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Let & be an isomorphism class of groups and G a finite group. Following
Fischer, an §-set of G is a collection £ of subgroups such that £ is normalized
by G, generates G, and such that any pair of distinct members of £ generates
a subgroup in &.

The case that £ is a conjugate class of subgroups of order 2 has been studied
by Aschbacher, Fischer, and Timmesfeld. Also, various results have been
obtained in the case that 2 is a conjugate class of subgroups of order p, p an odd
prime.

The purpose of this paper is to prove the following:

TureorREM. Let G be a finite group with 2 a conjugate class of subgroups of
order 11 such that 2 is a {PSLy(11), J,}-set of G. Then G is isomorphic to PSL,(11)

or |, .
], denotes the simple group of order 175, 560 given by Janko [6].

1. NoTaTioN

The notation is standard and taken from [5]. Moreover the reader is assumed
to be familiar with the properties of PGL,(11) and J; (see [5] and [6]).

2. PRELIMINARY RESULTS

LemMA 2.1, Let G be a simple group, and assume that G contains a nontrivial
Abelian 2-subgroup which is strongly closed in a Sylow 2-subgroup of G. Then G
is one of the following:

(l) PSLZ(Q)’ 9= 0) 3: 5 (mOd 8)>
(ii) S=(2%+);
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(i) PSU,2mM);
(iv) a group of Janko—Ree type.
Proof. See [3].

Lemma 2.2. Let G be PGLy(11) or J,. Then a Sylow-11-normalizer is
Frobenius of order 11 - 10. An element of order 5 is centralized by exactly one
involution; in particular, a Sylow 11-subgroup of G is normalized by each involution
which centralizes an element of order 5 in the normalizer of this Sylow 11-subgroup.

Proof. See [5] and [6].

Lemma 2.3. Let G be a finite group and P a Sylow p-subgroup of G. Denote by
3 the family of all pairs (H, Ny(H)) where H is a subgroup of P such that there
exists a Sylow p-subgroup Q of G with H = P N Q a tame intersection and with
Cp(H) << H. Then 3 is a weak conjugation family.

Proof. See [1].

Lemma 2.4. Let G be a finite group, P a Sylow p-subgroup of G, and S a
strongly closed p-subgroup contained in P. Then

(G' N P)S = (N(S) N P)S.

Proof. See [4].

3. PrROOF OF THE THEOREM

Let G be a minimal counterexample to the Theorem. Then G is simple (see
[7]). If any pair of distinct members of £2 generates a subgroup isomorphic to
PSLy(11), then G must be PSLy(11) (see {2]). Hence, we may assume there are
distinct members 4 and B of 2 with (A, B) ~ ], . Consequently, the set D of
all involutions of G which act as inversion on some element of 2 is not empty
moreover (7 contains an elementary Abelian subgroup of order 8 whose involutions
belong to D. We first note:

3.1. Let y be an element of G centralizing some member 4 of . Then y
centralizes each member of {2 normalized by y.

Proof. Assume there is some member B in £ which is normalized but not
centralized by y. Then y acts nontrivially on {4, B), contradicting 2.2.
As a consequence we have:

3.2. If y has order 4, then y? does not belong to D.
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Proof. If not, pick a member 4 of £ with 4¥ = 4. By 3.1 y* does not
centralize 4 and A¥ % A. Then y acts nontrivially on {4, 4?3, contradicting 2.2.
The same kind of argument yields:

3.3. Let A beamember of £ and y an element of order 5 acting nontrivially
on A. Then each involution in Cy(y) fixes 4.

3.4. Let A be a member of 2. Then Cg(4) has odd order.

Proof. Assume the order of C¢(A4) even; we try to derive a contradiction.

3.4.1. Let 7 be an involution in Cy(A4). Then there exists 2 member B
of £ distinct from A4 and fixed by i.

Proof. Otherwise | 2 | is odd and Ng(A4) contains a Sylow 2-subgroup of G.
We remarked that £2 contains distinct members 4 and B with (4, B> ~ J, .
Hence G contains a four group ¥V whose involutions belong to D. We may
assume V' < Ng(4). But then V' N Cy(A4) % (1), contradicting 3.1.

Part 3.4.1 vyields the existence of a simple subgroup K of G generated by
members of 2 such that | C4(K)| is even. Among the subgroups with these
properties we choose K such that | X | is as large as possible. Let H = Ng(K),
C = Cx(K), S a Sylow 2-subgroup of H, $; =SnNC, and S, = SN K.

3.42. Ng(C)= H is a maximal subgroup of G. If ge G\H then
C N C7 has odd order.

Proof. Assume H is properly contained in a maximal subgroup M of G.
Let L = (K™} be the normal closure of K in M. Then L is well known by
minimality of G. Since K is a proper subgroup of L we conclude that L is iso-
morphic to J; and C¢(L) has odd order. Consequently an involution from .5,
acts on L and centralizes K =~ PSL,(11), a contradiction. Hence H is a maximal
subgroup of G and N(C) == H. The choice of K implies | C N C?] odd for
g€ G\H.

