Holder’s inequality, we get 

Gfw)(p,h) 5 ~-~“‘2~~--’ s 
i 

p+vz- j. il ~x~~~l~~~~~2w}. (6.11) 

If w = I, we can use Lemma 5.10 to obtain 
G;l)(p, h) = O(ph), (6.12) 

If r~ > 1, we use the following result of Burgess ([I], Lemma 2): 

mil ~x;$;lx(x) i2w -c (4~)~+‘~~~+2w~“~~~~, (6.13) 

where x is any non-principal character modp. Combining (6.13) with 
(6.11) and using (2.3), we get 

G(“‘)(p h) = 0 (ph’“-~-p~‘~h~“‘) if w 2 2. (6.14) 
From (6.10) (iith’n =p) kd (6.12), we get Si’) = 0(v2p1-‘), and it 

follows easily that G(p,/?) = 0,r(v2fle2p) for 1 < jl< 2 (cf. the proof of 
Theorem 6.1). 

For the remainder of this proof, we assume VJ 2 2. From (6.10) and 
(6.14), we get 

Sjl) = Ow(vzwp~~w+v2wp1~2), for 12 2. (6.15) 
If I <m<M=max{hj-hj-l: 1 <j<~j, it follows from (6.15) and 
Lemma 4.5 that 

M 

+,~~+2v2wPl~-2-w > 
J 

(6.16) 
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and this is an obvious consequence of Lemma 4.5 when m > M, since 
S{i) = 0 for Z > M. Estimating the sum on the extreme right of (6.16) in 
the obvious way and taking m = v2, we obtain 

G(p,P) = o*, w(v2~-2p-tv2wp1’2Mf+1 ++pj-(M)), (6.17) 
where 

i 

0 if p-2-w C-1, 
NW = 1% IVI if b-2-w =-1, 

Mb-1ww if b-2-w >-1. 
Now by (3.24), we have 

M = Oe &,tp(@+1)/4t)+et ) (6.18) 
for each integer t 2 1 and each e > 0. Inserting this estimate into (6.17) 
and recalling that w 2 2, we find that 

G(P?fl) = q%w,~,d~2B-2P+~ 2w+a7-1) ((~+1)/4)+(~-1)([1/4t}+et) P 1 6W 
if p-2-w # -1. (6.19) holds also when p-2-w = -1. To prove this, 
we observe that log M = O,&Md) for each ~5 s 0, take 

C? = (j?-l)({l/4f~+Er)({l/4}+{l/4~}+&~)-1, 
and use (6.17) and (6.18), noting that in this case /I = w + 1 Z- 3. Thus 
(6.19) holds whenever fi > 1, a > 0, w 2 2, and t 2 1. 

It is now clear that there is no advantage in taking w > 2, so we let 
w = 2 in (6.19). If /I 2 3, we can take f = [(l/2)&-‘I*]+ 1 to obtain 

WP7 I9 = 4, fl, P.(P (03+lY41+~ 1. 
Finally, suppose 1 c j3 c 3. We first choose the integer t as small as 
possible so that 

@ + 1)/41+ I@ - 1)/4t} -c 1. 
The correct value of t is 

l = [u3 - 1)/(3 -ml + 1 = 12/(3 -ml. 
With this value of ?, we choose s = s(p) so that 

((/3+1)/4)+(jI-l)({1/4t}+&~) = 1. 
From (6.19) (with w = 2), we get 

QJ) = 0~(~2~-2~+~4+(~-~)t2/(3-~)1~). Q.E.D. 

In conclusion, we note that Burgess ([2], Lemma 8 and [3], Lemma 8) 
obtained the following extension of (6.13) under the assumptions that 
n, h, and w are positive integers, E > 0, x is a primitive character mod n, 
and n is cubefree or w = 2: 

20 
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It does not seem to be known whether such a result holds if x is not 
primitive. If we knew that (6.20) held when w = 2, n is any positive 
integer, and x is any non-principal character mod H, then we could obtain 

%, PI = % !J, zb 1+&+~(1/2)+e~~-l+~l+&~~-3) 

for jI 2 1, and this would lead to the following improvement of Theorem 
6.1: 

The method of proof would be similar to that of Theorem 6.8 (but slightly 
simpler). 
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