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Abstract

We work out a stationary process on the real line to represent the positions of the multiple
cracks which are observed in some composites materials submitted to a fixed unidirectional
stress &. Our model is the one-dimensional random sequential adsorption. We calculate the
intensity of the process and the distribution of the inter-crack distance in the Palm sense.
Moreover, the successive crack positions of the one-sided process (denoted by X%, i>1) are
described. We prove that the sequence {(X%, Y%),1<i<n} is a “conditional renewal process”,
where Y7 is the value of the stress at which X7 forms. The approaches “in the Palm sense” and
“one-sided process” merge when n — +o00. The saturation case (¢ = 4+00) is also investigated.
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0. Introduction

Let {X;;i>1} be a sequence of independent and uniformly distributed variables on
the segment [0, L], L>0. We throw successively X, ..., Xy on this segment, keeping
only some of them according to the following procedure. For N >2, we keep X; and
after that, we erase X, if and only if X, is in the interval of radius r>0 around X.

Once we have decided if X»,...,X,, 2<n<(N — 1) are kept or not, we erase X, if
it belongs to the union of all the intervals centered on the non-erased points, with
length 2r.

This construction is known as the one-dimensional random sequential adsorption
(RSA) [3,2]. In spite of its simplicity, this model is difficult to deal with: in particular,
the law of the number of preserved points is unknown.

In 1958, Rényi [18] worked out a model where the points are placed on the
segment up to saturation (i.e. when no more point can be added). He obtained the
asymptotic behaviour of the mean number of points in [0, L] when L goes to infinity.
This question, known as the car-parking problem, has been largely investigated
(see for example [4,5,11,16,17]).

In 1966, fixing the number N of thrown variables, Widom [21] demonstrated by
heuristic methods that the mean number of points which are separated from their
right-neighbor by a fixed length /> 0 satisfies a differential equation in /. Moreover,
he provided formulas for the empirical distribution function of the inter-point
distance when N, L — +oo, with N/L fixed.

In this paper, we are interested mainly in modelling a unidirectional multicracking
phenomenon of brittle coatings. A uniaxial strain is applied to a specimen consisting
of a ductile substrate covered with a brittle coating. The applied strain is supposed to
result in the coating in a regularly increasing stress denoted by &, which leads to the
formation of cracks parallel and orthogonal to the stress direction [7,12].
Consequently, the geometrical aspect of the problem reduces practically to the
intersections of the cracks with a fixed line parallel with the stress axis. It has been
observed [1,7,10,12] that the formation of a crack in the coating results in a
relaxation of the stress in the vicinity of this crack so that no new crack can form
close to an existing crack because of the smallness of the stress in this area.
Consequently, the above-described RSA construction can be considered as a model
for the crack positions.

More precisely, we construct through the RSA procedure a one-dimensional
stationary point process 4., that represents the positions of cracks for a fixed value
of the applied stress ¢>0. The parameter ¢ plays a central role in the model. In
particular, the limit ¢ — 400 corresponds to saturation.

The first section of our paper is devoted to the construction of A,. We start with a
two-dimensional Poisson process @ on R x R of intensity measure 1g, (y)f(y) dxdy.
In the physics literature, f'is called (see e.g. [13]) rupture probability density of the
coating. It is a non-decreasing function and therefore expresses the fact that the
number of cracks grows with stress. From a mathematical point of view, there is no
loss of generality in assuming that f =1 (see the beginning of Section 1 for
details).
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By an erasing procedure, we construct a subset ¥ of @ such that for every point
(x,y) € P, the first and second coordinates represent, respectively, the position of a
crack and the exact stress level at which it forms. For every ¢>0,

A, ={x € R;3y €[0,¢] | (x,y) € P},

is the projection on the x-axis of ¥ N (R x [0, ¢]).

In Section 2, we demonstrate that the process A, is stationary. In particular, the
mean crack number A, and the couple (D,, L,) of the typical inter-crack distance and
the stress level in the Palm sense are precisely defined, and a different notion of inter-
crack distance [§ is given. The results are expressed through two unknown functions,
G and H.

We demonstrate in Section 3 that the function G satisfies an integral equation that
can be solved, which allows us to determine the function H.

Let us denote by « the function on R, defined by

a@=w%—Amqum} 520, ()

Precise formulas for /, and the distribution of (D, L;) (resp. Ij) can thus be
obtained:

Theorem 1. We have

(i) 4 = [y o(v)’ du;
(it) The distribution of D, has a density ¢, on [r,+00) such that

& X

}TOC(S) e (2 if x>2r,

(PD,,.(X) = 26 €

}T/ ey ude  if r<x<2r.
e J0

(iii) L; has a density ¢, such that

1
01,0) = 20 0% @

(iv) The distribution of D, conditionally on L, has a density IT”(L,;-) such that for
every y € [0,¢], u=0,

eo(&) _. (o,
HDp, . =1 . ry a—(u—2r)e
(y;u) {u>2r} 20 € e
—ry e
+ 1{r<u<2r}{ye(ur)y +Z_®l ef(ufr)va(v) dl)} (3)

In order to understand more deeply the process A, an alternative point of view is
considered in Section 4, i.e. we describe the points X7 of the process on the positive
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half-line:
0<Xi<Xi<--- <X, n=l

We denote by Y? the corresponding stress level of the crack position X¢, n>1.

Because of the complexity of the erasing procedure, (X7}),-; is not a renewal
process. We call it a ““‘conditional renewal process’ since we show in Theorem 2
below, that for every n> 1, {X?¢, 1 <i<n} coincides with the first »n points of a renewal
process conditioned on some explicit event.

More precisely, let us introduce three probability densities on R, :

0409 = 5 (10(0) + Lo (™), o
1
(pp(x) = E 1[0,8](x)a (5)
0009 = o N9 ©)
0

Theorem 2. Let {&;5i=1), {n;i=1), {ppi=1} and {p;i=1} be four mutually

independent sequences of i.i.d. variables such that &, is an exponential variable with

mean 1 and the distribution of n, (resp. py, p\) has the density ¢, (resp. ¢,, ¢,).
Besides, let us consider the events

Bn = {énZ(nn A r)(pn 4 pn—l) + r(pn A pn—l)}a

B;, = {£n>(’7n N r)(p)/f[ Vv pnfl) + V(p;1 N pn—l)}s

with the convention py = 0 a.s. Then

(1) The vector (X§,Y?) is distributed as (n,, p}) conditioned on B;
(i1) For every n=?2, the vector
(X5, YL X5 — X5, Y5, . X — X2, Y9)

n—1°

is distributed as (N1, P17+ N2y P2y -« s ¥+ Ny 15 P> T + Ny pl,) conditioned on the
event

n—1

Co=() Bi[) B,

i=1

Theorem 2 provides an algorithm to simulate the successive positions of the cracks
(see Remark 20).

We also prove that both (X}, — X}, Y}),>, and (Y}),~, are Markov chains and
the initial distribution, transition probability density and invariant probability
measure are determined for each of them. We verify that the process (X, —
X;,Y?),~ converges to its invariant probability measure (i.e. the law of (D,, L;), see
Theorem 1).
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Section 5 presents the saturation case already considered by Renyi. We define
directly the process A, associated to saturation as well as its associated quantities
(Aoo> Doos Loo, X2, Y2, i>1), then we demonstrate that A, tends to Ao as ¢ = +00
and D, (resp. Ij, L;) converges in distribution to Do, (resp. I5°, Ls). We also give a
complete description of the distribution of (X7°, Y7°),- and a result of convergence
in law of (X735, — X;°, Y}°) t0 (Deo, Loo).

n >’

1. A stationary model with relaxation of stress

In this section, we define a stationary process A, on R that represents the crack
positions for a given stress ¢ on the assumption that the stress is relaxed on an
interval of radius r>0 around every existing crack.

To this end, we introduce a two-dimensional point process ¥ on R x R, such that
the first and the second coordinates of a point of ¥ represent, respectively, the
position of a crack and the stress level at which the crack forms. A, is the projection
on the x-axis of ¥ N (R x [0, ¢]):

A, ={x e R;3y €]0,¢]| (x,y) € V}. (7

Considering a two-dimensional point process is a convenient way to order the crack
positions as in the case of the segment [0, L], by associating with any position an
“arrival time” of the crack. To define ¥, we start with the process @ associated with
the cracking phenomenon without stress relaxation.

