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In this Letter we present a new inflationary model composed of multiple scalar fields where each of
them has its own DBI action. We show that the dependence of the e-folding number and of the curvature
perturbation on the number of fields changes compared with the normal N-flation model. Our model is
also quite different from the usual DBI N-flation which is still based on one DBI action but involves many
moduli components. Some specific examples of our model have been analyzed.

© 2009 Elsevier B.V. Open access under CC BY license. 
Inflation naturally resolves the flatness, homogeneity and pri-
mordial monopole problems of standard cosmology [1,2], and pre-
dicts a scale-invariant primordial perturbation spectrum consis-
tent with current cosmological observations [3] very well. It has
therefore become the prevalent paradigm to understand the initial
stage of our universe. However, an inflationary model with a sin-
gle scalar field generally suffers from fine tuning problems on the
parameters of its potential, such as the mass and coupling of this
field.

It was first noticed by Liddle et al. [4] that such limits can be
relaxed when a number of scalar fields are involved. In such mod-
els, many fields are able to work cooperatively to give a enough
long inflationary stage, even if none of them can sustain infla-
tion separately. Models of this type have been considered later in
Refs. [5–8]. These analyses showed that both the e-folding number
N and the curvature perturbation ζ are approximately propor-
tional to the number of scalars N . Later, the model of N-flation was
proposed by Dimopoulos et al. [9], which showed that a number
of axions predicted by string theory can give rise to a radiatively
stable inflationary period. This model has the possibility for an at-
tractive embedding of multi-field inflation in string theory.

Over the past several years, based on the recent developments
in string theory, there have been many cosmological studies on
its applications to the early universe, especially to inflation. How-
ever, authors still often encounter fine tuning and inconsistency
problems when they try to combine string theory with cosmol-
ogy. Examples include deficiencies in tachyon inflation as pointed
out by Kofman and Linde in Ref. [10], as well as the η-problem in
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slow-roll brane inflation as reviewed in Ref. [11]. It is usually sug-
gested that N-flation is able to relax these issues and thus allow
plausible constructions of stringy cosmology. For instance, Piao et
al. have successfully applied the assisted inflation mechanism to
amend the problems of tachyon inflation [12]. There are also many
other works that have investigated multi-field inflation models in
string-inspired cosmology, for example see Refs. [13–16].

A particularly interesting inflationary mode with a non-canon-
ical kinetic term inspired by string theory has recently attracted
significant interest in the literature. This model is described by a
Dirac–Born–Infeld-like (DBI) action [17,18]. The inflationary model
with a single DBI field was investigated in detail in Refs. [19–21].
In this model, a warping factor was applied to provide a speed
limit which keeps the inflaton near the top of a potential even if
the potential is steep. DBI inflation therefore opens a up a range of
inflationary models which do not necessitate a flat potential.

In this Letter, we study a multi-field inflationary model, where
each field is described by a DBI action and the total action is con-
structed by the sum of them. Therefore, it is worth emphasizing
that our model is different from the usual DBI N-flation in which
multiple moduli fields are involved in a single DBI action [22–25].
In contrast, a multiple-DBI action can be achieved if we consider
a number of D3-branes in a background metric field with negli-
gible covariant derivatives of field strengths and we assume that
these branes are decoupled from others. In addition, we neglect
the backreaction of those branes on the background geometry, as
is standard in brane inflation models. In this scenario, the scalars
are able to work cooperatively like those in usual N-flation mod-
els. However, since their kinetic terms are of non-canonical form,
the cumulative effect from multiple fields does not grow in linear
form. From our analysis, the e-folding number N is no longer pro-
portional to N , but rather to

√
N . Furthermore, the curvature per-
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turbation ζ is approximately proportional to N3/2. Thus, N-flation
of this type shows quite different features from those in the usual
N-flation model.

Our model is given by the following action

S =
∫

d4x
√−g

[∑
I

P I (XI , φI )

]
, (1)

which involves N scalar fields, with

P I (XI , φI ) = 1

f (φI)

[
1 − √

1 − 2 f (φI)XI
] − V I (φI ), (2)

and we have defined XI ≡ − 1
2 gμν∂μφI∂νφI . The metric signature

we use in this Letter is (−,+,+,+). This model involves multiple
DBI-type actions which give the effective description of D-brane
dynamics (for example see Refs. [18,26]). Considering a system
constructed by a number of D3-branes in a background metric
field with negligible covariant derivatives of the field strengths and
assuming that these branes are decoupled from each other, this
system could be described by the above action whose stringy ori-
gin is shown in Ref. [27].

