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Abstract

We work out a stationary process on the real line to represent the positions of the multiple

cracks which are observed in some composites materials submitted to a fixed unidirectional

stress e: Our model is the one-dimensional random sequential adsorption. We calculate the

intensity of the process and the distribution of the inter-crack distance in the Palm sense.

Moreover, the successive crack positions of the one-sided process (denoted by X e
i ; iX1) are

described. We prove that the sequence fðX e
i ;Y

e
i Þ; 1pipng is a ‘‘conditional renewal process’’,

where Y e
i is the value of the stress at which X e

i forms. The approaches ‘‘in the Palm sense’’ and

‘‘one-sided process’’ merge when n ! þ1: The saturation case ðe ¼ þ1Þ is also investigated.
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0. Introduction

Let fX i; iX1g be a sequence of independent and uniformly distributed variables on
the segment ½0;L
; L40:We throw successively X 1; . . . ;X N on this segment, keeping
only some of them according to the following procedure. For NX2; we keep X 1 and
after that, we erase X 2 if and only if X 2 is in the interval of radius r40 around X 1:
Once we have decided if X 2; . . . ;X n; 2pnpðN � 1Þ are kept or not, we erase X nþ1 if
it belongs to the union of all the intervals centered on the non-erased points, with
length 2r:
This construction is known as the one-dimensional random sequential adsorption

(RSA) [3,2]. In spite of its simplicity, this model is difficult to deal with: in particular,
the law of the number of preserved points is unknown.
In 1958, Rényi [18] worked out a model where the points are placed on the

segment up to saturation (i.e. when no more point can be added). He obtained the
asymptotic behaviour of the mean number of points in ½0;L
 when L goes to infinity.
This question, known as the car-parking problem, has been largely investigated
(see for example [4,5,11,16,17]).
In 1966, fixing the number N of thrown variables, Widom [21] demonstrated by

heuristic methods that the mean number of points which are separated from their
right-neighbor by a fixed length l40 satisfies a differential equation in l. Moreover,
he provided formulas for the empirical distribution function of the inter-point
distance when N;L ! þ1; with N=L fixed.
In this paper, we are interested mainly in modelling a unidirectional multicracking

phenomenon of brittle coatings. A uniaxial strain is applied to a specimen consisting
of a ductile substrate covered with a brittle coating. The applied strain is supposed to
result in the coating in a regularly increasing stress denoted by e; which leads to the
formation of cracks parallel and orthogonal to the stress direction [7,12].
Consequently, the geometrical aspect of the problem reduces practically to the
intersections of the cracks with a fixed line parallel with the stress axis. It has been
observed [1,7,10,12] that the formation of a crack in the coating results in a
relaxation of the stress in the vicinity of this crack so that no new crack can form
close to an existing crack because of the smallness of the stress in this area.
Consequently, the above-described RSA construction can be considered as a model
for the crack positions.
More precisely, we construct through the RSA procedure a one-dimensional

stationary point process Le; that represents the positions of cracks for a fixed value
of the applied stress e40: The parameter e plays a central role in the model. In
particular, the limit e ! þ1 corresponds to saturation.
The first section of our paper is devoted to the construction of Le: We start with a

two-dimensional Poisson process F on R� Rþ of intensity measure 1Rþ
ðyÞf ðyÞdxdy:

In the physics literature, f is called (see e.g. [13]) rupture probability density of the
coating. It is a non-decreasing function and therefore expresses the fact that the
number of cracks grows with stress. From a mathematical point of view, there is no
loss of generality in assuming that f ¼ 1 (see the beginning of Section 1 for
details).
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By an erasing procedure, we construct a subset C of F such that for every point
ðx; yÞ 2 C; the first and second coordinates represent, respectively, the position of a
crack and the exact stress level at which it forms. For every e40;

Le ¼ fx 2 R; 9y 2 ½0; e
 j ðx; yÞ 2 Cg,

is the projection on the x-axis of C \ ðR� ½0; e
Þ:
In Section 2, we demonstrate that the process Le is stationary. In particular, the

mean crack number le and the couple ðDe;LeÞ of the typical inter-crack distance and
the stress level in the Palm sense are precisely defined, and a different notion of inter-
crack distance I e0 is given. The results are expressed through two unknown functions,
G and H.
We demonstrate in Section 3 that the function G satisfies an integral equation that

can be solved, which allows us to determine the function H.
Let us denote by a the function on Rþ defined by

aðsÞ ¼ exp �

Z rs

0

1� e�t

t
dt

� �
; sX0. (1)

Precise formulas for le and the distribution of ðDe;LeÞ (resp. I e0) can thus be
obtained:

Theorem 1. We have
(i)
 le ¼
R e
0 aðvÞ2 dv;
(ii)
 The distribution of De has a density jDe on ½r;þ1Þ such that

jDe
ðxÞ ¼

e2

le
aðeÞ2e�ðx�2rÞe if x42r;

2

le

Z e

0

e�ðx�rÞvaðvÞ2vdv if rpxp2r:

8>>><>>>:

(iii)
 Le has a density jLe

such that

jLe
ðyÞ ¼

1

le
aðyÞ21½0;e
ðyÞ; (2)
(iv)
 The distribution of De conditionally on Le has a density PDeðLe; �Þ such that for

every y 2 ½0; e
; uX0;

PDe ðy; uÞ ¼ 1fu42rg

eaðeÞ
aðyÞ

e�rye�ðu�2rÞe

þ 1frpup2rg ye�ðu�rÞy þ
e�ry

aðyÞ

Z e

y

e�ðu�rÞvaðvÞdv

� �
. ð3Þ
In order to understand more deeply the process Le; an alternative point of view is
considered in Section 4, i.e. we describe the points X e

i of the process on the positive
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half-line:

0oX e
1oX e

2o � � �oX e
n; nX1.