@ is a Poisson point process on R x Ry, with intensity measure v(dx,dy) =
1g, (y)dxdy. To take into account the physical reality of the cracking process, @
should be a Poisson point process with intensity measure f(y)1g, () dx dy where fis
a positive continuous and non-decreasing function on R,. However, in that case, the
random set @ = {(x, F(»)), (x,y) € ®} (where F(y) = [ f(t)dz, y>0) is a Poisson
point process of intensity measure 1g, () dxdy and the erasing procedure applied to
either @ or @ is the same. Therefore from a mathematical point of view, we can
suppose, without any loss of generality, that @ is a homogeneous Poisson point
process.

For any point (x,y) € R x R, we define the corresponding domain of relaxation:

R(x,y):[x—r,x—i—r]x[y,—i—oo)cRXR+. (8)
Let us introduce ¥. This random process is a sub-process of @ defined by the
following recursive algorithm:
Initialization. We start with taking any couple (x,y) in ¥, such that y is a local
minimum, i.e.

dN(x—r,x+r] x[0,y) =0.

Let us denote by ¥; the set of these points and by @, the subset of @ obtained by
erasing all the points that are in the domains of relaxation associated to the points
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of ¥,. This means

<151=(Dﬂ< U R(x,y)) .

(xy)e?)

Iteration. Suppose that for a fixed n € N*, the processes @y,...,®, and ¥y,..., ¥,
are constructed.

We then take in ¥, the points (x,y) of @, such that y is a local minimum. We
define @, as the set of the points of @, not erased by the domains of relaxation
associated to the points of ¥, ;. In mathematical terms,

llUn+1 = {(x,y) €D, P, N [x —rx+ r] X [O,y) = 0},
@pe1 = 2,0 (Upeypen,, RO6D)
We then define
=] . 9)
n=1

From now on the points of ¥ will be named erasers, and the points of @\ ¥ that are
deleted by the domains of relaxation associated to the erasers, will be named erased
points. So

O\Y = {(x,y) € 2;3(¥,)) € V| (x,p) € R(X, )}

The point process ¥ can also be seen as the complementary set in @ of the erasing
tree o/ (®P), where

A@) = | ([x—r.x+1x @y +00)). (10)

(xy)e¥

We say that a point of R x R, is erased if it is contained in the erasing tree .o/ ().
The first properties of ¥ are stated in the following proposition:

Proposition 3. (i) Almost surely the projections of the points of ¥ on the x-axis are
separated by a distance at least equal to r.

(i1) ¥ is infinite a.s.

(ii1) ¥ is invariant under horizontal translations.

(iv) ¥ is ergodic.

Proof. (i) Let us consider two points (x, ), (x’,)’) € ¥ and suppose that
(x,y) €V, and (x,)) e ¥,,, m=n.

Then (X', )¢ R(x,y) so |X' — x|>r.

(i1) It suffices to show that ¥ is infinite. Let us denote by C,, n € Z, the event such
that “the minimum of the second coordinates of the points of @ N [3nr,3(n + 1)r] x
R, is reached at a point of [(3n + 1)r, Bn+ 2)r] x R.”.

Let us remark that

C,C{¥ N[Bn+ Dr,Bn+2)r] x Ry #0}, nel.
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Since @ is a Poisson point process, the events C, are mutually independent and have
the same positive probability. So using the Borel-Cantelli lemma leads to

P{limsup C,} =1,

which proves that ¥ is infinite.

(iii) Let us consider the set .#,(R?) of the locally finite sequences of R?, endowed
with the o-field generated by the applications ¢ —>#(¢p N A), ¢ € 4 -(R?), where
A € B(R?). We define for every x € R,

o ARt (R,
) A Yy is =G X ) s

We see immediately that ¥ as well as @ is invariant in law under the applications 77,
xeR

(iv) To prove the ergodicity, let us show that ¥ is strongly mixing for the
applications 7%, i.e. every couple (.7, ) of measurable sets of .#,(R?) satisfies

Pl NTNA) — Pl/)-PA) (11)

Let us remark (see [9]) that the sets {¥ N K = @}, where K runs throughout the
compact sets of R, generate the o-field of .#,(R*). Consequently, it suffices to prove
the convergence in (11) when .o = {¥Y N A =@} and 4 = {¥Y N B=0@}, A, B being
two compact sets of R?.
Since ¥ is invariant by 7%/, we have
P{(PNA=0)N(T(P)N B =0)}

=P{T*(¥)N A =) N (T *(¥)N B =)}
=P{(PN(—-x/2)=8)N(¥N(B+x/2) =0)). (12)

In order to prove the asymptotic independence of {¥ N (4 — x/2)) = @} and {¥ N
(B+ x/2)) = @}, we are going to rewrite these two events with the independent
processes @ and @~ defined by

" =dN(R, xRy) and & =dN(R_ x Ry). (13)

Let Z, (respectively, Z_) be the minimum (respectively, the maximum) of
the first coordinates of the points of ¥, contained in the domain [r,+00) x R,
(respectively, (—oo, —r] x Ry). In other words, Z, (respectively, Z_) is the mini-
mal (respectively, maximal) first coordinate of the points of &+ N[r,+oo0) x Ry
(respectively, @ e N (—oo,—r] x R;) such that ®*T N[x —r,x +r] x [0,y) = @ (re-
spectively, &~ N[x —r,x+7r] x[0,y) =¥). So Z, and Z_ are two independent
variables.

Besides, let .o7(®") (resp. «/(P 7)) be the erasing tree of @ (resp. of @_). We then
have

(@Y N(Z4,+00) x Ry) = A(D)N([Z,4,+00) x R,) (14)
and
A(@)N((—00, Z_ ] x Ry) = A (@)N((—00,Z_] x Ry). (15)
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For n € N, let x be such that x/2 + inf p,;(B)>n and —x/2 + sup p,(4) < — n, where
p1(A4) denotes the projection on the x-axis of A. Let us consider the events

EF={Z, €[0,n; YN (B+x/2)=¢} and
E-={Z_e[-n0L¥N(A—x/2) = ).

n

Then E; and E, are independent because equalities (14) and (15) imply that
Ef = (Zy € [0,n]; 8" N[A(&F) N[Zs, +00) x Ry ] N (B+ x/2) = 0)

n

and
E ={Z_¢€[-n0;d N[A (P )N(—00,Z_] x R N4 —x/2) =7}.

n

Consequently, let us fix n>0 and choose n € N such that
P(Z.,Z_e[0,nl}=1—-n/3.

Then for x=2sup{(n — inf p,(B)), (n + sup p;(A4))}, using the invariance of ¥ under
7*/? and the independence of E; and E;;, we have
PP NA=0)N(T*P)NB=0)} —P{YNA=0}-P{¥YNB=0}
SIP(PNMA—x/2)=0)NPNB+x/2)=0)}—-PE NE,}|
+ [P(EDPE,) —P{¥ N (4 —x/2) = B}P{® N (B + x/2) = B}
n

n
<Tyir M_
3T 3=

So the required convergence (11) is proved. [

2. The mean crack number and typical inter-crack distance

Let us consider for a fixed ¢>0, the set A, given by equality (7). Due to
Proposition 3, A, is stationary and ergodic.

We are interested in two physical quantities, the mean crack number and typical
inter-crack distance. First, the mean crack number /., i.e. the mean number of cracks
per unit of length is the intensity of A,. Secondly, we can define two different
characteristic distances:

(1) the typical inter-crack distance D, represents the distance in the Palm sense (see
(17)) between a point “randomly chosen” in A, and its successor.

(ii) I%, x € R, is the smallest interval whose bounds are in A, and that contains x (it
is unique almost surely). Since A, is stationary, the distribution of |I%| does not
depend on x.