Here the scalar φI is interpreted as the position of the I-th
brane, and the warping factor f (φI ) = λ

φ4
I

is suitable for all scalars

when we take an AdS-like throat and neglect the backreaction of
the branes upon the background geometry. This assumption can
be satisfied when the contribution of the background flux is much
larger than that from the branes.1

We now define a series of useful parameters (i.e. the sound
speeds), for the scalars

csI ≡ √
1 − 2 f (φI )XI , (3)

which lead to interesting features of the model. We assume spatial
homogeneity and isotropy, i.e. take a flat Friedmann–Robertson–
Walker metric ansatz ds2 = −dt2 + a2 dxi dxi , where a(t) is the
scale factor of the universe. Then Eq. (3) yields

|φ̇I | = φ2
I

(
1 − c2

sI

λ

) 1
2

. (4)

If csI ∼ 1, this model returns to the slow-roll version. However, if
csI ∼ 0, then |φ̇I | � φ2

I /
√

λ, and in this case there is an interesting
relation for all the scalars:

�φ−1
I = �t√

λ
, (5)

which means that for a fixed time interval �t , the variations of
φ−1

I for all the scalar fields are identical.
By varying with respect to the scalar, we obtain the equations

of motion:

φ̈I + 3Hφ̇I − ċsI

csI
φ̇I − csI P I,I = 0, (6)

where “,” denotes the derivative with respect to the scalar φI , and
H is the Hubble parameter defined as ȧ/a.

As an example, we focus on the case of IR type potential

V I = V 0I − 1

2
m2

I φ
2
I . (7)

1 One should be aware of the fact that single field DBI inflation often suffers from
a backreaction problem for the relativistic brane in the throat, and so cannot pro-
vide enough long inflationary stage, as shown in Refs. [19,22]. To circumvent this
problem, one has to finely tune the precise shape of the potential and the resulting
model is rather delicate [28]. It is still an open question to construct a fully real-
istic model of inflation in string theory, but does not affect our phenomenological
interests.
The first part of the potential V 0I comes from the anti-brane ten-
sion from another throat. In IR DBI inflation, D-branes roll from the
tip of the throat, thus the potential contains tachyonic terms. We
will assume sI ≡ ċsI

HcsI
to be small numbers for simplicity, and take

the normalization 8πG = 1. Due to the warping factor f (φI ), those
scalars are able to stay near the top of their potentials, and so we
have H2 � 1

3

∑
I V 0I . These assumptions are consistent with Eq. (6)

for a single field as shown in [21]. In the following we will exam-
ine the background in detail to prove that this consistency can be
generalized to the case of multiple fields.

In our model the total Lagrangian is a sum of a number of DBI
Lagrangians. Each of these is constructed from a single scalar field
which has its own distinct speed of sound. We therefore have N
sound speeds, and so can rewrite Eq. (6) as follows,

d

dt

(
φ̇I

csI

)
+ 3H

φ̇I

csI
+ f,I

f 2
(1 − csI ) − f,I φ̇

2
I

2 f csI
+ V ,I = 0. (8)

In the relativistic limit of the scalars we have an ansatz solu-
tion [21],

φI = −
√

λ

t

(
1 − αI

(−t)pI
+ · · ·

)
, (9)

where we set t → −∞ at the beginning of inflation. Therefore,
upon inserting the ansatz into the above equation, we find the
leading terms in Eq. (8) come from the term:

3H
√

λ
√

2αI (pI − 1)(−t)2− pI
2

(10)

and the potential term which is equal to:
√

λm2
I

t
. (11)

The others are suppressed by 1
Ht which is negligible in inflation

(where |Ht| 	 1 or equivalently φI 
 √
λH). This requirement is

consistent with the assumption that the scalars lie on the top of
potential during inflation. Finally, by matching the leading terms,
we get pI = 2 and αI = 9H2

2m4
I

, and so the solutions of the scalars are

given by

φI = −
√

λ

t

(
1 − 9H2

2m4
I t2

+ · · ·
)

. (12)

Making use of the solutions, we can see all the approximations are
consistent with the equations of motion. Moreover, from the solu-
tions we directly see that the variations of scalars are consistent
with Eq. (5).

Applying the relation (5), the e-folding number of this multiple
field inflation model can be evaluated as follows:

N ≡
f∫

i

H dt �
√

λ

3

∑
I

V 0I

〈
1

φi
− 1

φ f

〉

� √
N

√
λ

3
〈V 0〉

〈
1

φi

〉
, (13)

under the assumption csI ∼ 0. Here we define 〈O〉 = (
∑

I O I )/N ,
the average value of the variables O I , and the subscript “i” and “ f ”
represent the initial and final state respectively. Since in IR-type
models the scalars start rolling from the top of their potentials,2

we have φi 
 φ f , and we can neglect the contribution of φ f

2 The initial condition of inflation is essential; this was analyzed in [29,30].
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in Eq. (13). Furthermore, from Eq. (13) we can deduce that the
e-folding number in the multiple-DBI model is proportional to the
square root of the number of scalars, i.e.