We denote by Y e
n the corresponding stress level of the crack position X e

n; nX1:
Because of the complexity of the erasing procedure, ðX e

nÞnX1 is not a renewal
process. We call it a ‘‘conditional renewal process’’ since we show in Theorem 2
below, that for every nX1; fX e

i ; 1pipng coincides with the first n points of a renewal
process conditioned on some explicit event.
More precisely, let us introduce three probability densities on Rþ:

jZðxÞ ¼
e

reþ 1
ð1½0;r
ðxÞ þ 1ðr;þ1ÞðxÞe

�ðx�rÞeÞ, (4)

jrðxÞ ¼
1

e
1½0;e
ðxÞ, (5)

jr0 ðxÞ ¼
1R e

0 aðuÞdu
1½0;e
ðxÞaðxÞ. (6)

Theorem 2. Let fxi; iX1g; fZi; iX1g; fri; iX1g and fr0i; iX1g be four mutually

independent sequences of i.i.d. variables such that x1 is an exponential variable with

mean 1 and the distribution of Z1 (resp. r1; r
0
1) has the density jZ (resp. jr; jr0).

Besides, let us consider the events

Bn ¼ fxnXðZn ^ rÞðrn _ rn�1Þ þ rðrn ^ rn�1Þg,

B0
n ¼ fxnXðZn ^ rÞðr0n _ rn�1Þ þ rðr0n ^ rn�1Þg,

with the convention r0 ¼ 0 a.s. Then
(i)
 The vector ðX e
1;Y

e
1Þ is distributed as ðZ1;r

0
1Þ conditioned on B0

1;

(ii)
 For every nX2; the vector

ðX e
1;Y

e
1;X

e
2 � X e

1;Y
e
2; . . . ;X

e
n � X e

n�1;Y
e
nÞ

is distributed as ðZ1;r1; r þ Z2;r2; . . . ; r þ Zn�1; rn�1; r þ Zn;r
0
nÞ conditioned on the

event

Cn ¼
\n�1
i¼1

Bi

\
B0

n.
Theorem 2 provides an algorithm to simulate the successive positions of the cracks
(see Remark 20).
We also prove that both ðX e

nþ1 � X e
n;Y

e
nÞnX1 and ðY e

nÞnX1 are Markov chains and
the initial distribution, transition probability density and invariant probability
measure are determined for each of them. We verify that the process ðX e

nþ1 �

X e
n;Y

e
nÞnX1 converges to its invariant probability measure (i.e. the law of ðDe;LeÞ; see

Theorem 1).
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Section 5 presents the saturation case already considered by Renyi. We define
directly the process L1 associated to saturation as well as its associated quantities
(l1; D1; L1; X1

i ; Y1
i ; iX1), then we demonstrate that le tends to l1 as e ! þ1

and De (resp. I e0; Le) converges in distribution to D1 (resp. I10 ; L1). We also give a
complete description of the distribution of ðX1

n ;Y1
n ÞnX1 and a result of convergence

in law of ðX1
nþ1 � X1

n ;Y1
n Þ to ðD1;L1Þ:
1. A stationary model with relaxation of stress

In this section, we define a stationary process Le on R that represents the crack
positions for a given stress e on the assumption that the stress is relaxed on an
interval of radius r40 around every existing crack.
To this end, we introduce a two-dimensional point process C on R� Rþ such that

the first and the second coordinates of a point of C represent, respectively, the
position of a crack and the stress level at which the crack forms. Le is the projection
on the x-axis of C \ ðR� ½0; e
Þ:

Le ¼ fx 2 R; 9y 2 ½0; e
 j ðx; yÞ 2 Cg. (7)

Considering a two-dimensional point process is a convenient way to order the crack
positions as in the case of the segment ½0;L
; by associating with any position an
‘‘arrival time’’ of the crack. To define C; we start with the process F associated with
the cracking phenomenon without stress relaxation.

F is a Poisson point process on R� Rþ; with intensity measure nðdx;dyÞ ¼

1Rþ
ðyÞdxdy: To take into account the physical reality of the cracking process, F

should be a Poisson point process with intensity measure f ðyÞ1Rþ
ðyÞdxdy where f is

a positive continuous and non-decreasing function on Rþ: However, in that case, the
random set Ff ¼ fðx;F ðyÞÞ; ðx; yÞ 2 Fg (where F ðyÞ ¼

R y

0 f ðtÞdt; yX0) is a Poisson
point process of intensity measure 1Rþ

ðyÞdxdy and the erasing procedure applied to
either Ff or F is the same. Therefore from a mathematical point of view, we can
suppose, without any loss of generality, that F is a homogeneous Poisson point
process.
For any point ðx; yÞ 2 R� Rþ; we define the corresponding domain of relaxation:

Rðx; yÞ ¼ ½x � r;x þ r
 � ½y;þ1Þ � R� Rþ. (8)

Let us introduce C: This random process is a sub-process of F defined by the
following recursive algorithm:

Initialization. We start with taking any couple ðx; yÞ in C; such that y is a local
minimum, i.e.