We express the distribution of |/§| via the law of D, and we notice that D, and |/§|
are not identically distributed. Moreover, we determine A, and the distribution of D,.
In a first step we prove that both /., and the probability distribution function of D,
can be expressed as an integral of two functions G and H. The calculation of G and
H is postponed in Section 3.

Let us start with a precise definition of A, and D,. The function that associates to
any Borel set B C R, the value E(#(A, N B)) is a positive measure invariant under
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translations. So it is proportional to the Lebesgue measure on R denoted by |- |.
Consequently, we can define the intensity A, of A, as

1
Jy = B E#(A, N B)), (16)

where B C R is a fixed Borel set verifying 0<|B|< + oo.

The law in the Palm sense (see [20, Section 4.4] or [15, Section 2]) for a complete
survey on Palm distributions of stationary point processes on the real line) of the
typical inter-crack distance D, is defined as follows:

EA(D,) = —— E{ > h((x, A) - x)} (17)

2Bl s

for every measurable function / : R, —> R, and every fixed Borel set B C R, where
v(x, ') =inf{I'N(x,400)} =inf{s e I';s>x}, xeR, I' CR, (18)

with the conventions inf § = +00 and ), = 0. Let us note that the right-hand side
does not depend on B.

Let L, be the stress level associated with D,. We can define the joint distribution of
(D;, L;) (in the Palm sense) in the same manner. More precisely, we have

1
EhDHaLB = E hUX,Ag — X, 19
(D, L)) = - {(X’y)ewzm;;xm (o(x, 4,) y)} (19)

for every Borel function /4 : (Ry)*—> R, and every fixed Borel set B C R.
Let us observe that Proposition 3 implies that D, >r a.s. Besides, using the same
argument as Moller in [14, p. 62], we obtain that D, is an integrable r.v. and

1
ED, =—. 20
=3 20)

&

We now establish a connection between the distributions of D, and |/§]. Let .3,
L >0, be the set of intervals I, included in the segment [—L, L], and N7 the number
of such intervals, i.e.

N} =#J5 = #{A,N[-L L]} - 1),.
The distributions of D, and [, are connected by the following proposition:
Proposition 4. (i) For any positive measurable function h on R,

D
EA(D 8)‘E(1/|Ia|>E( A ) @)

(ii) If there exists p>1 such that E(h(D,)’)< + oo, then when L goes to infinity,

Nl > h(I)—EhD,) a.s. (22)

Ljesr
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Proof. (i) It suffices to combine (20) with the argument used by Moller [14,
Proposition 3.3.2], in his study of the typical cell of a Voronoi tessellation on R
generated by a stationary point process.

(ii) Let us define for all x € R,

—x { M o(R)—> M +(R),
T :

{xXiYis 11— {xi + x}is 1,

where .4 ,(R) is the set of locally finite sequences of R.
According to Wiener’s ergodic theorem [22], if E(h(|I{])/|I5]) < + oo, then

() L 5T () <h(|18|)>
— Hdx=— | —L 2V dx—E
2L ), Y TaL ), (T (A4,)) ¥ 1151

(23)

Moreover, taking & = 1, we easily verify that

NSL—>E | a.s. when L — +o00
2L 151)° - ’

We suppose that / satisfies condition (ii). Applying the argument used by Goldman

(see [8, Lemma 4]) in the case of Poissonian tessellations, we demonstrate that
1P RGED
2L ) o |5

1
dx — 3L I; h(|1]))—0, when L — +o0. O

Remark 5. It is possible to invert equality (21), namely

E(h(15)) = ﬁmE{Dsh(Ds)} (24)

for every positive Borel function / defined on R,.

From now on, we focus on the calculation of A, and the distribution of D,. The
following lemma is an essential intermediate result:

Lemma 6. (i) /, = f(; P{(0,v) ¢ <7 (®)} dv.
(ii) For every t=0,

PID>1) = / "0, 1) ¢ A(@); 00, ) > 1} dos,
e Jo

where A, is the cracking process based on @ N (R x [0, ]) U {(0,v)} and v(0, A,,) is
defined by equality (18).

Proof. To prove these two equalities, the essential tool is Slivnyak’s formula (see for
example [14]) satisfied by @:

E{ Z h((x, ), @)} = / E(h((u,v), @ U {(u, v)})1g, (v)dudv (25)

(x,p)e®@

for every positive measurable function / defined on R? x .#,(R?).



P. Calka et al. | Stochastic Processes and their Applications 115 (2005) 983-1016 993
Using successively (7), (16) and (25), we have for every L>0

4o = = E[#(4, N[0, L])]

Sl N

E Z 110,530 110, g oy (X, )

(x,y)ed

L &
%/0 du/0 P{(u,v)¢ o/ (® U {(u,v)})} do. (26)

Using invariance under horizontal translations of @ and the equality between the
two events {(0,v)¢.oZ(® U {(0,v)})} and {(0,v) ¢ .o/ (®)}, we deduce from (26) that

)y = / E P{(0, v) ¢ «/(P)} dv.
0

That completes the proof of (i).
Using equalities (17) and (25), we can prove (ii) in the same manner. [

Let us consider the continuous function
G(x,y) = P{@" N ([0,x] x [0,)]) C A(@)}, x€[0,r], y=0, (27)

where @7 is defined by (13).

G(x,y) is the probability that either ® N[0, x] x [0,y] =@ or the points of &N
[0, x] x [0, y] are erased by erasers from the right (i.e. belonging to ™).

More generally, we define the continuous function

H(x,y,x',)') = P{®T N ([0,x] x [0, y)\[0,x] x [/, y]) C /(T)},

0<x' <x<r, 0y <y (28)
H(x,y,x',)") is the probability that either @ N ([0, x] x [0, ¥]\[0,x'] x [)/,»]) = @ or
the points of the set @ N ([0, x] x [0, y]\[0, x'] x [/, y]) are erased by erasers from the
right.

The following proposition provides the expression of A, and the distribution
function of D, as integrals of G and H.

Proposition 7. We have:

(i) 2. = [y G(r,v)*dv;
(ii) For every t=2r,

P(D,>1} = (G(; ) / Gl v dv) Lo (29)
& 0

(ii1) For every t € [r, 2r],
1 /¢ (r—r
P{D.,>1} = T / G(r,v)H(r, &, 2r — t,v)e”""" dv. (30)
e JO
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Proof. (i) According to point (i) of Lemma 6, it suffices to prove that for every
v e[0,¢],

P{(0,v) ¢ .Z(®)} = P{(0, v) not erased} = G(r, v)*. 3D

Besides, the point (0,v), 0<v<e, is not erased if and only if there is no eraser in

[—r, 7] x [0,], i.e. if the points of @ N ([—r,r] x [0, v]) have been erased themselves.
In that case, the points of @ N ([0, 7] x [0, v]) (respectively, of @ N ([—r,0] x [0, v]))

could have been erased only by erasers from the right (respectively, from the left).
So we have the equivalence

ot N([0,7] x[0,0]) C A (DY),

& N ([=r,0] x [0,0]) C .A(®). (32)

0,0) ¢ A (D)<= {

Consequently, using the independence of &1 and &, we obtain

P{(0,0)¢ o/ (P)} = P{OT N ([0,r] x [0,0]) C /(PT)}
P{@™ N ([—r,0] x [0,0]) C (@)}

It remains to notice that (31) is a direct consequence of the equalities

P{®t N ([0,r] x [0,0]) C L (P1)} = P{® N ([—r,0] x [0,0]) C A (D7)} = G(r,v).