N ∝ √
N. (14)

This result is completely different from what was obtained in slow-
roll N-flation which gives N ∝ N . This difference shows that in
the inflationary model constructed by multiple DBI terms, although
the fields work cooperatively, the cumulative effect from multiple
fields does not grow linearly. This results in very interesting phe-
nomenological effects which shall be examined next.

We now investigate the curvature perturbation of N-flation con-
structed by multiple DBIs. In the calculation, we use the Sasaki–
Stewart formalism [31], in which the curvature perturbation on co-
moving slices can be expressed as the fluctuation of the e-folding
number and thus can be given in terms of fluctuations of scalar
fields δφI = H

2π on flat slices after horizon crossing. It is given by

P
1
2
ζ =

√∑
I J

N,I N, J
〈|δφIδφ J |

〉

� N
3
2

√
λ

6π
〈V 0〉

√〈
φ−4

〉
, (15)

where we have applied the general relation N,I = H
φ̇I

. This result is

consistent with single DBI inflation model when N = 1, but if one

introduces more fields, P 1/2
ζ grows proportional to N

3
2 , which is

more rapid than that obtained in normal N-flation (for example see
Refs. [9,32] along with references therein). From Eqs. (13) and (15),
we can establish the relation between the curvature perturbation
and the e-folding number as follows,

Pζ = N 4N

4π2λ

〈φ−4〉
〈φ−1〉4

. (16)

Moreover, for a set of the above uncoupled fields, we can derive
the spectral index as follows,

ns − 1 ≡ d ln Pζ

d ln k

� −2ε −
∑

I (sI + ηI )/(csIε
2
I )∑

J 1/(cs J ε
2
J )

, (17)

where we have defined the slow-roll parameters ε ≡ − Ḣ
H2 , εI ≡

φ̇I√
2csI H

, and ηI ≡ 2 ε̇I
εI H . When there is only one scalar field,

the above spectral index returns to the standard form of sin-
gle DBI model [33]. Note that there is a relation ε = ∑

I ε
2
I �∑

I
3φ4

I
2csI λ

/
∑

J V 0I , and this quantity can be very small when λ is
taken to be sufficiently large. If ε 
 1, each positive component εI

becomes negligible automatically. Explicitly, for the case of IR-type
potentials we are considering, the spectral index can be given by

ns − 1 � − 4

N
〈φ−1〉〈φ−3〉

〈φ−4〉 . (18)

Although it is hard to judge in general whether the spectral index
of our model is redder or bluer than that of its corresponding sin-
gle scalar model, this may be determined in certain limiting cases.
For example, the spectral index coincides with that of the corre-
sponding single field model when all the scalars at the horizon-
crossing time have the same value φI = φ0.

Now let us consider some specific examples of this model. The
simplest case is to choose all the scalars to have the same value:
φI = φ0 for I = 1, . . . , N . Therefore we obtain

Pζ = N 4N
2

, ns = 1 − 4
. (19)
4π λ N
Fig. 1. ns as the function of the e-folding number N for different values of the
variable x (≡ N · Δ/φ0). The black solid line denotes the spectral index in the first
case when all the scalars have the same value at horizon-crossing; the red dashed
line denotes the spectral index in the second case with x = 10; the orange dotted
line x = 50; the blue dash-dotted line x = 100. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this Letter.)

As is known, we need the e-folding number for inflation N � 60
to explain the present-day flatness of our universe. From the above
equation, one can easily obtain a scale-invariant spectrum with
an amplitude of order O(10−9) (required by cosmological obser-
vations, such as Ref. [3]) if λ/N ∼ 1014.

Another interesting example is φI = φ0 + I · Δ for I = 1, . . . , N .
In order to make this case quite different from the first one, we
assume φ0 	 Δ but N ·Δ 	 φ0. To solve this system, we apply the
useful expression

〈
φ−l〉 = (−)l ψ

(l−1)(1 + φ0
Δ

) − ψ(l−1)(1 + φ0
Δ

+ N)

(l − 1)!Δl N
, (20)

where ψ l(z) is the l-th derivative of the digamma function
ψ(z) ≡ �′(z)/�(z). We can use the Stirling formula to simplify
the digamma function as ψ(z) � ln z − 1

2z when z is large enough.
Accordingly, we obtain the results

Pζ � N 4N

4π2λ

x3

3(ln x)4
, ns � 1 − 6

N
ln x

x
, (21)

with x ≡ (N · Δ)/φ0 in this case. From Eq. (21), for a given the
e-folding number N , one can find that the tilt of the spectral index
in the multiple-DBI model is strongly suppressed by the variable x.
The dependence of ns on the e-folding number N for different
values of the variable x is plotted in Fig. 1. From the figure, we
can see that the spectrum of the multiple-DBI model is generally
closer to scale-invariance when x is larger.