F \ ð½x � r;x þ r
 � ½0; yÞÞ ¼ ;.

Let us denote by C1 the set of these points and by F1 the subset of F obtained by
erasing all the points that are in the domains of relaxation associated to the points
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of C1: This means

F1 ¼ F \
[

ðx;yÞ2C1

Rðx; yÞ

 !c

.

Iteration. Suppose that for a fixed n 2 N�; the processes F1; . . . ;Fn and C1; . . . ;Cn

are constructed.
We then take in Cnþ1 the points ðx; yÞ of Fn such that y is a local minimum. We

define Fnþ1 as the set of the points of Fn not erased by the domains of relaxation
associated to the points of Cnþ1: In mathematical terms,

Cnþ1 ¼ fðx; yÞ 2 Fn;Fn \ ½x � r;x þ r
 � ½0; yÞ ¼ ;g;

Fnþ1 ¼ Fn \
S

ðx;yÞ2Cnþ1
Rðx; yÞ

� �c

:

8<:
We then define

C ¼
[
nX1

Cn. (9)

From now on the points of C will be named erasers, and the points of FnC that are
deleted by the domains of relaxation associated to the erasers, will be named erased

points. So

FnC ¼ fðx; yÞ 2 F; 9ðx0; y0Þ 2 C j ðx; yÞ 2 Rðx0; y0Þg.

The point process C can also be seen as the complementary set in F of the erasing

tree AðFÞ; where

AðFÞ ¼
[

ðx;yÞ2C

ð½x � r;x þ r
 � ðy;þ1ÞÞ. (10)

We say that a point of R� Rþ is erased if it is contained in the erasing tree AðFÞ:

The first properties of C are stated in the following proposition:

Proposition 3. (i) Almost surely the projections of the points of C on the x-axis are

separated by a distance at least equal to r.
(ii) C is infinite a.s.

(iii) C is invariant under horizontal translations.
(iv) C is ergodic.

Proof. (i) Let us consider two points ðx; yÞ; ðx0; y0Þ 2 C and suppose that

ðx; yÞ 2 Cn and ðx0; y0Þ 2 Cm; mXn.

Then ðx0; y0ÞeRðx; yÞ so jx0 � xj4r:
(ii) It suffices to show that C0 is infinite. Let us denote by Cn; n 2 Z; the event such

that ‘‘the minimum of the second coordinates of the points of F \ ½3nr; 3ðn þ 1Þr
 �
Rþ is reached at a point of ½ð3n þ 1Þr; ð3n þ 2Þr
 � Rþ’’.
Let us remark that

Cn � fC0 \ ½ð3n þ 1Þr; ð3n þ 2Þr
 � Rþa;g; n 2 Z.
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Since F is a Poisson point process, the events Cn are mutually independent and have
the same positive probability. So using the Borel–Cantelli lemma leads to

P flim supCng ¼ 1,

which proves that C0 is infinite.
(iii) Let us consider the set MsðR

2Þ of the locally finite sequences of R2; endowed
with the s-field generated by the applications f 7�!#ðf \ AÞ; f 2 MsðR

2Þ; where
A 2 BðR2Þ: We define for every x 2 R;

Tx :
MsðR

2Þ�!MsðR
2Þ;

fðxi; yiÞgiX1 7�!fðxi þ x; yiÞgiX1:

(
We see immediately that C as well as F is invariant in law under the applications Tx;
x 2 R:
(iv) To prove the ergodicity, let us show that C is strongly mixing for the

applications Tx; i.e. every couple ðA;BÞ of measurable sets of MsðR
2Þ satisfies

PfA \ TxðBÞg �!
jxj!þ1

PfAg � PfBg. (11)

Let us remark (see [9]) that the sets fC \ K ¼ ;g; where K runs throughout the
compact sets of R2; generate the s-field ofMsðR

2Þ: Consequently, it suffices to prove
the convergence in (11) when A ¼ fC \ A ¼ ;g and B ¼ fC \ B ¼ ;g; A, B being
two compact sets of R2:
Since C is invariant by Tx=2; we have

PfðC \ A ¼ ;Þ \ ðT�xðCÞ \ B ¼ ;Þg

¼ PfðTx=2ðCÞ \ A ¼ ;Þ \ ðT�x=2ðCÞ \ B ¼ ;Þg

¼ PfðC \ ðA � x=2Þ ¼ ;Þ \ ðC \ ðB þ x=2Þ ¼ ;Þg. ð12Þ

In order to prove the asymptotic independence of fC \ ðA � x=2ÞÞ ¼ ;g and fC \

ðB þ x=2ÞÞ ¼ ;g; we are going to rewrite these two events with the independent
processes Fþ and F� defined by

Fþ ¼ F \ ðRþ � RþÞ and F� ¼ F \ ðR� � RþÞ. (13)

Let Zþ (respectively, Z�) be the minimum (respectively, the maximum) of
the first coordinates of the points of C0 contained in the domain ½r;þ1Þ � Rþ

(respectively, ð�1;�r
 � Rþ). In other words, Zþ (respectively, Z�) is the mini-
mal (respectively, maximal) first coordinate of the points of Fþ \ ½r;þ1Þ � Rþ