(i1) and (iii) In order to determine the law of D,, we deduce from Lemma 6(ii) that
it is sufficient to calculate the expression

P{(0,v)¢ ./ (®);v(0, 4, ) 21}, 1=r, ve[0,e]
We proceed as for (i) and we obtain the equality

{(0,v) not erased; v(0,A,,)>1} = A~ N A}, (33)
where A~ and A, are two independent events defined by

A ={®N([—r0] x [0,0]) = ¥ or all points of & N ([—r,0] x [0, v])

erased from the left},

A ={®N([0,r] x [0,0] U [r, 7] x [0,¢]) is empty or erased from the right}.
Let us remark that

P(47) = G(r,v). (34)
Consequently we obtain the formula

P{(0,0)¢ o/ (®); 0(0, A,0) =1} = G(r,v) - P(A])). (35)

It then remains to determine P(4;"). The computation of this probability depends
whether 1>2r or ¢ € [r, 2r].
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Case 1: t=2r.
Since a point of @ can be erased only by an eraser located at a distance smaller
than r on the x-axis, we can rewrite the event A;L as follows:

AF ={®n([0,r] x[0,0]U[r,t — 1] x [0,&]) = B}y N {D N ([t —r,1] x [0,¢])
erased from the right}, (36)

the two events of the intersection being independent.
The Poissonian property of @ provides the equality

P{® N ([0,7] x [0, 0] U[r, 1 — 1] x [0,¢]) = @} = e~ (Ox[0llrr=rx[0]
= e (e (37)
Since @ is invariant under horizontal translations 7°~", we have
P{® Nt —r, 1] x[0,¢]) erased by the right} = G(r, ¢). (38)
Consequently, we deduce from formulas (36)—(38):
P(A7) = G(r,e)e e 72,

Relation (29) follows immediately.
Case 2: t € [r,2r].
We rewrite the event 4 as the intersection of two independent events:

A ={®n (0,1 —r] x [0,0]) =B N{D N ([t —r, 1] x [0,e]\[t — r, 7] x [0, ¢])
erased from the right}.

The invariance under horizontal translations of @ implies that
P{on(t—r, 1] x[0,¢]\[t — r,r] x [v,¢]) erased by the right} = H(r,¢,2r — t,v)
and we then have the equality

P(A) = H(r,e,2r — t,0)e "™,

Using (35), we can conclude as in the first case. [

3. Explicit formulas for the mean crack number and the distribution function of the
typical inter-crack distance

Proposition 7 implies that the mean crack number and the distribution of D, (resp.
|I5]) are known as soon as the functions G and H are determined. We prove in
Proposition 8§ below that G satisfies an integral equation. Fortunately, we can solve it
(see Proposition 10) and thereby obtain an explicit formula for both G and H.
As for the joint distribution of (D, L;), we prove that it can be determined via G
and H.
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3.1. A functional equation satisfied by G

G satisfies the following functional equation:

Proposition 8. For every 0<x<r, y=0,

x oy
Gx,y)=1—-¢e"v / / G(r —u,y — v)e"’(1 + uv) dudv. (39)
0o Jo
Proof. Let us first recall that for every fixed x € [0,r] and y € [0, ¢], we have:

& 0 ([0, x] x [0,]) (X, Yi); 1<i< N},

where:

(") {(X;, Y);i=1} is a sequence of independent and uniform variables on [0, x] x

[0, y];
(i) N is a Poisson variable of mean value EN = xy, independent of the preceding

sequence.

Let us define for all n>1,

(M(n),M(zn)) = <linf X;, inf Y,~>.

<i<n I<i<n

It is easily verified that the law of the couple (M %”), M g")) is given by

n n
PMY > u; M >0} = (1 —9 (1 —D . uel0,x], velo,y). (40)
The key point is the following: let (M(I"),Y) (respectively, (X, M (2”))) be the point of
@, of first coordinate M(I") (resp. of second coordinate M (2" ).

The points of & N ([0, x] x [0, y]) cannot be erased by more than one eraser
(X, Y). Since (X, Y) has to erase (M\",Y) (resp. (X, M{")), then X < M'"” + r (resp.
Yy<mP).

Consequently, that happens if and only if either N = 0 or N = n, n>1, and there is
an eraser in ([x, M'"” + r] x [0, M{"]).

Combining this argument with equality (40), we obtain that for every x € [0, x],
Yy €[0,y],

G(x,y) = P{®T N ([0, x] x [0,y]) empty or erased from the right}
=P(N =0} + > PN =nP{&" N (lx, M" + 1] x [0, M3"])

n=1

not totally erased from the right}



P. Calka et al. | Stochastic Processes and their Applications 115 (2005) 983-1016 997

ey

1+Z(xy) / /(1—G(u+r—xv))

n=1

xP(M" € du, M e du)]

- Y 2(xy)"1/ / Glu+ 1 — x.v)

n=1
u\ n—1 v n—1
x(l——) (1——) dudv
X Y
X y
=1l—e" / / G@u+r — x,0)e* 0791 + (x — u)(y — v)) dudv.
0 Jo
Taking the change of variables (in the integral) ' = x — u, v/ = y — v, we deduce (39)

from the preceding equality. O

Let us consider the bounded operator L on the space of continuous functions
C([0,r] x R;) (endowed with the topology of uniform convergence on every compact
set) defined by

L(Q) : (x,y)—>e™ /X ’ O(r —u,y — v)e”(1 + uv) dudv,
0o Jo
x e [0,r], y=0, (41)

where Q € C([0,7] x R4).
The following proposition provides the uniqueness of the solution of the
functional Eq. (39) in the space C([0,7] x R.).

Proposition 9. We have

G=) (=)L), (42)

n>0
the convergence of the series being uniform on [0,r] x [0, k], for any k>0.
Proof. Eq. (39) can be rewritten as
G+LG)=1, GeC(0,r] xRy). (43)
Let us remark that
LD)(x,y)=1—-e"", xe€]0,r], yeRy. (44)

Let k>0 be fixed. We suppose that the set C([0,7] x [0, k]) of continuous functions
defined on [0, r] x [0, k] is equipped with the uniform norm.
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We deduce easily from (44) that the restriction of L to C(J0, ] x [0, k]) has a finite
norm equal to (1 — ¢’%). Consequently, the series

Z(_l)ﬂLn

n=0
converges to the inverse of (I 4+ L). Therefore (42) is a direct consequence of
43). O

The functional Eq. (39) is the key point to calculate the expressions of the
functions G and H. We will then deduce from Proposition 7 the mean crack number
and distribution function of the typical inter-crack distance.

3.2. Explicit formulas for 1, and P{D,>1t}, t=r

Let us remark that the function o defined in (1) satisfies the two following
identities:

(@()1) = a(t)e™", (45)

a(f) = % exp{—Ei(l,r1)}, >0, (46)

where y is Euler’s constant and Ei(n, x) = f1+ e /5" ds.

Proposition 10. For every 0<x<r, =0,

—8X

1—e

¥
Gx,y)=1-— /0 o(s) B ds

¥ s _ et ] — e
1—/ exp{— / ¢ dt} ¢ ds.
0 0 t S

G(r, y) = a(y) = exp{— /0 Tloer dv}. (47)

1%

In particular,

Proof. Let us recall that Proposition 9 provides the uniqueness of the solution of the
integral equation (39) in the space C([0,r] x R,). Consequently, it suffices to verify
that the continuous function

[ —e™

N

y
UGry) = 1 — V(x,p) =1 - / a(s) ds, xe[0.] y>0,
0

satisfies the identity U + L(U) = 1. Using (44), we obtain that it is equivalent to
L( V)(-xsy) = U(x: y) —e . (48)
We need to calculate L(V') where L is the operator defined by (41).
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For x € [0,7] and y>0 fixed, we have

L(V)(x,y)=e¥ / / /) ' ac(s) e (1 4+ uv) dudovds

—v(r u) y—s
=e v “(l1 dv| dsd
=e //oc(s) [/o (1 4 uv) U:| sdu
=e Y / @ { / (v — s)(1 — e 7)) du] ds
0 0
— g OC(S) —xs —Xxy —rs l—e™V
_/0 T{e —e YV —(y—s)e ’ }ds
- - / M ey 1T
0 Y
| y
X < /o (y — s)a(s) . ds — /0 os) ds)
1 —e™

x v 5
=U(x,y) ’ </0 (y — 5)d/(s)ds — /0 als) ds)

=Ux,y)— 14+ —-e)=Ux,y)—e 7.
We then obtain (48). This implies Proposition 10. [

Remark 11. Let us briefly explain how the right function G was determined.
Let us fix x € (0,r) and a continuously derivable function / defined on R, and

¥
H@y) = / h(y —v)e*(1 + xv)dv, y=0.
0
It is easy to check that H solves the following linear ordinary equation:

H"(y) = 2xH'(y) + X*H(y) = I (y)

with the boundary conditions H(0) = 0 and H'(0) = /(0).
Let G be a solution of G =1— LG. We introduce Gi(x,y) = 0G/dy(x,y). The
previous step implies that Gy solves:

2

G,
0x0y

=—e G(r—x,y), 0<x<r, y=0.

oG,
2Gi(x,p) +y—=—(x,
1(x,y) yay »)

We notice that (x, y)—>xe™™ and (x, y)—>1/y? are two particular solutions of

04 o’
2(x) + 5 (5.9) + 5 () =

It is then possible (after tedious calculations) to deduce G (x, ).

