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a b s t r a c t

In this study, we propose an analytical solution to the Klein–Gordon equation in a pulsed
stationary regime. The performed protocols are based on themodified variational iteration
method MVIM and Boubaker polynomials expansion scheme BPES.
The results are presented, and compared with some solutions proposed later in order

to confirm the good accuracy of the protocols used.
© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Klein–Gordon equation is encountered in several applied physics fields such as, quantum field theory [1–6], fluid
dynamics [7,8], optoelectronic devices design [9] and numerical analysis [10–21].
As it plays an important role in applied physics, the Klein–Gordon equation were paid special attention and many

attempts to solve it have been published in the past decades. Wazwaz [22] developed exact travelling wave solutions,
Elsayed [23] and Kaya [24] used Adomian’s decomposition method in order to obtain exact solutions to the Klein–Gordon
equation, and more recently, Sirendaoreji [25,26] proposed, for the same purpose, the auxiliary equation method. In the
beginning of the past decade, Fu et al. [27] and Parkes et al. [28] used the Jacobi elliptic function expansion method, and
proposed double periodic solutions.
The standard Klein–Gordon equation is given by the following equation:∂

2ξ(x, t)
∂t2

+ a
∂2ξ(x, t)
∂x2

+ g(ξ) = f (x, t)
x ∈ [0; 1]; t ∈ [0; T ]

(1)

where ξ(x, t) is the two-variable wave unknown function, T is the system characteristic time, a is a given constant, g(ξ)
represents the expression of an external ξ -dependent force and f (x, t) is a given function.
In this study, we propose analytical solutions to the applied physics related Klein–Gordon equation in a pulsed stationary

regime.
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2. Klein–Gordon equation solution derivation

2.1. Equation features

The discussed Klein–Gordon equation in this study is the following:{
ξtt(x, t)+ aξxx(x, t)+ bξ(x, t) = D× cos(Hx)× e−jωt; (D,H) ∈ [0,+∞[×[0,+∞[
x ∈ [0, 1]; t ∈ [0, T ]; (2)

along with the initial-boundary conditions:
ξ(x, t)|x=0,t=0 = u0 = 1
d[ξ(x, t)]
dx

∣∣∣∣
x=0
= 0

a = −1, b = 2, D = 1, H = 3.

(3)

2.2. MVIM solution derivation

According to the modified variational iteration method MVIM principles [29–38], for a general differential equation, the
correction functional is given by

ξn+1(x, t) = xt +
∫ t

0
λ(s)

(
∂2ξn

∂s2
−
∂2ξ̃n

∂x2
+ ξ̃n(s, t)

)
ds (4)

where subscripts n denote the nth approximation ξn(x, t) of ξ(x, t), ξ̃n is considered as a restricted variation. i.e. δξ̃n = 0, λ
is a Lagrange multiplier which can be identified optimally via variational iteration method and s is an intermediate variable.
Making the correction functional stationary [36–38], the Lagrange multiplier can be identified as λ(s) = (s − t), which

leads to the iterative formula

ξn+1(x, t) = xt +
∫ t

0
(s− t)

(
∂2ξn

∂s2
−
∂2ξn

∂x2
+ ξn(s, t)

)
ds. (5a)

By applying the modified variational iteration method MVIM expansion [30]:

ξ0 + pξ1 + p2ξ2 + · · · = xt + p
∫ t

0
(s− t)

((
∂2ξ0

∂s2
+ p

∂2ξ1

∂s2
+ · · ·

)

−

(
∂2ξ0

∂x2
+ p

∂2ξ1

∂x2
+ · · ·

)
+ (ξ0 + pξ1 + · · ·)

)
ds (5b)

and comparing the coefficient of like powers of p, consequently, following approximants are obtained:

ξ(x, t) = A+ Bx− Ax2 −
1
3
Bx3 +

1
6
Ax4 −

44
81
e−jωt cos3 x+

11
27
e−jωt cos x+

11
81
e−jωt −

1
9
x2e−jωt . (6)

Or in concordance with the initial-boundary conditions (3):

ξ(x, t) = 1− x2 +
1
6
x4 −

44
81
e−jωt × cos3 x+

11
27
e−jωt × cos x+

11
81
e−jωt −

1
9
x2e−jωt . (7)

Two 3D views of this solution are presented in Fig. 1.

2.3. BPES-related solution derivation

The resolution protocol is based on the Boubaker Polynomials Expansion Scheme (BPES) [39–49], applied by setting the
pulsed expression:

ξ(x, t) =
1
2N0

(
N0∑
k=1

λk × B4k(x× rk)

)
e−jωt = p(x)× e−jωt (8)

where B4k are the 4k-order Boubaker polynomials, rk are B4k minimal positive roots, N0 is a prefixed integer, ω is the
stationary regime pulsation and λk|k=1...N0 are unknown pondering real coefficients.
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Fig. 1. Two views of the MVIM solution ξ sol.MVIM(x, t).