(respectively, F�e \ ð�1;�r
 � Rþ) such that Fþ \ ½x � r; x þ r
 � ½0; yÞ ¼ ; (re-
spectively, F� \ ½x � r; x þ r
 � ½0; yÞ ¼ ;). So Zþ and Z� are two independent
variables.
Besides, let AðFþÞ (resp. AðF�Þ) be the erasing tree of Fþ (resp. of F�). We then

have

AðFþÞ \ ð½Zþ;þ1Þ � RþÞ ¼ AðFÞ \ ð½Zþ;þ1Þ � RþÞ (14)

and

AðF�Þ \ ðð�1;Z�
 � RþÞ ¼ AðFÞ \ ðð�1;Z�
 � RþÞ. (15)
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For n 2 N; let x be such that x=2þ inf p1ðBÞ4n and �x=2þ sup p1ðAÞo� n; where
p1ðAÞ denotes the projection on the x-axis of A. Let us consider the events

Eþ
n ¼ fZþ 2 ½0; n
;C \ ðB þ x=2Þ ¼ ;g and

E�
n ¼ fZ� 2 ½�n; 0
;C \ ðA � x=2Þ ¼ ;g.

Then Eþ
n and E�

n are independent because equalities (14) and (15) imply that

Eþ
n ¼ fZþ 2 ½0; n
;Fþ \ ½AðFþÞ \ ½Zþ;þ1Þ � Rþ


c \ ðB þ x=2Þ ¼ ;g

and

E�
n ¼ fZ� 2 ½�n; 0
;F� \ ½AðF�Þ \ ð�1;Z�
 � Rþ


c \ ðA � x=2Þ ¼ ;g.

Consequently, let us fix Z40 and choose n 2 N such that

PfZþ;Z� 2 ½0; n
gX1� Z=3.

Then for xX2 supfðn � inf p1ðBÞÞ; ðn þ sup p1ðAÞÞg; using the invariance of C under
Tx=2 and the independence of Eþ

n and E�
n ; we have

jPfðC \ A ¼ ;Þ \ ðT�xðCÞ \ B ¼ ;Þg � PfC \ A ¼ ;g � PfC \ B ¼ ;gj

pjPfðC \ ðA � x=2Þ ¼ ;Þ \ ðC \ ðB þ x=2Þ ¼ ;Þg � PfEþ
n \ E�

n gj

þ jPðEþ
n ÞPðE

�
n Þ � PfC \ ðA � x=2Þ ¼ ;gPfF \ ðB þ x=2Þ ¼ ;gj

p
Z
3
þ 2 �

Z
3
¼ Z.

So the required convergence (11) is proved. &
2. The mean crack number and typical inter-crack distance

Let us consider for a fixed e40; the set Le given by equality (7). Due to
Proposition 3, Le is stationary and ergodic.
We are interested in two physical quantities, the mean crack number and typical

inter-crack distance. First, the mean crack number le; i.e. the mean number of cracks
per unit of length is the intensity of Le: Secondly, we can define two different
characteristic distances:
(i) the typical inter-crack distance De represents the distance in the Palm sense (see

(17)) between a point ‘‘randomly chosen’’ in Le and its successor.
(ii) I ex; x 2 R; is the smallest interval whose bounds are in Le and that contains x (it

is unique almost surely). Since Le is stationary, the distribution of jI exj does not
depend on x.
We express the distribution of jI e0j via the law of De and we notice that De and jI e0j

are not identically distributed. Moreover, we determine le and the distribution of De:
In a first step we prove that both le and the probability distribution function of De

can be expressed as an integral of two functions G and H. The calculation of G and
H is postponed in Section 3.
Let us start with a precise definition of le and De: The function that associates to

any Borel set B � R; the value Eð#ðLe \ BÞÞ is a positive measure invariant under
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translations. So it is proportional to the Lebesgue measure on R denoted by j � j:
Consequently, we can define the intensity le of Le as

le ¼
1

jBj
Eð#ðLe \ BÞÞ, (16)

where B � R is a fixed Borel set verifying 0ojBjoþ1:
The law in the Palm sense (see [20, Section 4.4] or [15, Section 2]) for a complete

survey on Palm distributions of stationary point processes on the real line) of the
typical inter-crack distance De is defined as follows:

EhðDeÞ ¼
1

lejBj
E

X
x2Le\B

hðvðx;LeÞ � xÞ

( )
(17)

for every measurable function h : Rþ�!Rþ and every fixed Borel set B � R; where

vðx;GÞ ¼ inffG \ ðx;þ1Þg ¼ inffs 2 G; s4xg; x 2 R; G � R, (18)

with the conventions inf ; ¼ þ1 and
P

; ¼ 0: Let us note that the right-hand side
does not depend on B.
Let Le be the stress level associated with De:We can define the joint distribution of

ðDe;LeÞ (in the Palm sense) in the same manner. More precisely, we have

EfhðDe;LeÞg ¼
1

lejBj
E

X
ðx;yÞ2C\ðB�½0;e
Þ

hðvðx;LeÞ � x; yÞ

( )
(19)

for every Borel function h : ðRþÞ
2
�!Rþ and every fixed Borel set B � R:

Let us observe that Proposition 3 implies that DeXr a.s. Besides, using the same
argument as Møller in [14, p. 62], we obtain that De is an integrable r.v. and

EDe ¼
1

le
. (20)

We now establish a connection between the distributions of De and jI e0j: Let I
e
L;

L40; be the set of intervals I ex included in the segment ½�L;L
; and Ne
L the number

of such intervals, i.e.

Ne
L ¼ #Ie

L ¼ ð#fLe \ ½�L;L
g � 1Þþ.

