specific enolase (NSE) before and at 3 days, 1 week, 2 month, 1 month, 3 months and 6 months after the operation.

Results: Dogs had significant higher levels of systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MBP) compared to its baseline (P<0.05). The SBP, DBP and MBP in interventional group were significantly lower compared to the control group on 1 month and 3 months after operation (P<0.05). Three months after the operation, renal angiography in all dogs revealed no sign of renal artery stenosis. Plasma S-100B and NSE expression in interventional group were higher compared to control group at 3 day, 1 week, 2 week after operation (P<0.05).

Conclusions: Renal sympathetic denervation could significantly reduce the SBP, DBP and MBP in hypertensive dogs. The plasma concentration of S-100B and NSE may be used as one of indicator for assessment of renal nerve injury after renal sympathetic denervation.

GW25-e0563
Myocardial protection of Ginseng fruit saponins in streptozotocin-induced diabetic rats
Yu Haitao, Juan Zhen, Shuixing Wu
The First Hospital of Jilin University

Objectives: To study the effect of endoplasmic reticulum stress in diabetic cardiomyopathy and the Therapeutic effects and its mechanism of ginseng fruit saponins.

Methods: 50 Wistar rats were randomly divided into control group (Group C, n=10); Another 40 were fed with high fat and sugar for 4 weeks, then intraperitoneally injected with streptozotocin (STZ) (40mg/kg x 4 weeks) to induce diabetes, 25 diabetic rats were randomly divided into diabetic model group (Group D, n=10) and ginseng fruit saponins group (Group G, n=15, 40 mg/kg/D for 12 weeks). All rats were sacrificed and blood samples were collected for measuring fasting blood glucose, total cholesterol (TC), triglyceride (TG), and myocardial enzymes (CK, CKMB, LDH, CKD). Tissue samples were dyed with Hematoxylin-eosin (HE) for histopathological examination, Myocardial cell apoptosis detected by tunel method, the expression of caspase12 protein were detected by Immunohistochemical detection.

Results: The levels of FBG, TC, TG in group D were significantly higher than those in group C (all P<0.01). The above indexes were significantly reduced with the treatment of ginseng fruit saponins compared with group D (P<0.05). The levels of CK, CK-MB and LDH in group D is significantly higher than group C (P<0.01), ginseng fruit saponins can significantly decrease the above indexes, the difference was statistically significant (P<0.01). In group C,Myocardial cell neatly and closely arranged, rich cytoplasm is rich and red, nucleus is located in the central of cells; No dissolution of muscle fiber, vacuoles degeneration and mono- nuclear cell infiltration.In group D: Disordered arrange ment of myocardial cell, the cytoplasm is distributed and relatively weak dyed. fiber breakage and irregular nucleus size were obvious. Myocardial cell abnormal conditions in group G were improved. Apoptotic cells were occasionally showed in group C, the myo cardiac apoptosis index was (3.23 ±1.32) %, Apoptotic cells increased significantly in group D, the apoptosis index was (62.5±1.75) %, The apoptosis index of group G was (40.25±6.58) %, which decrease ed significantly compared with group D. Caspase-12 protein expression in Group C is lower, Group G rat myocardial the expression of caspase-12 protein present strong positive; Caspase-12 protein expression in Group G is medium.

Conclusions: The endoplasmic reticulum stress may be involve in pathological pro- cesses of diabetic cardiomyopathy. Ginseng fruit saponins can protect myocardium, which may be associated with reduce myocardial cell apoptosis mediated by endo- plasmic reticulum.

GW25-e0604
HO-1 attenuates intestinal ischemic injury secondary to MI-induced HF in rats
Gan Zhen,1, Jing Zhang,1, Mei Bai,1 Gujuan Tan,1, Xiaoxia Li,2 Yaping Xu,1, Yu Zhou,1, Meiliang Gong,1, Mosi Lin,1, Li Zhang1
1Second Geriatric Cardiology Department, Chinese PLA General Hospital, Beijing, China, 2First Geriatric Cardiology Department, Chinese PLA General Hospital, Beijing, China

Objectives: The development of heart failure (HF) is associated with myocardial remodeling after myocardial infarction (MI). HF reduces cardiac function and reverse remodeling after myocardial injury. Circulating neuro-hormones may contribute to cardiac autonomic activity and remodeling.

Methods: 10 male Sprague-Dawley rats were randomly divided into control group (n=20), MI group (n=20), MI+RD group (RD performed one day post-MI, n=20), MI+4w+RD group (RD performed four weeks post-MI, n=20), and N group (control group, n=20). MI was produced through ligation of the anterior descending artery. RD was performed through stripping of the renal nerves. The experimental design and implementation were conducted in accordance with animal welfare guidelines.

