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Let 3 be an isomorphism class of groups and G a finite group. Following 
Fischer, an B-set of G is a collection D of subgroups such that Q is normalized 
by G, generates G, and such that any pair of distinct members of B generates 
a subgroup in 3. 

The case that Q is a conjugate class of subgroups of order 2 has been studied 
by Aschbacher, Fischer, and Timmesfeld. Also, various results have been 
obtained in the case that Q is a conjugate class of subgroups of order p, p an odd 
prime. 

The purpose of this paper is to prove the following: 

THEOREM. Let G be a jinite group with .Q a conjugate class of subgroups of 
order 11 such that 52 is a {PSL,( 1 l), II}-set of G. Then G is isomorphic to PSL,( 11) 

01 /l - 

II denotes the simple group of order 175,560 given by Janko [q. 

1. NOTATION 

The notation is standard and taken from [5]. Moreover the reader is assumed 
to be familiar with the properties of PGL,(ll) and jr (see [5] and [6’J). 

2. PRELIMINARY RESULTS 

LEMMA 2.1. Let G be a simple group, and assume that G contains a nontrivial 
Abelian 2-subgroup which is strongly closed in a Sylow 2-subgroup of G. Then G 
is one of the following: 

(i) PSL,(q), q = 0, 3, 5 (mod 8); 

(ii) Sz(22n+1); 
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(iii) PSU,(2”); 

(iv) Q group of Junko-Ree type. 

Proof. See [3]. 

LEMMA 2.2. Let G be PGL,(ll) OY J1 . Then a Sylow-11-normalizer is 
Frobenius of order 11 * 10. An element of order 5 is centralized by exactly one 
involution; in particular, a Sylow 1 l-subgroup of G is normalized by each involution 
which centralizes an element of order 5 in the normalizer of this Sylow 11 -subgroup. 

Proof. See [5] and [6]. 

LEMMA 2.3. Let G be aJinitegroup and P a Sylow p-subgroup of G. Denote by 
3 the family of all pairs (H, No(H)) w h eye H is a subgroup of P such that there 
exists a Sylow p-subgroup Q of G with H = P n Q a tame intersection and with 
C,(H) < H. Then 3 is a weak conjugation family. 

Proof. See [l]. 

LEMMA 2.4. Let G be a jinite group, P a Sylow p-subgroup of G, and S a 
strongly closed p-subgroup contained in P. Then 

(G’ n P)S = (No(S)’ n P)S. 

Proof. See [4]. 

3. PROOF OF THE THEOREM 

Let G be a minimal counterexample to the Theorem. Then G is simple (see 
[7]). If any pair of distinct members of Q generates a subgroup isomorphic to 
PSL,( 1 l), then G must be PSL,(l 1) (see [2]). Hence, we may assume there are 
distinct members A and B of Q with (A, B) E J1 . Consequently, the set D of 
all involutions of G which act as inversion on some element of Sz is not empty 
moreover Gcontains an elementary Abelian subgroup of order 8 whose involutions 
belong to D. We first note: 

3.1. Let y be an element of G centralizing some member A of Q. Then y 
centralizes each member of Q normalized by y. 

Proof. Assume there is some member B in 52 which is normalized but not 
centralized by y. Then y acts nontrivially on (A, B), contradicting 2.2. 

As a consequence we have: 

3.2. If y has order 4, then y2 does not belong to D. 
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Proof. If not, pick a member A of J2 with A’J = A. By 3.1 ya does not 
centralize A and A’J # A. Theny acts nontrivially on (A, Ay), contradicting 2.2. 

The same kind of argument yields: 

3.3. Let A be a member of Sz and y an element of order 5 acting nontrivially 
on A. Then each involution in C,(y) fixes A. 

3.4. Let A be a member of a. Then C,(A) has odd order. 

Proof. Assume the order of C,(A) even; we try to derive a contradiction. 