Let us define the cracking process A on the positive half-line. Let ¥ be the set
obtained by the erasing procedure (developed in Section 1) applied to the
intersection @ of @ and (R.)*. Al is defined as the projection on the first axis
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of * N (R x [0, ¢]), namely:
Af ={x e Ry €[0,]|(x,y) € ¥*}.

A represents the position of the cracks when the stress is less than e.
Let us consider the first positive crack position

X4 =inf A}.

(49)

(50)

The calculation of the law of X3, >0, is essential to obtain an explicit formula of the
function H(r,-,-,-) defined in (28). The following theorem provides the exact

distribution of X§:
Theorem 12. The law of X5 has a density ¢ X0 such that
ea(e)e ™ if x>,
(lel,(X) = {fg a(v)e™dv if x e€|[0,r].
Proof. Using Proposition 10, we only have to verify that
P> x) { G_((x,_g? %f x €[0,1],
e " a(e) if x=r.
Let us notice the equality of events
{®* N ([0, x] x [0,¢]) erased from the right} = {X* >x}.
Equality (52), with x € [0, 7], follows directly from (53) and (27).

(1)

(52)

(53)

When x>r, using (53) and the invariance under every horizontal translation of

@*, we have
P{X{>x} = P{@" N ([0,x] x [0,¢]) empty or erased from the right}
=P{dT N([0,x — ] x [0,¢]) = ;
&t N ([x —r,x] x [0, ¢]) empty or erased from the right}
=P{®o" N ([0,x —r] x [0,¢]) = 7}
xP{®" N ([0, 7] x [0,¢]) empty or erased from the right)}
= e O TG(r, ¢).
This proves the second part of (52). In particular,
P{®" N ([0,r] x [0,¢]) erased from the right} = P{X} >r} = o(e). O
Proposition 13. For every 0<x<r, 0<y<eg,
I3 1 _ e—(r—x)s
H(re,x,y)=a(y) — e / oc(s)f ds.
y
Proof. We observe that
{®T N ([0, 7] x [0,&]\[0, x] x [, ¢]) erased from the right} = 4, U 4>,

(54)
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where

Ay ={X] €[r,x+r]},

Ay = {1 N ([0,x] x [0,y]) = B; DT N ([x,r] x [0,¢]) erased from the right}.

We then obtain the following formula which is the key point of the proof of
Proposition 13:

H(r,e,x,y) = P(4)) + P(4,) — P(4, N A45). (55)

Using Theorem 12, we have

P(4)) = / - yo(p)e ™ du = a(y)(1 — ™). (56)

The invariance of T under every positive translation combined with Theorem 10
implies:

P(4y) = P{@" N ([0, x] x [0,)]) = &}
-P{®t N ([0,r — x] x [0, ]) erased by the right}
=e VG — x,¢)

& _ a—S(r—x)
_ e-*y(l — / ()= ds>. (57)
0 N

It remains to determine P(A; N A;). To this end, we remark that the law of the
process @ conditioned on the event {@T N ([0,x] x [0,y]) = ¥} is the same as
(o).

Consequently, we have

P(4, N 4>) = P{X{ € [r,x+ r]|®" N ([0,x] x [0, y]) = ¥}
- P{@" N ([0,x] x [0,y]) = ¥}
=PX|elr—x,r]}-e¥
=e V(P{X|=r—x} — P{X{>r})

Y —(r—x)v _ a—r1v
—e Y / av)—— % . (58)
0

v
Inserting formulas (56)—(58) in (55), we get

1= efs(rfx)

H(r,e,x,y) =a()(1 —e™) +exy{1 — /8 oc(s)f ds
0

y —s(r—x) _ a—rs
— / as) & ds}. (59)
0

N
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We calculate the last integral in the following way:

¥y 73(1 x) _ —s(r—x) __ y 1—e s
/ oc(s)f ds = / oz(s)— ds+/ o(s) ds
0

—s(r—x) 73(1 X)
=/ oc(v)ei ds—/ oc(v); ds
y

= [

& 1_es() X) £ 1l—e" s(r—x)
= | a)————ds— | aly———d

/yocs) s /ocs) s

+ 1 —a(y). (60)
Combining equalities (59) and (60), we obtain Proposition 13. [

Proof of Theorem 1. Point (i) follows immediately from Propositions 7 and 10.
To prove point (ii), it suffices to demonstrate that

oc(?)2 —(t=2ne if 1>=2r,
P{Dr:>[} = (61)
T / a(v)’e " dy — 1 if 1 € [r,2r].
‘e JO

Using Proposition 7(ii) and (45), we have when > 2r,

P{D.,>1) = @ / a(v)e " dv - o (=20
0

— )[UOC(U)] —(r—2r)8

— —O((?) ef(r72r):,.
Ae

It remains to calculate P{D, >t} when ¢ € [r,2r]. Using Propositions 7(iii) and 13, we
obtain:

g 1—e (t—r)s
P{D, >t} = —/ a(v)e ’)L{oc(v) e ’)L/ oc(s)ds} dv

1 & ) 1 e 1= —(t—r)s s "
=T / a(v)?e I dy — - / oc(s)ei [/ e Ya(v) dv] ds
e JO £ 0

1 1 € 1— (t—r)s
= )—/ a(v)’e” v d /1—/ a(s )67 so(s) ds

2
= —/ a(v)?e My — 1
Ae Jo

This completes the proof of equality (61).
We now generalize (ii) in determining the joint density of the couple
(D, L,). Fixing t=r,s € [0, ¢], we use equality (19) of (D,, L;) and apply Slivnyak’s
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formula (25) as in the proof of Lemma 6 to obtain that
P{D,>1;L,<s} = }i /0 PO, 1) ¢ A(@); 00, Ap) > 1} do.
Consequently, we get as in Proposition 7 that

(G(r, g) [*

7 G(r,v)e™"" dv) cem =28 r >0,
& 0

P{D.>1 L. <s} = 1 s
T / G(r,v)H(r, e, 2r — t,v)e D dv if t € [r,2r].
e Jo

(62)

It then suffices to insert the expressions of G and H (see Propositions 10 and 13) into
(62) to deduce that

P{D1:>t;L1;<s} (63)
? so(s)e (20 if 1>=2r,
s N

{5 [ e ha (64)
e Jo
g _ a—(t=rp
- ss) oc(v)le— dv if t € [r,2r].
)L.,g s v

Points (iii) and (iv) of Theorem 1 are easy consequences of this last equality. [

Remark 14. (i) A similar formulation of points (i)—(ii) of Theorem 1 has been
obtained by Widom (see [21, p. 3893, results (37)—(39)]), through heuristic methods.
Besides, Coffman et al. [5,4] constructed a point process on a finite interval, by the
same erasing procedure as ours, and deduced analogous results by taking the limit
when the length of the interval goes to infinity. Their work mostly used analytic tools
such as Fourier transform and analytic functions.