Eq. (1) is hence written:[
−ω2

2N0

(
N0∑
k=1

λk × B4k(x× rk)

)
+ a
−ω2

2N0

(
N0∑
k=1

λk × r2k
d2B4k(x× rk)

dx2

)]
e−jωt + bξ(x, t) = f (x, t). (9)

By decoupling the t-dependent component, and for the particular case:{
f (x, t) = D× cos(Hx)× e−jωt , (D,H) ∈ [0,+∞[×[0,+∞[
g(ξ) = b× ξ, b ∈] −∞,+∞[ (10)

the main equation becomes:

−ω2 + b
2N0

(
N0∑
k=1

λk × B4k(x× rk)

)
+ a
−ω2

2N0

(
N0∑
k=1

λk × r2k
d2B4k(x× rk)

dx2

)
= D cos(Hx). (11)

Or, using a standardized form:
N0∑
k=1

λk ×Θk(x) = D cos(Hx)

Θk(x) =
1
2N0

(
(−ω2 + b)B4k(x× rk)− aω2r2k

d2B4k(x× rk)
dx2

)
.

(12)

The following step consists of evaluating the coefficients λ′k|k=1,...,N0 that verify:

D cos(Hx) =
N0∑
k=1

λ′k × B4k(x× rk). (13)

This operation leads to the weak solution defined by the system (14):
N0∑
k=1

λk × Ik =
N0∑
k=1

λ′k × Jk

Ik =
∫ 1

0
Θk(x)dx; Jk =

∫ 1

0
B4k(x× rk)dx.

(14)

The values of Ik|k=1...N0 and Jk|k=1...N0 are calculated using Eq. (14) along with the arithmetical properties of the Boubaker
polynomials [40–47].
Finally, the coefficients λsol.k |k=1...N0 are deduced by identification:{

λsol.k = λ
′

k ×
Jk
Ik

k = 1, 2, . . . ,N0.
(15)

The solution ξ sol.BPES(x, t) is hence:

ξ sol.BPES(x, t) =
1
2N0

(
N0∑
k=1

λsol.k × B4k(x× rk)

)
e−jωt . (16)
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Fig. 2. Exact solution ξ ex.(x, t) and ξ sol.BPES(x, t)|t=0 Re〈ξ
sol.
MIVM(x, t)〉|t=0 real parts.

Table 1
Parameter values.

BPES solution Exact solution
Parameter Value Parameter Value

N0 25 ω
√
10

D 1 ϕ 0
a −1 A 1
H 3 b 2

2.4. Exact solution derivation

The exact solution can be derived by combining Eqs. (1) and (2):

− ω2p(x)+ a
d2p(x)
dx2

+ bp(x) = D cos(Hx). (17)

Or simply:

d2p(x)
dx2

−
ω2 − b
a

p(x) =
D
a
cos(Hx). (18)

An exact solution to Eq. (17) is:

pex.(x) = A cos

(
±

√
b− ω2 − D

a
x+ ϕ

)
(19)

with A and ϕ arbitrary constants. The complete exact solution ξ ex.(x, t) is finally:

ξ ex.(x, t) = A cos

(
±

√
b− ω2 − D

a
x+ ϕ

)
e−jωt . (20)

3. Results and discussions

The BPES-related solutions Re〈ξ sol.BPES(x, t)〉|t=0 and Re〈ξ
sol.
MIVM(x, t)〉|t=0 have been plotted along with the exact solution

Re〈ξ ex.(x, t)〉 in Fig. 2.
The parameter values for both BPES-related and exact solutions are presented in Table 1.
The results show a good agreement between the exact and the proposed solution along the t = 0-plane (Fig. 2). The

concordance for higher values of t is simply predictable since the t-dependent terms, although eliminated at the beginning
of the resolution process (Section 2.3), remain the same for both exact and proposed solutions. This feature means that it is
possible to extract analytical solutions when exact ones are difficult or impossible to obtain.
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4. Conclusion

This work proposes an analytical solution to well-known applied-physics-related Klein–Gordon equation. The analytical
approaches of the first method: The Modified Variational Iteration Method MVIM has been performed as an enhanced form
of the protocols developed earlier by Wang et al. [50] involving the Exp-function method, Adomian [51] and Gerogiev et al.
[52]whoextended the solution ton-dimensional cases, orWang [53] using the generalized solitarywave approaches. A given
example gives good fundaments to the performed protocols MVIM and BPES, particularly when exact solution expressions
are difficult to establish.
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