3.4.1. Let i be an involution in C,(A). Then there exists a member B 
of Q distinct from A and fixed by i. 

Proof. Otherwise j Sz 1 is odd and N,(A) contains a Sylow 2-subgroup of G. 
We remarked that Sz contains distinct members A and B with (A, B) z J1 . 
Hence G contains a four group I’ whose involutions belong to D. We may 
assume V < N,(A). But then V r\ C,(A) # (l), contradicting 3.1. 

Part 3.4.1 yields the existence of a simple subgroup K of G generated by 
members of Sz such that 1 C,(K)/ is even. Among the subgroups with these 
properties we choose K such that 1 K 1 is as large as possible. Let H = N,(K), 
C = C,(K), S a Sylow 2-subgroup of H, S, = S n C, and Sa = S n K. 

3.4.2. N,(C) = H is a maximal subgroup of G. If gg G\H then 
C n 0 has odd order. 

Proof. Assume H is properly contained in a maximal subgroup M of G. 
Let L = (KM) be the normal closure of K in M. Then L is well known by 
minimality of G. Since K is a proper subgroup of L we conclude that L is iso- 
morphic to Jr and C,(L) has odd order. Consequently an involution from S, 
acts on L and centralizes K gg PSL,( 1 l), a contradiction. Hence His a maximal 
subgroup of G and Nc(C) = H. The choice of K implies 1 C n 0 I odd for 
g E G\H. 

3.4.3. The order of Ss is 4; the order of S is 24 or 25. S does not contain 
a four group whose involutions belong to D. 

Proof. Suppose K is isomorphic to J1 . Then S = S, x S, . From 3.1 S, 
is strongly closed in S. Hence it follows from 3.4.2 that S is a Sylow 2-subgroup 
of G. If Q is a subgroup of S with C,(Q) < Q, then S, n Q isa nontrivial, inQ 
strongly closed subgroup of Q and No(Q) < No(Sr n Q) < H. Hence H 
contains a weak conjugation family (see 2.3). Therefore H controls fusion in S; 
in particular, S, is an Abelian strongly closed 2-subgroup of G. This contradicts 
2.1. We conclude that K is isomorphic to PSL,(l I), and S, has order 4. 
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Now pick a member A of Q n K. We know that S, is a Sylow 2-subgroup of 
C,(A). If R is a 2-subgroup of C,(A) which contains S, as a normal subgroup 
we conclude from 3.4.2 that R is contained in H and R = S, . In particular, 
S, is a Sylow 2-subgroup of C,(A). N ow let R be a Sylow 2-subgroup of N,(A) 
containing S, . As D is not empty, S, has index 2 in R. Because of 3.4.2 R is 
contained in H. Without loss, we may assume that N,(A) is a Sylow 2-subgroup 
of N,(A). We see that S contains an involution of D which inverts a member 
of Q n K. In particular, S, x S, is properly contained in S and S/S, is dihedral. 

If an elementary-Abelian subgroup of order 8, whose involutions belong to D, 
were contained in S, it would intersect S, nontrivially, contradicting 3.1. 
Hence S is properly contained in a Sylow 2-subgroup T of G. Let T,, be the 
normalizer of S in T and fix an element t of T,,\S. If i is an involution in S, 
we conclude from 3.1 and 3.4.2 that it E S, x S,\S, and S, n Sit = (1). Conse- 
quently the order of S, is at most 4. As Z(S) is contained in S, x S, and 
Z(S) n S, has order 2, the action of t on Q,(Z(S)) implies that &(Z(S)) has 
order 4. If x were an element of order 4 in Z(S), x2 would have to centralize K 
and therefore (x2) = sZ,(Z(S)) n S, ; this means that x2 is the only involution 
in Z(S) which is a square in Z(S). Then (x2)” = x2, a contradiction. We conclude 
that Z(S) is elementary Abelian of order 4. 

We note that Z(T) = Z( T,,) is contained in Z(S) and intersects S, trivially. 
Furthermore the index of S in T,, is 2. 