The distributions of De and I e0 are connected by the following proposition:

Proposition 4. (i) For any positive measurable function h on Rþ;

EhðDeÞ ¼
1

Eð1=jI e0jÞ
E

hðjI e0jÞ

jI e0j

� �
. (21)

(ii) If there exists p41 such that EðhðDeÞ
p
Þoþ1; then when L goes to infinity,

1

Ne
L

X
I2Ie

L

hðjI jÞ�!EhðDeÞ a:s. (22)
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Proof. (i) It suffices to combine (20) with the argument used by Møller [14,
Proposition 3.3.2], in his study of the typical cell of a Voronoi tessellation on R

generated by a stationary point process.
(ii) Let us define for all x 2 R;

eTx
:

MsðRÞ�!MsðRÞ;

fxigiX1 7�!fxi þ xgiX1;

(
where MsðRÞ is the set of locally finite sequences of R:
According to Wiener’s ergodic theorem [22], if EðhðjI e0jÞ=jI

e
0jÞoþ1; then

1

2L

Z L

�L

hðjI exjÞ

jI exj
dx ¼

1

2L

Z L

�L

hðjI e0ð
eT�x

ðLeÞÞjÞ

jI e0ð
eT�x

ðLeÞÞj
dx�!E

hðjI e0jÞ

jI e0j

� �
a:s. (23)

Moreover, taking h ¼ 1; we easily verify that

Ne
L

2L
�!E

1

jI e0j

� �
; a:s: when L ! þ1.

We suppose that h satisfies condition (ii). Applying the argument used by Goldman
(see [8, Lemma 4]) in the case of Poissonian tessellations, we demonstrate that

1

2L

Z L

�L

hðjI exjÞ

jI exj
dx �

1

2L

X
I2Ie

L

hðjI jÞ�!0; when L ! þ1: &

Remark 5. It is possible to invert equality (21), namely

EfhðjI e0Þg ¼
1

EðDeÞ
EfDehðDeÞg (24)

for every positive Borel function h defined on Rþ:

From now on, we focus on the calculation of le and the distribution of De: The
following lemma is an essential intermediate result:

Lemma 6. (i) le ¼
R e
0 Pfð0; vÞeAðFÞgdv:

(ii) For every tX0;

PfDeXtg ¼
1

le

Z e

0

Pfð0; vÞeAðFÞ; vð0;Le;vÞXtgdv,

where Le;v is the cracking process based on F \ ðR� ½0; e
Þ [ fð0; vÞg and vð0;Le;vÞ is

defined by equality (18).

Proof. To prove these two equalities, the essential tool is Slivnyak’s formula (see for
example [14]) satisfied by F:

E
X

ðx;yÞ2F

hððx; yÞ;FÞ

( )
¼

Z
Eðhððu; vÞ;F [ fðu; vÞgÞÞ1Rþ

ðvÞdudv (25)

for every positive measurable function h defined on R2 �MsðR
2Þ:



ARTICLE IN PRESS

P. Calka et al. / Stochastic Processes and their Applications 115 (2005) 983–1016 993
Using successively (7), (16) and (25), we have for every L40

le ¼
1

L
E½#ðLe \ ½0;L
Þ


¼
1

L
E

X
ðx;yÞ2F

1½0;L
ðxÞ1½0;e
ðyÞ1AðFÞc ðx; yÞ

" #

¼
1

L

Z L

0

du

Z e

0

Pfðu; vÞeAðF [ fðu; vÞgÞgdv. ð26Þ

Using invariance under horizontal translations of F and the equality between the
two events fð0; vÞeAðF [ fð0; vÞgÞg and fð0; vÞeAðFÞg; we deduce from (26) that

le ¼
Z e

0

Pfð0; vÞeAðFÞgdv.

That completes the proof of (i).
Using equalities (17) and (25), we can prove (ii) in the same manner. &

Let us consider the continuous function

Gðx; yÞ ¼ PfFþ \ ð½0;x
 � ½0; y
Þ � AðFþÞg; x 2 ½0; r
; yX0, (27)

where Fþ is defined by (13).
Gðx; yÞ is the probability that either F \ ½0;x
 � ½0; y
 ¼ ; or the points of F \

½0;x
 � ½0; y
 are erased by erasers from the right (i.e. belonging to Fþ).
More generally, we define the continuous function

Hðx; y; x0; y0Þ ¼ PfFþ \ ð½0; x
 � ½0; y
n½0;x0
 � ½y0; y
Þ � AðFþÞg,

0px0pxpr; 0py0py. ð28Þ

Hðx; y;x0; y0Þ is the probability that either F \ ð½0;x
 � ½0; y
n½0;x0
 � ½y0; y
Þ ¼ ; or
the points of the set F \ ð½0;x
 � ½0; y
n½0;x0
 � ½y0; y
Þ are erased by erasers from the
right.
The following proposition provides the expression of le and the distribution

function of De as integrals of G and H.