Inflation with multiple fields avoids some difficulties of single
field inflation models, and so is regarded as an attractive imple-
mentation of inflation. In recent years, there have been a number
of works studying this, such as Refs. [34–38], and there is a good
review on this field Ref. [39]. In this Letter, we have presented a
new N-flation model in which a collection of DBI fields drives in-
flation simultaneously.3 These scalars possess non-standard kinetic
terms, and so some non-linear information is involved when we

3 The action of this model is similar to the ones considered in Refs. [12,40],
but with different motivations. Our model is also different from those appeared
in [41,42] concerning both motivations and detailed examples.
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investigate the background evolution and curvature perturbation.
For example, the e-folding number of this model is no longer pro-
portional to the number of scalars, but rather to its square root,
as shown in Eq. (13). In the detailed calculation, we considered
a tachyonic potential and specifically chose two different cases. In
the first case, we took all the scalars to have the same value at the
horizon-crossing time, and the spectral index in this case coincides
with that in the single DBI model; while in the second case, we
assumed that the collection of the scalars at the horizon-crossing
time is an arithmetic progression, and we found that the spectral
index becomes closer to 1 if the height of this progression is much
larger than the value of the first scalar.

We should note that in this Letter we merely studied the adi-
abatic perturbations during inflation. However, in a model with a
number of scalars involved, there should be entropy perturbations
generated during inflation. In particular, when the kinetic terms
are of non-linear form, the dispersion relations for entropy modes
are modified. If they contribute to curvature perturbation at late
times, they may lead to new features. Namely, a large local type
non-Gaussianity, which is difficult to obtain in usual inflation mod-
els [33], could be obtained in a model of DBI-curvaton as proposed
in Ref. [43]. One source of entropy perturbation is the correla-
tion of different field fluctuations [24,41]. However, in our model,
the propagations for the field fluctuations are quite independent of
others. Consequently, the contribution of correlations among field
fluctuations is subdominant. In this case, the treatment given in
the current Letter is quite reliable. A more detailed study is per-
formed in Ref. [44].

Finally, we would like to highlight the importance of the
present study. As is known, in most of current inflation models,
the propagation of perturbations is characterized by a single sound
speed. In slow roll inflation, this sound speed is exactly the speed
of light, while for DBI inflation it can be smaller than unity. How-
ever, from the well established perturbation theory at late times of
the cosmological evolution, plentiful phenomena, such as baryon
acoustic oscillation, dark energy perturbations, and the formation
of large scale structure, etc., are based on the existence of multiple
components, each of which has its own sound speed. It therefore
seems pertinent to ask, what would happen if we have a number
of sound speeds in the very early universe? As shown in this Letter
and [44], potential phenomenological results include unusual con-
sistency relations, variation of the scalar spectral index, and large
local non-Gaussianity. Therefore, the consideration of inflationary
models with multiple sound speeds is rather robust and useful.

Acknowledgements

We would like to thank Robert Brandenberger, Bin Chen, Xin-
gang Chen, Yun-Song Piao, Yi Wang and Xinmin Zhang for useful
discussions and valuable comments. We also thank A. Vincent for
carefully checking typographic errors. This work is supported in
part by National Natural Science Foundation of China under Grant
Nos. 10533010 and 10675136 and by the Chinese Academy of Sci-
ence under Grant No. KJCX3-SYW-N2.

References

[1] A.H. Guth, Phys. Rev. D 23 (1981) 347;
A.D. Linde, Phys. Lett. B 108 (1982) 389;
A. Albrecht, P.J. Steinhardt, Phys. Rev. Lett. 48 (1982) 1220.

[2] For some early attempts we refer to: A.A. Starobinsky, Phys. Lett. B 91 (1980)
99;
K. Sato, Mon. Not. R. Astron. Soc. 195 (1981) 467.