Assume S, cyclic of order 4. Let S, = (x) and d be an involution in S\S, x S, . 
We know xd = x-r. Pick involutions .a andj of S, such that aa = z and jd = jz. 
We have Z(S) = (x2, a). As the involutions x2 and z are the only squares in S, 
they are conjugate under t by 3.4.2 and do not belong to D by 3.1. Hence 
Qi(S, x S,) is generated by the involutions of S which do not belong to D. 
Thus Q,(S, x S,) is invariant under (t). In particular, {x2j, x2@} is invariant 
under (t). Hence at = z, a contradiction. 

Thus S, is elementary Abelian of order 2 or 4. In each case S is uniquely 
determined. Easy calculations show that S does not contain a four group whose 
involutions belong to D. 

3.4.4. H contains a Sylow 5-subgroup of G. If (y) is a subgroup of 
order 5 in H then H contains a Sylow 2-subgroup of No((y)). 

Proof. Suppose first that (y) is a subgroup of order 5 in K. Let i be some 
involution in S, and A a member of D normalized by (y). By 3.1 (y) acts 
nontrivially on A. Now 3.3 implies that i normalizes A and hence i centralizes A 
by 3.1. Therefore A must be a subgroup of K. As Nc(( y)) permutes the elements 
of Q fixed by (y), we see No((y)) < H. 

Let g E G\H, and suppose C n Cg # (1). As G is simple, (K, Kg) is a proper 
subgroup of G. By minimality of G, (K, Kg) is isomorphic to Ii . Hence an 
element of order 5 in K fixes an element of Q not contained in K, a contradiction. 
Thus C is a TI-subgroup. 
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Let P be a Sylow 5-subgroup of H, PI = P n C and Pz = P n K. If Q is a 
Sylow 5-subgroup of G containing P we conclude that Z(Q) is contained in P. 
If Pz is contained in Z(Q) we have P = Q. Therefore we may assume Z(Q) n 
Pz = (1); in particular, PI # (1). As PI is a nontrivial strongly closed subgroup 
in P and C is a T1-subgroup we have N,(P) < N&P,) < H. In each case P is a 
Sylow 5-subgroup. As Sz contains two elements which generate a subgroup 
isomorhic to Ji , P contains an element of order 5 which fixes more than two 
members of Sz; this implies PI # (1). 

If Q is a subgroup of P with C,(Q) contained in Q, then PI n Q is a nontrivial 
strongly closed subgroup of Q; therefore No(Q) < N,(P, n Q) < H, as C is a 
T1-subgroup. From 2.3 H controls fusion in P. 

Now let (y} be a subgroup of order 5 in P. We claim that H contains a 
Sylow 2-subgroup of N&(y)). If y E PI , then No((y)) < H. Thus we may 
assume that ( y) acts nontrivially on K. Let A and B be two Sylow 11 -subgroups 
of K normalized by y. Each involution in C,(y) normalizes A and B by 3.3 
and lies in N,((A, B)) = H. Let x be some element of order 4 in C,(y). 
The involution ~2 normalizes A and B, and from 3.2 one infers that x2 centralizes 
A and B. Hence x2 E C and x E H. If w were an element of order 8 in C,(y), 
we could conclude w4 E C and w E H; however, H does not contain an element 
of order 8. We proved that H contains each Sylow 2-subgroup of C,(y). As H 
controls fusion in P we conclude that some Sylow 2-subgroup of No((y)) lies 
in H. This completes the proof of 3.4.4. 

Parts 3.4.3 and 3.4.4 contradict each other: By hypothesis G contains a 
subgroup isomorphic to J1 and thus a subgroup (y) of order 5 which is normal- 
ized by a four group V whose involutions belong to D. Replacing (y) and lJ’ 
by suitable conjugates, we assume by 3.4.4 that (y) and V lie in H. This con- 
tradicts 3.4.3 and completes the proof of 3.4. In particular, D is a conjugate 
class of involutions. 