Proposition 7. We have:
(i)
 le ¼
R e
0 Gðr; vÞ2 dv;
(ii)
 For every tX2r;

PfDeXtg ¼
Gðr; eÞ
le

Z e

0

Gðr; vÞe�rv dv

� �
� e�ðt�2rÞe; (29)
(iii)
 For every t 2 ½r; 2r
;

PfDeXtg ¼
1

le

Z e

0

Gðr; vÞHðr; e; 2r � t; vÞe�vðt�rÞ dv. (30)
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Proof. (i) According to point (i) of Lemma 6, it suffices to prove that for every
v 2 ½0; e
;

Pfð0; vÞeAðFÞg ¼ Pfð0; vÞ not erasedg ¼ Gðr; vÞ2. (31)

Besides, the point ð0; vÞ; 0pvpe; is not erased if and only if there is no eraser in
½�r; r
 � ½0; v
; i.e. if the points of F \ ð½�r; r
 � ½0; v
Þ have been erased themselves.
In that case, the points of F \ ð½0; r
 � ½0; v
Þ (respectively, of F \ ð½�r; 0
 � ½0; v
Þ)

could have been erased only by erasers from the right (respectively, from the left).
So we have the equivalence

ð0; vÞeAðFÞ()
Fþ \ ð½0; r
 � ½0; v
Þ � AðFþÞ;

F� \ ð½�r; 0
 � ½0; v
Þ � AðF�Þ:

(
(32)

Consequently, using the independence of Fþ and F�; we obtain

Pfð0; vÞeAðFÞg ¼ PfFþ \ ð½0; r
 � ½0; v
Þ � AðFþÞg

� PfF� \ ð½�r; 0
 � ½0; v
Þ � AðF�Þg.

It remains to notice that (31) is a direct consequence of the equalities

PfFþ \ ð½0; r
 � ½0; v
Þ � AðFþÞg ¼ PfF� \ ð½�r; 0
 � ½0; v
Þ � AðF�Þg ¼ Gðr; vÞ.

(ii) and (iii) In order to determine the law of De; we deduce from Lemma 6(ii) that
it is sufficient to calculate the expression

Pfð0; vÞeAðFÞ; vð0;Le;vÞXtg; tXr; v 2 ½0; e
.

We proceed as for (i) and we obtain the equality

fð0; vÞ not erased; vð0;Le;vÞXtg ¼ A� \ Aþ
t , (33)

where A� and Aþ
t are two independent events defined by

A� ¼ fF \ ð½�r; 0
 � ½0; v
Þ ¼ ; or all points of F \ ð½�r; 0
 � ½0; v
Þ

erased from the leftg,

Aþ
t ¼ fF \ ð½0; r
 � ½0; v
 [ ½r; t
 � ½0; e
Þ is empty or erased from the rightg.

Let us remark that

PðA�Þ ¼ Gðr; vÞ. (34)

Consequently we obtain the formula

Pfð0; vÞeAðFÞ; vð0;Le;vÞXtg ¼ Gðr; vÞ � PðAþ
t Þ. (35)

It then remains to determine PðAþ
t Þ: The computation of this probability depends

whether tX2r or t 2 ½r; 2r
:
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Case 1: tX2r:
Since a point of F can be erased only by an eraser located at a distance smaller

than r on the x-axis, we can rewrite the event Aþ
t as follows:

Aþ
t ¼ fF \ ð½0; r
 � ½0; v
 [ ½r; t � r
 � ½0; e
Þ ¼ ;g \ fF \ ð½t � r; t
 � ½0; e
Þ

erased from the rightg, ð36Þ

the two events of the intersection being independent.
The Poissonian property of F provides the equality

PfF \ ð½0; r
 � ½0; v
 [ ½r; t � r
 � ½0; e
Þ ¼ ;g ¼ e�nð½0;r
�½0;v
[½r;t�r
�½0;e
Þ

¼ e�ðt�2rÞee�rv. ð37Þ

Since F is invariant under horizontal translations Tt�r; we have

PfF \ ð½t � r; t
 � ½0; e
Þ erased by the rightg ¼ Gðr; eÞ. (38)

Consequently, we deduce from formulas (36)–(38):

PðAþ
t Þ ¼ Gðr; eÞe�rve�ðt�2rÞe.

Relation (29) follows immediately.
Case 2: t 2 ½r; 2r
:
We rewrite the event Aþ

t as the intersection of two independent events:

Aþ
t ¼ fF \ ð½0; t � r
 � ½0; v
Þ ¼ ;g \ fF \ ð½t � r; t
 � ½0; e
n½t � r; r
 � ½v; e
Þ

erased from the rightg.

The invariance under horizontal translations of F implies that

PfF \ ð½t � r; t
 � ½0; e
n½t � r; r
 � ½v; e
Þ erased by the rightg ¼ Hðr; e; 2r � t; vÞ

and we then have the equality

PðAþ
t Þ ¼ Hðr; e; 2r � t; vÞe�vðt�rÞ.

Using (35), we can conclude as in the first case. &
3. Explicit formulas for the mean crack number and the distribution function of the

typical inter-crack distance

Proposition 7 implies that the mean crack number and the distribution of De (resp.
jIe
0j) are known as soon as the functions G and H are determined. We prove in

Proposition 8 below that G satisfies an integral equation. Fortunately, we can solve it
(see Proposition 10) and thereby obtain an explicit formula for both G and H.
As for the joint distribution of ðDe;LeÞ; we prove that it can be determined via G

and H.
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3.1. A functional equation satisfied by G

G satisfies the following functional equation:

Proposition 8. For every 0pxpr; yX0;

Gðx; yÞ ¼ 1� e�xy

Z x

0

Z y

0

Gðr � u; y � vÞeuvð1þ uvÞdu dv. (39)

Proof. Let us first recall that for every fixed x 2 ½0; r
 and y 2 ½0; e
; we have:

Fþ \ ð½0; x
 � ½0; y
Þ ¼
law

fðX i;Y iÞ; 1pipNg,

where:
ði0Þ
 fðX i;Y iÞ; iX1g is a sequence of independent and uniform variables on ½0; x
 �
½0; y
;
ðii0Þ
 N is a Poisson variable of mean value EN ¼ xy; independent of the preceding
sequence.
Let us define for all nX1;

ðM
ðnÞ
1 ;M ðnÞ

2 Þ ¼ inf
1pipn

X i; inf
1pipn

Y i

� �
.