3.4.3. The order of S, is 4; the order of S is 24 or 25. S does not contain
a four group whose involutions belong to D.

Proof. Suppose K is isomorphic to J;. Then S = S; X S,. From 3.1 S;
is strongly closed in S. Hence it follows from 3.4.2 that S is a Sylow 2-subgroup
of G. If Q is a subgroup of S with Cg(Q) < O, then S; N Q isa nontrivial, in Q
strongly closed subgroup of O and Ng(Q) << Ng(S; Q) < H. Hence H
contains a weak conjugation family (see 2.3). Therefore H controls fusion in S;
in particular, S, is an Abelian strongly closed 2-subgroup of G. This contradicts
2.1. We conclude that K is isomorphic to PSL,(11), and S, has order 4.
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Now pick a member 4 of 2 N K. We know that S, is a Sylow 2-subgroup of
Cu(4). If R is a 2-subgroup of Cy(A4) which contains S, as a normal subgroup
we conclude from 3.4.2 that R is contained in H and R = S . In particular,
S, is a Sylow 2-subgroup of C(A4). Now let R be a Sylow 2-subgroup of Ng(A4)
containing S; . As D is not empty, S; has index 2 in R. Because of 3.4.2 R is
contained in H. Without loss, we may assume that Ng(4) is a Sylow 2-subgroup
of N(A). We see that S contains an involution of D which inverts a member
of 2 N K. In particular, S; X S, is properly contained in .S and S/S; is dihedral.

If an elementary-Abelian subgroup of order 8, whose involutions belong to D,
were contained in S, it would intersect S; nontrivially, contradicting 3.1.
Hence S is properly contained in a Sylow 2-subgroup T of G. Let T, be the
normalizer of S in T and fix an element ¢ of 7,\S. If { is an involution in S,
we conclude from 3.1 and 3.4.2 that i* € S; X S,\S; and §; N S}t = {1>. Conse-
quently the order of S, is at most 4. As Z(S) is contained in S} x .S, and
Z(S)N S, has order 2, the action of ¢ on £2,(Z(.S)) implies that £2,(Z(S)) has
order 4. If x were an element of order 4 in Z(S), x* would have to centralize K
and therefore (x¥*> = 2,(Z(S)) N S, ; this means that x? is the only involution
in Z(.S) which is a square in Z(.S). Then (x?)! = &2, a contradiction. We conclude
that Z(.S) is elementary Abelian of order 4.

We note that Z(T) = Z(T,) is contained in Z(S) and intersects S; trivially.
Furthermore the index of Sin T} is 2.

Assume S cyclic of order 4. Let S, = {x)> and d be an involution in S\S; X S, .
We know x? = x~L. Pick involutions 2 and j of .S, such that 2¢ = z and j¢ = jz.
We have Z(S) = {&?, 2. As the involutions x? and z are the only squares in S,
they are conjugate under t by 3.4.2 and do not belong to D by 3.1. Hence
£,(8; X S,) is generated by the involutions of .S which do not belong to D.
Thus £,(S; X S,) is invariant under {t>. In particular, {x?, &? jz} is invariant
under {#>. Hence 2! = %, a contradiction.

Thus S, is elementary Abelian of order 2 or 4. In each case S is uniquely
determined. Easy calculations show that .S does not contain a four group whose
involutions belong to D.

3.4.4. H contains a Sylow 5-subgroup of G. If <{y)> is a subgroup of
order 5 in H then H contains a Sylow 2-subgroup of Ng{<{y>).

Proof. Suppose first that {y)> is a subgroup of order 5 in K. Let i be some
involution in S; and A a member of £ normalized by {y}. By 3.1 {¥) acts
nontrivially on 4. Now 3.3 implies that ¢ normalizes A and hence 7 centralizes 4
by 3.1. Therefore 4 must be a subgroup of K. As Ny({y)) permutes the elements
of 2 fixed by < y>, we see No({y>) < H.

Let g € G\H, and suppose C N C? % (1. As G is simple, (K, K?) is a proper
subgroup of G. By minimality of G, (K, K?) is isomorphic to [, . Hence an
element of order 5 in K fixes an element of £2 not contained in K, a contradiction.
Thus C is a TI-subgroup.
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Let P be a Sylow 5-subgroup of H, P, = PN Cand P, = PN K. If Qis a
Sylow 5-subgroup of G containing P we conclude that Z(Q) is contained in P.
If P, is contained in Z(Q) we have P = Q. Therefore we may assume Z(Q) N
P, = {1); in particular, P, = {1>. As P, is a nontrivial strongly closed subgroup
in P and C is a TI-subgroup we have Ng(P) <X Ng(P,) < H.In each case Pisa
Sylow 5-subgroup. As £2 contains two elements which generate a subgroup
isomorhic to J,, P contains an element of order 5 which fixes more than two
members of 2; this implies P; = {1).

If O is a subgroup of P with C,(Q) contained in Q, then P, N Q) is a nontrivial
strongly closed subgroup of Q; therefore No(Q) < No(P,N Q) < H,as Cisa
TI-subgroup. From 2.3 H controls fusion in P.