(i1) Let us remark that the distribution of D, has a decreasing density on [r, +00),
with a transition at 2r. Since the distribution is of exponential type in the interval
[2r,400), D, has finite moments of any order. Applying Proposition 4, we obtain

1
— Z [I|"—E(D}), when L — +o0, n>1.
N =7

Besides, it is easy to verify that the first moment of D, satisfies (20).
Using (24), we can prove easily that |/j| has an explicit density.
Proposition 15. The law of |Ij| has a density ¢, I on [r, +00) such that

2a(e) xe~ (28 if x>2r,
iy (%) = 2x [y e Cg)ode if r<x<2r.
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4. The law of the successive cracks on the positive half-line

Using stationarity of 4., we have determined some of its statistical characteristics
such as the distribution of the inter-crack distance. We would like to give an
enumerative description of the points in A,. It is actually more convenient to fix an
origin, namely 0, and to replace A, by A (defined by (49)). We have already
considered the first crack position X{ and determined its distribution in Theorem 12.
Here we plan to go further, enumerating the point of A} as follows:

/1:' ={X!;ne N*},

where 0<X{<X{<.-. - <X;<---,n=l
Let Y?, n>=1, be the positive real number such that

n’

(X2, Y9 e PPN (R: x [0, ¢)).

ne

The aim of this section is the description of the distribution of {(X¢, Y%); 1<i<n} for
any n> 1. A first answer is given by a recursive algorithm (see Theorems 16 and 17):
we compute the distribution of (X7{, Y]) and the distribution of (X7, Y7, )
conditionally on (X3, Y5,..., X%, Y9), 1 <i<n — 1. We interpret this result by using a
Markov chain model (see Theorem 18) and we prove the convergence in law of the
couple (X, — X;,Y;) to (Dg, L;) (see Theorem 19).

We observe in particular that {X?;n>1} is not a renewal sequence, for instance
(X5 — X5) is not independent of Xi. However we prove (see Theorem 2) that
{Xi;n>=1} is a “conditional renewal process” (see Theorem 2 for a detailed
explanation of this expression).

Let us start with the density of (X7, Y%).

Theorem 16. The law of the couple (X, Y1) has a density ¢ X0.¥0) such that for every
u,v € R,

e v (10:0) = (Lo e ™ 4 1o ycne ™)) o< o (65)
Proof. It suffices to prove that for every x>0 and 0<y<e:

Y o(p)e—tre if x>,
&

PLX > V<) = { 1o - J; 2O (66)

x(1 —e™)dv +% o(y) otherwise.

We notice that

P{Xi>x Yi<y) = P(Xi>x Xi = X))
=PXV>x; X = X))

+00
= / P{X% = X7|X) = w}P{X € du}. (67)
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Moreover, (X = X7) if and only if there is no positive eraser in ([0, X7] x [y, ]),
which means that for every u>0,

1 if u<gr,

R
P{Xl—X1|X1—”}—{P{@m[o,u—r]x[y,s]=@} otherwise.

Since @ is a Poisson point process,

if u<r,

n 4 y 1
PLX| = XX =u} = { ) -

otherwise.
Inserting equalities (51) and (68) in (67), we get the result (66), via (60). [

The following proposition provides the law of the couple (X}, , — X, Y} )
conditionally on (X7, Y§,..., X:, Y?).

n’

Proposition 17. For every n>1 the distribution of the couple (X, , — X}, Y, )
conditionally on (X5, Y5, .. ¢, Y?) has a density 0°(Y?;-):

Hl(y u, U) [ {u>2r} 1{0<v<e}e_r(y+v)e_(u_2r)£

o(v)

69
20’ (69)

+ 1{l<u<2r {1 e —(u- ’)}eiw‘}_ 1y<b<s}eir}e - ’)L}]

where y,v € [0,¢] and u=0.

Proof. Let Z, = (X5, Y§,..., X5, Y?) and z = (X1,..., X1, X, V1, ..., V,_1,) Where
O<x;<- - <xp_i1<xand y,...,y,_;,» € [0,¢]. It suffices to demonstrate

PX, - X, >uwY, <vlZ, =z}

—

Z(y) g“(v)ei(uizr)e if u>2r,
. C) RN C) L BT

€ Vo TS T agye Trsusy

_ and v<y, (70)

ey v
e—u=ry _ % "~ {/ (1 —e ™) if r<u<2r
a(y) L/,

OC()ds+ (v)(l—)} and v>y.

Our approach is based on the following properties:

(1) the distribution of P = T=%u(d,) N (Ry)? conditionally on Z, is the same as the
distribution of @, conditionally on {&; N([0,r] x [0, Y?]) empty or erased
from the right}.

(i) (X, — X, —r, Y, ) is the first point on the right of the point process

T(®) N (Ry)’.
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Using points (i) and (ii) above, (47) and (54), we get

PX,, - X, >uwY, <v|Z,=z}

P{®, N ([0,r] x [0, y]) empty or erased from the right;
YT (@) >u—r; V(T (@) <v)
~ P{®,. N([0,r] x [0,y]) empty or erased from the right}

1 P{®:N(0,7] x [0,y]) empty or erased from the right;

- 1
W0) XTI @) u—r V(T (1) <o), 71

where (X{(T7'(@4)), Yi(T'(®4))) is the first point on the right of the process
T'(¢,)N(R.)* In particular, (X§(T7"(®4)), Y{(T7"(@4))) is distributed as
(X3, Y9).
Case 1: u>2r. We have that
{®, N ([0,7] x [0,y]) empty or erased from the right;
X{(T (@) zu—r YT (D4)) <}
= {2+ N([0,r] x [0,y]) = O} N{X{(T(PL)Zu—r; Y(T'(P4)) <0},

the two events of the intersection being independent.
Using this remark, (71) and (66), we obtain

P{X;+l _XZZL{; Y;+1<U|Zn =)
1 2 o
:a—(y)P{<I>+ N[0, x [0,y]) = B} - P{X >u—r; Y <v)

e
=¢ ga(u)e—w—z’)*’. (72)

Case 2: r<u<?2r.
The independence property is not satisfied, but (X5(7"(D4)), Yi(T " (P4))) is still
distributed with density ¢ X7 given by (65). Then going back to (71), we get

PIX, - X zu Y <olY, =y}

1 +00 v
=— dw/ AW, 6, )P x: yo(w, 1) dt, (73)
O((y) u—r 0 T

where for every w>=0,0<y, t<e,

A(w, t,y) = P{®L N ([0, 7] x [0,y]) erased by the right | X{(T7"(P4)) = w,
Yi(T~(®.)) = 1),

It remains to determine the function 4. To this end, let us notice that ([0, r] x [0, y])
has a non-empty intersection with the domain of relaxation R(w + r, t) if and only if
w<r and t<y. Consequently, we obtain

efwyf(rfw)t lf w < r and l‘<y, (74)
e otherwise.

Aw, t,y) = {
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Inserting formulas (74) and (65) in (73), we deduce result (70), via (45), which
completes the Proof of Proposition 17. [

We explicit the distribution of {(X7, Y%);1<i<n} starting with the law of
{(Y4i=1).

Theorem 18. (Y3), is a homogeneous Markov chain such that:

(1) Y5 has a density Py such that

e 1—e™
Py = (

&

> () Loqg();

(ii) the transition kernel of { Y?;n>1} admits a transition probability density IT"*(y; -)
such that for every y,v € [0, ¢],

X e 7o) 1 —e™
" (y;0) = <1{0<L‘<£} + <<y e’ ’
o, L —e7 a(v)
1 cvcae™ — 75
+ {y<v<e} v >0€(y) ( )

(ii) the stationary law of (Y?), is the distribution of L, (cf. (2));
(iv) conditionally on (Xi,Y{,...,X;,Y}) the rv. (X, — X}) has a density which
depends only on Y:, and is equal to HD*(Y;’I; 2 (where ITP(y;-) is defined by (3)).

Proof. Points (1), (ii) and (iv) follow easily from Theorem 16 and Proposition 17. In
order to obtain (iii), it suffices to prove that for every v € [0, €],

P{L,<v} = /‘g m"4(y; 0)P{L, € dy). (76)
0

Using (75) and (45), we have for any v € [0, ¢],

/ 14 00 dy = () [ / " Mu(ydy + e / e
0 L € 0 v y
1 —e 0 [V
n Ue /0 e u(y) dy}
= 20)| <o) e o) — o) 4+ va(@}
= oc(v)z_. (77)

Combining (77) with (2), we obtain equality (76) which completes the Proof of
Theorem 18. [

Proposition 17 implies that (X7, Y?),. is a Markov chain. It seems natural to
investigate its limit distribution. More precisely, we have the following result.
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Theorem 19. The couple (X, | — X;, Y}) converges in law when n — +oo, and the
limit distribution coincides with the law of (D, L;) (see Theorem 1).