It is easily verified that the law of the couple ðM
ðnÞ
1 ;M ðnÞ

2 Þ is given by

PfM
ðnÞ
1 Xu; M

ðnÞ
2 Xvg ¼ 1�

u

x

� �n

1�
v

y

� �n

; u 2 ½0; x
; v 2 ½0; y
. (40)

The key point is the following: let ðM
ðnÞ
1 ;Y Þ (respectively, ð bX ;M ðnÞ

2 Þ) be the point of
F; of first coordinate M

ðnÞ
1 (resp. of second coordinate M

ðnÞ
2 ).

The points of Fþ \ ð½0;x
 � ½0; y
Þ cannot be erased by more than one eraser
ðX ;Y Þ: Since ðX ;Y Þ has to erase ðM

ðnÞ
1 ;Y Þ (resp. ð bX ;MðnÞ

2 Þ), then XpM
ðnÞ
1 þ r (resp.

YpM
ðnÞ
2 ).

Consequently, that happens if and only if either N ¼ 0 or N ¼ n; nX1; and there is
an eraser in ð½x;M ðnÞ

1 þ r
 � ½0;MðnÞ
2 
Þ:

Combining this argument with equality (40), we obtain that for every x 2 ½0;x
;
y 2 ½0; y
;

Gðx; yÞ ¼ PfFþ \ ð½0;x
 � ½0; y
Þ empty or erased from the rightg

¼ PfN ¼ 0g þ
X
nX1

PfN ¼ ngPfFþ \ ð½x;M ðnÞ
1 þ r
 � ½0;MðnÞ

2 
Þ

not totally erased from the rightg
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¼ e�xy 1þ
X
nX1

ðxyÞn

n!

Z x

0

Z y

0

ð1� Gðu þ r � x; vÞÞ

"

�PðM
ðnÞ
1 2 du;M ðnÞ

2 2 dvÞ

#

¼ 1� e�xy
X
nX1

n2
ðxyÞn�1

n!

Z x

0

Z y

0

Gðu þ r � x; vÞ

� 1�
u

x

� �n�1

1�
v

y

� �n�1

dudv

¼ 1� e�xy

Z x

0

Z y

0

Gðu þ r � x; vÞeðx�uÞðy�vÞð1þ ðx � uÞðy � vÞÞdudv.

Taking the change of variables (in the integral) u0 ¼ x � u; v0 ¼ y � v; we deduce (39)
from the preceding equality. &

Let us consider the bounded operator L on the space of continuous functions
Cð½0; r
 � RþÞ (endowed with the topology of uniform convergence on every compact
set) defined by

LðQÞ : ðx; yÞ7�!e�xy

Z x

0

Z y

0

Qðr � u; y � vÞeuvð1þ uvÞdudv,

x 2 ½0; r
; yX0, ð41Þ

where Q 2 Cð½0; r
 � RþÞ:
The following proposition provides the uniqueness of the solution of the

functional Eq. (39) in the space Cð½0; r
 � RþÞ:

Proposition 9. We have

G ¼
X
nX0

ð�1ÞnLnð1Þ, (42)

the convergence of the series being uniform on ½0; r
 � ½0; k
; for any k40:

Proof. Eq. (39) can be rewritten as

G þ LðGÞ ¼ 1; G 2 Cð½0; r
 � RþÞ. (43)

Let us remark that

Lð1Þðx; yÞ ¼ 1� e�xy; x 2 ½0; r
; y 2 Rþ. (44)

Let k40 be fixed. We suppose that the set Cð½0; r
 � ½0; k
Þ of continuous functions
defined on ½0; r
 � ½0; k
 is equipped with the uniform norm.
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We deduce easily from (44) that the restriction of L to Cð½0; r
 � ½0; k
Þ has a finite
norm equal to ð1� erkÞ: Consequently, the seriesX

nX0

ð�1ÞnLn

converges to the inverse of ðI þ LÞ: Therefore (42) is a direct consequence of
(43). &

The functional Eq. (39) is the key point to calculate the expressions of the
functions G and H. We will then deduce from Proposition 7 the mean crack number
and distribution function of the typical inter-crack distance.
3.2. Explicit formulas for le and PfDeXtg; tXr

Let us remark that the function a defined in (1) satisfies the two following
identities:

ðaðtÞtÞ0 ¼ aðtÞe�rt, (45)

aðtÞ ¼
e�g

rt
exp �Eið1; rtÞ
� �

; t40, (46)

where g is Euler’s constant and Eiðn;xÞ ¼
Rþ1

1 e�xs=sn ds:

Proposition 10. For every 0pxpr; yX0;

Gðx; yÞ ¼ 1�

Z y

0

aðsÞ
1� e�sx

s
ds

¼ 1�

Z y

0

exp �

Z rs

0

1� e�t

t
dt

� �
1� e�sx

s
ds.