[3] E. Komatsu, et al., WMAP Collaboration, Astrophys. J. Suppl. 180 (2009) 330.
[4] A.R. Liddle, A. Mazumdar, F.E. Schunck, Phys. Rev. D 58 (1998) 061301.
[5] K.A. Malik, D. Wands, Phys. Rev. D 59 (1999) 123501.
[6] P. Kanti, K.A. Olive, Phys. Rev. D 60 (1999) 043502.
[7] E.J. Copeland, A. Mazumdar, N.J. Nunes, Phys. Rev. D 60 (1999) 083506.
[8] A.M. Green, J.E. Lidsey, Phys. Rev. D 61 (2000) 067301.
[9] S. Dimopoulos, S. Kachru, J. McGreevy, J.G. Wacker, JCAP 0808 (2008) 003.

[10] L. Kofman, A. Linde, JHEP 0207 (2002) 004.
[11] J.M. Cline, arXiv:hep-th/0612129.
[12] Y.S. Piao, R.G. Cai, X.M. Zhang, Y.Z. Zhang, Phys. Rev. D 66 (2002) 121301.
[13] M. Majumdar, A.C. Davis, Phys. Rev. D 69 (2004) 103504.
[14] R. Brandenberger, P.M. Ho, H.C. Kao, JCAP 0411 (2004) 011.
[15] K. Becker, M. Becker, A. Krause, Nucl. Phys. B 715 (2005) 349;

A. Ashoorioon, A. Krause, arXiv:hep-th/0607001;
F. Gmeiner, C.D. White, JCAP 0802 (2008) 012.

[16] J.M. Cline, H. Stoica, Phys. Rev. D 72 (2005) 126004.
[17] O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri, Y. Oz, Phys. Rep. 323 (2000)

183.
[18] R.C. Myers, JHEP 9912 (1999) 022.
[19] E. Silverstein, D. Tong, Phys. Rev. D 70 (2004) 103505;

M. Alishahiha, E. Silverstein, D. Tong, Phys. Rev. D 70 (2004) 123505.
[20] X. Chen, Phys. Rev. D 71 (2005) 063506.
[21] X. Chen, JHEP 0508 (2005) 045.
[22] D.A. Easson, R. Gregory, D.F. Mota, G. Tasinato, I. Zavala, JCAP 0802 (2008) 010.
[23] M.X. Huang, G. Shiu, B. Underwood, Phys. Rev. D 77 (2008) 023511.
[24] D. Langlois, S. Renaux-Petel, D.A. Steer, T. Tanaka, Phys. Rev. Lett. 101 (2008)

061301.
[25] C.R. Contaldi, G. Nicholson, H. Stoica, arXiv:0807.2331 [hep-th].
[26] J.M. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231.
[27] W. Taylor, M. Van Raamsdonk, Nucl. Phys. B 573 (2000) 703.
[28] D. Baumann, A. Dymarsky, I.R. Klebanov, L. McAllister, P.J. Steinhardt, Phys. Rev.

Lett. 99 (2007) 141601.
[29] D.S. Goldwirth, T. Piran, Phys. Rep. 214 (1992) 223.
[30] R. Brandenberger, G. Geshnizjani, S. Watson, Phys. Rev. D 67 (2003) 123510.
[31] M. Sasaki, E.D. Stewart, Prog. Theor. Phys. 95 (1996) 71.
[32] S.A. Kim, A.R. Liddle, Phys. Rev. D 74 (2006) 023513.
[33] X. Chen, M.X. Huang, S. Kachru, G. Shiu, JCAP 0701 (2007) 002.
[34] Y.S. Piao, Phys. Rev. D 74 (2006) 047302;

I. Ahmad, Y.S. Piao, C.F. Qiao, JCAP 0806 (2008) 023.
[35] M.E. Olsson, JCAP 0704 (2007) 019.
[36] K.Y. Choi, J.O. Gong, JCAP 0706 (2007) 007.
[37] G. Panotopoulos, Phys. Rev. D 75 (2007) 107302.
[38] D. Battefeld, T. Battefeld, A.C. Davis, JCAP 0810 (2008) 032;

T. Battefeld, arXiv:0809.3242 [astro-ph].
[39] D. Wands, Lect. Notes Phys. 738 (2008) 275.
[40] S. Thomas, J. Ward, Phys. Rev. D 76 (2007) 023509.
[41] F. Arroja, S. Mizuno, K. Koyama, JCAP 0808 (2008) 015.
[42] D. Langlois, S. Renaux-Petel, D.A. Steer, T. Tanaka, Phys. Rev. D 78 (2008)

063523.
[43] S. Li, Y.F. Cai, Y.S. Piao, Phys. Lett. B 671 (2009) 423.
[44] Y.F. Cai, H.Y. Xia, Phys. Lett. B 677 (2009) 226.


	N-flation from multiple DBI type actions
	Acknowledgements
	References