Now let {y> be a subgroup of order 5 in P. We claim that H contains a
Sylow 2-subgroup of Ng({¥>). If y € Py, then N({y>) < H. Thus we may
assume that { ¥> acts nontrivially on K. Let 4 and B be two Sylow 11-subgroups
of K normalized by y. Each involution in C¢g(y) normalizes 4 and B by 3.3
and lies in Ny(<(4, B)) = H. Let x be some element of order 4 in C¢(y).
The involution &% normalizes 4 and B, and from 3.2 one infers that x* centralizes
A and B. Hence #? € C and x € H. If w were an element of order 8 in Cs(y),
we could conclude @t € C and w e H; however, H does not contain an element
of order 8. We proved that H contains each Sylow 2-subgroup of Cg(y). As H
controls fusion in P we conclude that some Sylow 2-subgroup of Ng({y)>) lies
in H. This completes the proof of 3.4.4.

Parts 3.4.3 and 3.4.4 contradict each other: By hypothesis G contains a
subgroup isomorphic to J; and thus a subgroup { y> of order 5 which is normal-
ized by a four group V whose involutions belong to D. Replacing {y> and V
by suitable conjugates, we assume by 3.4.4 that {y) and V lie in H. This con-
tradicts 3.4.3 and completes the proof of 3.4. In particular, D is a conjugate
class of involutions.

Finally, we need some information allowing us to decide whether some involu-
tion belongs to D or not.

3.5. Let {y)> be a subgroup of order 5. Suppose {y> acts nontrivially
on some element 4 of £ and {¥) is inverted by some involution. Then each
involution in Ng-({»)) belongs to D.

Proof. Suppose Cg(y) has even order. Let ¢ be an involution in Cg(y).
By 3.3 and 3.4 i belongs to D. By 3.2 a Sylow 2-subgroup of C(y) has order 2.

Next suppose the order of Cg(4) is not divisible by 5. By hypothesis there
exist two members of £ which generate a subgroup L isomorphic to [, . By
assumption we may assume that y lies in L. In L there exists a four group V
such that the involutions in V belong to D and ¥ normalizes { y). As we already
know that a Sylow 2-subgroup of C¢(y) has order 2, we infer from 3.2 that V'is
a Sylow 2-subgroup of Ng({>).
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To prove the statement under 3.5 we must therefore assume that the order
of C¢(A) is divisible by 5. Let P be a { y)-invariant Sylow 5-subgroup of Cg(4).
Note that P is strongly closed in P{ y) with respect to G. If Ng(P) were contained
in Ng(4), P{y> would be a Sylow 5-subgroup of G and Ny (P) N P{y) < P;
this contradicts 2.4. Hence P centralizes a conjugate of A4 distinct from 4. By
minimality G contains a simple subgroup K generated by members of £ such
that the order of C4(K) is divisible by 5. Among all subgroups of G with these
properties we choose K such that the order of K is as large as possible. We set
H = Ng(K) and C = CgK). The choice of K implies that for each g€ G\H
the order of C' N €7 is not divisible by 5.

Suppose H is properly contained in a maximal subgroup M of G. Then K is
a proper subgroup of (KM} which is isomorphic to J, by minimality of G.
The maximality of K yields that Co((K*>)is a 5'-group, and a Sylow 5-subgroup
has order 5, a contradiction. Hence H is a maximal subgroup of G and H=N(C).

Let O be a Sylow S-subgroup of H. Then Q N C is strongly closed in Q with
respect to G. Hence Ng(Q) << No(Q N C) < H and Q is a Sylow S-subgroup
of G. Moreover H controls fusion-in Q by 2.3. We choose notation such that
P = QN C and that {y) is a subgroup of Q.

Suppose H/C is isomorphic to PGLy(11). Thus a Sylow 2-subgroup of H is
dihedral of order 8. We know that G contains a subgroup {2) of order 5 such
that a Sylow 2-subgroup of Ng({2>) is a four group whose involutions belong
to D. Replacing {2) by a suitable conjugate we may assume that 2 lies in Q and
acts nontrivially on K. From 3.3 we obtain V' N Cy(2) << H. Since H controls
fusion in Q, a conjugate of I lies in H. This contradicts 3.2.

We conclude H = C x K. Now Q@ N K is the only subgroup of order 5in Q
inverted by some involution. Hence { ¥> = Q N K and the result follows easily.

3.6. A Sylow 2-subgroup of G is elementary Abelian.

Proof. Let d be an element of D and ¢ some involution in Cg(d) different
from d. Let 4 be a member of 2 with 4% = A. From 3.4 A £ A. If (4, A
were isomorphic to PSL,(11), the involution d would induce an outer auto-
morphism on {4, A*) and by 3.2 the involutions of {4, 4*> would not lie in D;
however, this contradicts 3.5. Now <4, A%> o~ ], implies that 7 lies in {4, 4%
and belongs to D. Consequently all involutions of G belong to D. From 3.2
G does not contain an element of order 4.

Because of the simplicity of G and 3.6 the fusion result 2.1 shows that G is
not a counterexample after all. This contradiction concludes the proof of the
theorem.
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