Results: Eight weeks post-MI, significant improvements were observed in both MI+4w+RD and MI+4w+RD groups compared to the MI group, that include (1) improved left ventricular (LV) function and hemodynamics with increased water and sodium excretion; (2) decreased plasma and renal tissue norepinephrine levels while tissue norepinephrine content increased in myocardium; (3) increased receptor in myocardium and improved heart rate variability; (4) decreased plasma renin, angio- tension II, aldosterone, BNP and endothelin levels. More therapeutic effects were found in the MI+4w+RD group than the MI+4w+RD group.

Conclusions: RD improves hemodynamics, decreases neuro-hormonal activations, modulates cardiac autonomic activities, and attenuates LV remodeling in HF. Early intervention appears to have greater beneficial effects on cardiac functional recovery and LV remodeling after myocardial injury. Circulating neuro-hormones may be effective indicators to evaluate the therapeutic effect of RD on HF. Our data suggested that RD is a safe, non-pharmaceutical treatment of HF after cardiac injury, with unique benefits in stabilizing cardiac autonomic activity and remodeling post-MI.

GW25-e0732
Effects of renal denervation on the development of post-myocardial infarction heart failure and cardiac autonomic nervous system in rats
Hu Jialu1, Hou Yueli1, Ge Junbo1
1Department of Cardiology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China, 2Department of Cardiology, Southern Branch of The Sixth People’s Hospital affiliated to Shanghai Jiaotong University, 6660 Nan Feng Road, Shanghai, China

Objectives: Prior studies indicated Radiofrequency renal denervation (RD) had beneficial effects on post-myocardial infarction (MI) heart failure (HF) in rats. In this study we aimed to assess if effects on cardiac autonomic nervous system (CANS) which may be one of the most important mechanisms of RD’s therapeutic effect on post-MI HF and determine the best timing for RD.

Methods: One Hundred Wistar rats were randomly assigned into five experimental groups: MI group (n=20), RD group (n=20), MI+1d+RD group (RD performed one day post-MI, n=20), MI+4w+RD group (RD performed four weeks post-MI, n=20), and N group (control group, n=20). MI was produced through ligation of the anterior ascending artery. RD was performed through stripping of the renal nerves. The experimental design and implementation were conducted in accordance with animal welfare guidelines.

Results: The MI+Copp rats recovered cardiac function, ameliorated mesenteric atherosclerosis, and preserved renal sympathetic denervation. In group D: Significantly increased levels of aldosterone, atrial natriuretic peptide, and brain natriuretic peptide (BNP) were observed. The levels of sodium and creatinine were significantly higher in the MI+RD rats compared to the MI+Copp group.

Conclusions: HO-1 exerts a protective effect on the intestine during HF by inhibiting inflammation and ameliorating microcirculation through the carbon monoxide pathway. Furthermore, this protection may be independent of cardiac function recovery.

GW25-e0743
Effects of Astragalus Polysaccharides on the expression of SR-BI, LXRα in RAW264.7 macrophage-derived foam cells
Wang Yongjin1,2, Yan Lichen1, Wang Yongjin1,2
1Institute of Cardioangiology of Changzhi Medical College, 2Department of Cardiology, Heping Hospital Affiliated to Changzhi Medical College

Objectives: To study the effects of astragalus polysaccharides (APS) on the expres- sion of SR-BI, LXRα in RAW264.7 macrophage-derived foam cells.

Methods: The mouse RAW264.7 cells were differentiated into foam cells, then we applied red oil O staining technique to appraise the foam cells. The RAW264.7 macrophage-derived foam cells were treated with APS at different concentrations. The expression of SR-BI, LXRα mRNA and protein was determined by RT-PCR and ELISA.

Results: The macrophage cells were differentiated into foam cells after 48 hours by ox-LDL. Compared with the control group, treatment of RAW264.7 macrophage-derived foam cells with different concentrations of APS upregulated the expression of SR-BI and LXRα in a dose-dependent manner (P<0.05). Compared with the control group, treatment of RAW264.7 macrophage-derived foam cells with different concentrations of APS upregulated the expression of LXRα in a dose-dependent manner (P<0.05).

Conclusions: The mouse RAW264.7 cells were differentiated into foam cells after 48 hours by ox-LDL, and the concentration of intracellular lipid increased. APS may enhance the efflux of intracellular cholesterol by upregulating SR-BI, LXRα expression in RAW264.7 cells.