Proof. Let us begin with proving the convergence of the Markov chain (Y?), to its
stationary distribution y, i.e. the distribution of L.

The transition probability of (Y7}),.,; has a density IY4(y;.), y e[0,¢] (see
Theorem 18(ii)) such that the function (y,v)—IT"%(y;v) is continuous and
everywhere positive on (0, ¢]*. Consequently, following [6, Example 6.2. of Section
5], we deduce that (Y7),- is a Harris chain. Moreover, since we have proved the
existence of a stationary distribution (see Theorem 18(iii)), it is also recurrent (see [6,
Exercise 6.11 of Section 5]). An application of the beginning of Section 5.6.c of [6]
shows that (Y7}),- is an aperiodic recurrent Harris chain. Consequently, applying
the convergence theorem for Harris chains (see [6, Theorem (6.8)]), we deduce that
(Y?),> converges to u in the sense of the total variation distance | - || (let us notice
that the note following Durrett’s theorem guarantees that the starting law of (Y?),5
given by Theorem 18(i) satisfies the required hypothesis for the convergence). We
recall that the variation distance between two probability measures u;, u, with

support in [0, ¢] is
/fdlh —/fdﬂz

where f belongs to the set of measurable functions defined on [0, ¢], with values in
[0, 1]. In particular, (Y%),- converges in distribution to p.

We now prove the convergence in distribution of (X}, — X, Y}). Let us consider
a continuous bounded measurable function % : Ry x [0,e]—R. Using Theorem

18(iv), we get for every n>1,

5

ity — poll = sup
S

3 —+00
E{h(X:,, — X5, Yi)) = /0 { /0 h(x,y)HD‘f(y;x)dx]P{Y;e dy}. (78)

But y— f0+°° h(x, »)ITP:(y; x)dx is a bounded and continuous function, therefore

3 —+00
i B~ X570 = [ | [ i g iz e an. a0
n—+00 0 0

Using (iii) and (iv) of Theorem 1, we obtain that the right-hand side of (79) is equal
to E{k(D,;, L;)}. O

Thanks to Proposition 17, we are able to prove Theorem 2.

Proof of Theorem 2. (i) Using Theorem 16, it suffices to have

U0 p)L) = PCBY) [ 100, (0) (80)
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for every measurable and bounded function 4 on R?. Taking the conditional
expectation of A(17, p})1p, with respect to n,, pj, we have

E{h(n,, p)1p,} = E{h(n,, p))e™ ")
+00 &
:C/ du/ h(u, v)(Ajo ()e™™
0 0

+ 1(Hoo)(u)e_(”_")se_"”)a(v) dv
= C// h(u, U)@(Xxl:’yzlt)(u, v)dudu,

where C is a positive constant. Consequently, we get (80).
(i) (a) Let us first prove that (X3, Y5, X5 — X9, Y%) is distributed as the vector
(111, p1,F + 115, p5) conditioned on the event B; N B, i.e.

E{g(n, p)h(r +n2, p2)15, 15} = KE{g(XT, YD(X5 — X7, Y5)ib, (81)

where ¢ and / are two bounded Borel functions defined on R? and K is a positive
constant, independent from g and 4. It is clear that (5) and (6) imply:

(pp’(x) = O‘(x)ﬁl’p(x)- (82)

__ &
Jo ov)dv

Consequently, the left-hand side of (81) is equal (up to a multiplicative constant) to

{g(nl,p1>h<r+ o ) E” 2; 1~}

where By = {2 (1, Ar)(py V p)) +1(pa A )}
We now take the conditional expectation with respect to &, n,, p},n,,p, in the
previous expectation and we obtain:

E{g(n, p)h(r + 13, p5)15,1p,}

=K1E{g(m,pa>h<r+nz,pz> E"Zi ge *’h“‘xﬂzvpi)—"Wi’}. (83)
l

Inserting densities (4) and (5) of #, and p, in (83), we thus get
E{g(ny, p)h(r + 12, p5) 15, 15,}

+oo & ’ ,
=K1E{g(m,pi)lbﬂ / du / h(u, vye~((=IAEVR)=roAm)
r 0

X, (11— 1) (0) i(l’l)) }

= KzE{Q(ﬂl,P/l)IB; /Rz h(u, V)[1>21 Lo <o<e

) ToHPDe=w=20e 4 1y <u<on

.(l{ogvgpa}ef(ufr)l)ﬂefrv + l{p,]<v<x}ef(u7r)vefrp’l)] Oz( )) dudv } (84)
1
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Moreover, using (69), we obtain that
E{g(ny, p)h(r + 5, p3)15, 1}

_ KzE{gml,pan; J[ w00 dudu}. (85)

Let us recall that Point (i) shows that, up to a multiplicative constant, the right-hand
side of (85) is equal to

E{g(Xs, YY) /h(u,v)BS(X‘g,u, v)dudv}.

Using Proposition 17, we obtain that the expectation above is equal to
E{g(X}, YDA(X5 — X5, YD)},

which completes the proof of (81).
(b) Our next objective is to prove Point (ii) in the general case, i.e. that for any
n=2, the distribution of (X§,Y5,.... X, | — X, ., Y, X, —X,_|.Y;) is the

n—=2>* n—1» n—1»°
distribution of (11, 1., ¥ + 15 Pu_i>7 + Ny, p,,) conditioned on the event B; N
---N B,_1 N B,. As in the case n = 2, it is equivalent to show that
E{g(y]l’ pla r+ ;723 p2a A + 17n719pn71)h(r + nn! p;)lﬂ”’l B.lB;,}
i=1 !
= KE{g(X3,Y5,.... X5 — X, ,, Yo DX, — X, Y, (86)

n—1»

where ¢ (resp. h) is a bounded Borel function on R*" (resp. R?) and K is a constant
independent from g and /.
In much the same way as (85), we can obtain that for every n>=2,

EAgO1- p1r 4 100: P27 s DO e )Y o1 1 )
i=1 '

= KE{g(m,pl,rJrnz,pz,...,r+17n_1,p;l)lnnzB,lsfM
i=1 !

x/j h(u, v)0°(p,,_,, u, v)dudv}. (87)

1
It remains to use a reasoning by induction to deduce (86) from (87) and Proposition
17. This completes the proof of Theorem 2. [
Remark 20. (1) We emphasize that Theorem 2 leads us to simulate to 2n-vector
Z, =X, Y, X5 —-X,,Y5,.. ., X, —X,_,Y,), n=Ll
Let us consider
Z, =017 F Mos e s T Mgy Pys ¥ 15 0, M1
We will denote by ¢, (resp. ¥z ) the density of Z, (resp. Z)).
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Since ¢&,..., ¢, are independent exponential variables with mean 1, we have

n—1
P{ﬂ BimB;,'nla""r]mpla'"9pn—1’p:t}

i=1

n—1
= exp (— D M AP Pic VY prsy) + o A i)

k=1

—[(p, A )Py v pyy) + (P A pnl)]> : (88)

Consequently, Theorem 2(ii) implies that

j— 71-‘,, ,
(pZn - P(Cn) € (/)Zn’ (89)
where I',, is the positive function defined on (R,)*" by
n
Fn(xlayla e 9xn9yn) = J?{(XI,J’]:O) + Z <Q{(xi - rayiayi—l)a (90)

i=2
with

A (x,9,)) = (x AV )+ AY).

In particular, combining (88) with (90), we obtain

Fn(n]9p17r+n2’p2"-'sr+’7n—13pn—1’r+’7n’p;)

n—1
= —ln(P{ﬂB,-ﬂB;Im,...,17,1,p1,...,pn_1,p;,}> a.s.

i=1

We may apply the Hit or Miss Monte—Carlo Method (see [19, Chapter 4]). More
precisely, we first simulate Z, = and keep it with probability p =e /"),
Otherwise we simulate a new independent copy of Z, and so on.

Let us remark that this procedure is not on-line in the following sense: if the
algorithm has been applied to construct the first n points (X, Y?), 1<i<n, then
(X;41, Y5, 1) cannot be obtained directly. In fact, the whole procedure has to be
applied once more to provide the (n + 1) points (X%, Y?), 1<i<(n+ 1).