Finally, we need some information allowing us to decide whether some involu- 
tion belongs to D or not. 

3.5. Let (y) be a subgroup of order 5. Suppose (y) acts nontrivially 
on some element A of Q and (y) is inverted by some involution. Then each 
involution in Nc((y)) belongs to D. 

Proof. Suppose C,(y) h as even order. Let i be an involution in C,(y). 
By 3.3 and 3.4 i belongs to D. By 3.2 a Sylow 2-subgroup of C,(y) has order 2. 

Next suppose the order of C,(A) is not divisible by 5. By hypothesis there 
exist two members of D which generate a subgroup L isomorphic to Ji . By 
assumption we may assume that y lies in L. In L there exists a four group V 
such that the involutions in V belong to D and V normalizes ( y). As we already 
know that a Sylow 2-subgroup of C,(y) has order 2, we infer from 3.2 that V is 
a Sylow 2-subgroup of Nc(( y)). 
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To prove the statement under 3.5 we must therefore assume that the order 
of Co(A) is divisible by 5. Let P be a (y)-invariant Sylow 5-subgroup of Co(A). 
Note that P is strongly closed in P(y) with respect to G. If N,(P) were contained 
in N,(A), P(y) would be a Sylow 5-subgroup of G and N,(P)’ 17 P(y) < P; 
this contradicts 2.4. Hence P centralizes a conjugate of A distinct from A. By 
minimality G contains a simple subgroup K generated by members of G such 
that the order of C,(K) is divisible by 5. Among all subgroups of G with these 
properties we choose K such that the order of K is as large as possible. We set 
H = N,(K) and C = C,(K). Th e c h oice of K implies that for each g E G\H 
the order of C n 0 is not divisible by 5. 

Suppose His properly contained in a maximal subgroup M of G. Then K is 
a proper subgroup of (KM) which is isomorphic to Jr by minimality of G. 
The maximality of K yields that CG((KM)) is a 5’-group, and a Sylow 5-subgroup 
has order 5, a contradiction. Hence His a maximal subgroup of G and H=N,(C). 

Let Q be a Sylow 5-subgroup of H. Then Q n C is strongly closed in Q with 
respect to G. Hence No(Q) < No(Q n C) < H and Q is a Sylow 5-subgroup 
of G. Moreover H controls fusion.in Q by 2.3. We choose notation such that 
P = Q n C and that (y) is a subgroup of Q. 

Suppose H/C is isomorphic to PGL,(ll). Thus a Sylow 2-subgroup of H is 
dihedral of order 8. We know that G contains a subgroup (z) of order 5 such 
that a Sylow 2-subgroup of Nc((z)) . IS a four group whose involutions belong 
to D. Replacing (z) by a suitable conjugate we may assume that .Z lies in Q and 
acts nontrivially on K. From 3.3 we obtain V n C,(x) < H. Since H controls 
fusion in Q, a conjugate of V lies in H. This contradicts 3.2. 

We conclude H = C x K. Now Q n K is the only subgroup of order 5 in Q 
inverted by some involution. Hence ( y) = Q n K and the result follows easily. 

3.6. A Sylow 2-subgroup of G is elementary Abelian. 

Proof. Let d be an element of D and i some involution in C,(d) different 
from d. Let A be a member of JJ with Ad = A. From 3.4 Ai # A. If (A, A”) 
were isomorphic to PSL,(ll), the involution d would induce an outer auto- 
morphism on (A, Ai) and by 3.2 the involutions of {A, Ai) would not lie in D; 
however, this contradicts 3.5. Now (A, Ai) z Jr implies that i lies in (A, Ai) 
and belongs to D. Consequently all involutions of G belong to D. From 3.2 
G does not contain an element of order 4. 

Because of the simplicity of G and 3.6 the fusion result 2.1 shows that G is 
not a counterexample after all. This contradiction concludes the proof of the 
theorem. 
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