(2) Besides, the function I', has a geometrical interpretation. ./(x, y, ') is the area
of the union of two rectangles, i.e.

V0, (x AP [0,y D U ([x, x + ] x [0,yD] if y<)/,
A (x,y,)) = V0,71 x [0,y DU ([x 47— (x AT), o1
x + 7] x [0,y])] else,

where v is the Lebesgue measure on R x R,.
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We deduce easily from (91) that

n

i=1

Fll(x],yla"'axnayn)=v< b@(xiayi)>>

where

Z(x1,y1) = (51 =) v 0,51 + 1] x [0,y D\R(2, y2),

D(xi,y;) = ([Xi — 1, X; + 7] < [0, pD\[R(Xi "1, i) U R(Xi115 Y1)
if 2<i<(n—1),

9(xnsyn) = ([),C;l - rs)al] X [O,J’n])\R(@,yn—l),

R(x,y), (x,y) € R x Ry, is the set defined in (8) and with the convention X; =
chzlxk, 1<i<n.

By definition of the erasing procedure, the set |J_; Z(x;,y;) is exactly the set of
points of [0,X,] x R, which erase at least one of the points (X;,y;), 1 <i<n and are
not erased by any of these n points. In other words, the set | J_, Z(x;, y;) (denoted by
PE(X1,V,--->%Xn,V,)) is the domain of “potential erasers” of the points (X;,);),
1 <i<n (see Fig. 1). This geometrical interpretation provides us a more intuitive way
to rewrite Theorem 2: let us consider the sequences (17,);> 1, (0;);> and (p}), defined
as in Theorem 2 and a Poisson point process @, on R, x R with intensity measure
I(R”z(x, y)dxdy independent from the three sequences above. Then for every n>1,

(Xss Yi?(Xg_Xl‘lz)s Yg,,..,(XZ—XZ_l), Yi)

L

.
L

LMY

TN —

0 r

Fig. 1. Hachured domain of “potential erasers” of {(X;,y;), | <i<5} (black points).
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is distributed as (1, 01,7+ 12,02, - ¥ + 15 Pu_1> T + N, p),) conditioned on the
event

{d)+ ﬁ'@é‘)(nlaplar"’_nz:pb'"7r+’7nﬂpl/1): @}

5. The saturation case

In this section, the saturation model A, is directly defined and we prove that A
is the limiting process of A, when ¢ — +o00. As in Sections 2 and 4, the following
quantities related to A are introduced: As, Doo, Loo, |17 and (X5°, Y$°), i>1. Most
of the calculations done in the unsaturated case (i.e. A,) are valid in the saturated
case (i.e. A) as well. Moreover, we obtain the convergence of 4,, D;, L., X§,..., to
their analogues for A4.

More precisely, let us consider the process

Ao = {x € R;y=0|(x,y) € ¥},

where ¥ is the point process on R x R, defined in the first section. Ay
is a saturation model in the sense that no new crack can be added. Con-
sequently, two successive points of A, are separated by at least a distance r and at
most 2r.

As in the unsaturated case, Ao, Doo, Lo and |I°| are, respectively, defined
as the mean number of points of A, per unit length, the typical inter-crack
distance of A, in the Palm sense, the typical stress level of a point of A, and
the length of the smallest interval containing the origin and bounded by two
points of Ay. The calculations of Sections 2 and 3 still hold when ¢ is replaced
by +o00. Consequently, the analogues of Theorem 1 and Proposition 15 can be
obtained:

Theorem 21. We have:

() doo = [y ™ o(v)* du;
(ii) (a) The distribution of Do has a density ¢p_ given by

2 +oo .
Pp_(x) = — 1129(%) / e~ po(v)* do; (92)
00 0

(b) The two-dimensional r.v. (Dso, Loo) has the following density:
Ppor) V) =@p WP~ (y; ), 93)

where ¢, (resp. IIP>(y;-)) is the density of Lo (resp. the density of Du
conditionally on Ly, = y) and

L

4oo

@r () =— o)1, (), (94)
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—ry +00

(S ,
HDCX) (y’ u) — l{rSugzr} {ye—(u—r))f + (x_(y) e_(u_r)LOC(U) dU}, (95)
y

(i) The distribution of |I5°| has a density @1 given by

+00
Py (x) = 2x / e (v)” do - Ty (). (96)
0

Remark 22. (i) In a different theoretical context, Rényi gave an equivalent
formulation of the point (i) in [18] (see result (0.10)) and he estimated that the
mean crack number at saturation is approximately 0.748 (for r=1). To our
knowledge, the other results of Theorem 23 are new.

(i1) Let us notice that the distribution of D, has a decreasing density on [r, 2r] and
as for (20), by an easy calculation, we have

ED 1

T de
We see at once that A, converges in law [15] to A, and A, tends to A, when
& — +00. Moreover, we have the following:

Theorem 23. When ¢ goes to infinity (saturation), (D, L;) (resp. |I}|) converges in
distribution to (Do, Loo). (resp. |I5°]).

Proof. Let us investigate the convergence of P{D.>t; L, <s}, t=r, s=0, when ¢ —
+00. We notice that

) ~ X 97)

t—+4oo [ ’

where

1 oS +00 L—s§
ocoz(l/r)exp{—/ I-e ds~|—/ e—ds}.
0 s 1 S

Combining Theorem 1(ii) with (97), we obtain that

=% we?
P{D.>2r} = P o(e) T 0.
It remains to prove that for any ¢ € [r,2r] and s=0, P{D,>t; L,<s} converges to
P{Dy, >t; Lo, <s} which is clear from (63) and (93).
The same method holds for the convergence of |/5]. O

Let us define in the same way as A the one-sided process A% of the cracks on the
positive half-line. X{°,...,X7°,... denote the successive crack positions of this
process and Y7°,..., Y °, ... their corresponding stress levels. Similarly to Section 4,
we are able to determine the joint distribution of

(X, Y®)1<i<n), n>l.
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Theorem 24. (i) (X{°, Y{°) is a two-dimensional r.v. with density:
Pxe, v, v) = e () p<ucn o)

(i) Conditionally on (X{°,...,X;°, Y{°,..., Y,°), the couple (X5, — X7, Y}3))
has a density 0°(Y;°;-) such that for every y,u,v=0:

a(v)

0°(yiu,v) = (e “ e Lcoey +e Ve Ny a(y) Hrusn:

Remark 25. (i) Since the process A7 is a saturation model, we obviously have

XP<rand (X3, —X;°)e[r,2r], Vn=1as.

However, we are not able to prove, as we did in Theorem 2, that (X}°),. is a
“conditional renewal process”.

(ii) As in the non-saturated case, it suffices to have the law of (X{°, Y{°) on
the one hand and the law of (Y;°),.,; on the other to determine the positions
(Xzo)nél'

(iii) It is immediate that the sequence (X, Y?),., converges in distribution to
(Xi)oa Y?O)iZI'

Theorem 18 may be easily generalized to the saturated case in the following way:

Theorem 26. (Y;°),- is a homogeneous Markov chain such that:

(1) YS° has a density Py such that

I —e™

Py=(y) = )k, (1):

(ii) the law of Y3 | conditionally on {Y,° = y}, y =0, is independent from n and has a
density TTV°(y; ) such that for every v=0,

- e~ " _ ] —e™ OC(U)
HY’OO()/; U) = (1{0<u<}’}(1 -¢ ry) y * 1{y<v}e . v >a—(J/)’

(i) the stationary law of (Y°), is the distribution of Leo, with density given by (94);
(iv) conditionally on (X{°, Y{°,..., X7, Y}°), the distribution of the r.v. (X5, — X°)
has a density which only depends on Y.° and is equal to HD“(YZO; ) (where

I1P=(y; ) is given by (95)).

Finally, Theorem 19 is generalized to the saturated case.

Theorem 27. The couple (X5, — X;°, Y;°) converges in law when n — +o0, and the
limit distribution is the law of (Do, Loo) (provided by (93)).
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