In particular,

Gðr; yÞ ¼ aðyÞ ¼ exp �

Z ry

0

1� e�v

v
dv

� �
. (47)

Proof. Let us recall that Proposition 9 provides the uniqueness of the solution of the
integral equation (39) in the space Cð½0; r
 � RþÞ: Consequently, it suffices to verify
that the continuous function

Uðx; yÞ ¼ 1� V ðx; yÞ ¼ 1�

Z y

0

aðsÞ
1� e�sx

s
ds; x 2 ½0; r
; yX0,

satisfies the identity U þ LðUÞ ¼ 1: Using (44), we obtain that it is equivalent to

LðV Þðx; yÞ ¼ Uðx; yÞ � e�xy. (48)

We need to calculate LðV Þ where L is the operator defined by (41).
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For x 2 ½0; r
 and yX0 fixed, we have

LðV Þðx; yÞ ¼ e�xy

Z x

0

Z y

0

Z y�v

0

aðsÞ
1� e�sðr�uÞ

s
euvð1þ uvÞdudvds

¼ e�xy

Z x

0

Z y

0

aðsÞ
1� e�sðr�uÞ

s

Z y�s

0

euvð1þ uvÞdv

� �
dsdu

¼ e�xy

Z y

0

aðsÞ
s

Z x

0

ðy � sÞð1� e�sðr�uÞÞeuðy�sÞ du

� �
ds

¼

Z y

0

aðsÞ
s

e�xs � e�xy � ðy � sÞe�rs 1� e�xy

y

� �
ds

¼ �

Z y

0

aðsÞ
s

ð1� e�xsÞds �
1� e�xy

y

�

Z y

0

ðy � sÞaðsÞ
e�sr � 1

s
ds �

Z y

0

aðsÞds

� �
¼ Uðx; yÞ � 1�

1� e�xy

y

Z y

0

ðy � sÞa0ðsÞds �

Z y

0

aðsÞds

� �
¼ Uðx; yÞ � 1þ ð1� e�xyÞ ¼ Uðx; yÞ � e�xy.

We then obtain (48). This implies Proposition 10. &

Remark 11. Let us briefly explain how the right function G was determined.
Let us fix x 2 ð0; rÞ and a continuously derivable function h defined on Rþ and

HðyÞ ¼

Z y

0

hðy � vÞexvð1þ xvÞdv; yX0.

It is easy to check that H solves the following linear ordinary equation:

H 00ðyÞ � 2xH 0ðyÞ þ x2HðyÞ ¼ h0
ðyÞ

with the boundary conditions Hð0Þ ¼ 0 and H 0ð0Þ ¼ hð0Þ:
Let G be a solution of G ¼ 1� LG: We introduce G1ðx; yÞ ¼ qG=qyðx; yÞ: The

previous step implies that G1 solves:

2G1ðx; yÞ þ y
qG1

qy
ðx; yÞ þ

q2G1

qxqy
ðx; yÞ ¼ �e�xyG1ðr � x; yÞ; 0pxpr; yX0.

We notice that ðx; yÞ7�!xe�xy and ðx; yÞ7�!1=y2 are two particular solutions of

2Aðx; yÞ þ y
qA

qy
ðx; yÞ þ

q2A
qxqy

ðx; yÞ ¼ 0.

It is then possible (after tedious calculations) to deduce G1ðx; yÞ:

Let us define the cracking process Lþ
e on the positive half-line. Let Cþ be the set

obtained by the erasing procedure (developed in Section 1) applied to the
intersection Fþ of F and ðRþÞ

2: Lþ
e is defined as the projection on the first axis
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of Cþ \ ðR� ½0; e
Þ; namely:

Lþ
e ¼ fx 2 Rþ; 9y 2 ½0; e
 j ðx; yÞ 2 Cþg. (49)

Lþ
e represents the position of the cracks when the stress is less than e:
Let us consider the first positive crack position

X e
1 ¼ inf Lþ

e . (50)

The calculation of the law of X e
1; eX0; is essential to obtain an explicit formula of the

function Hðr; �; �; �Þ defined in (28). The following theorem provides the exact
distribution of X e

1:

Theorem 12. The law of X e
1 has a density jX e

1
such that

jX e
1
ðxÞ ¼

eaðeÞe�eðx�rÞ if xXr;R e
0 aðvÞe�xv dv if x 2 ½0; r
:

(
(51)

Proof. Using Proposition 10, we only have to verify that

PfX e
1Xxg ¼

Gðx; eÞ if x 2 ½0; r
;

e�ðx�rÞeaðeÞ if xXr:

(
(52)

Let us notice the equality of events

fFþ \ ð½0; x
 � ½0; e
Þ erased from the rightg ¼ fX e
1Xxg. (53)

Equality (52), with x 2 ½0; r
; follows directly from (53) and (27).
When xXr; using (53) and the invariance under every horizontal translation of

Fþ; we have

PfX e
1Xxg ¼ PfFþ \ ð½0;x
 � ½0; e
Þ empty or erased from the rightg

¼ PfFþ \ ð½0;x � r
 � ½0; e
Þ ¼ ;;

Fþ \ ð½x � r;x
 � ½0; e
Þ empty or erased from the rightg

¼ PfFþ \ ð½0;x � r
 � ½0; e
Þ ¼ ;g

�PfFþ \ ð½0; r
 � ½0; e
Þ empty or erased from the rightÞg

¼ e�ðx�rÞeGðr; eÞ.

This proves the second part of (52). In particular,

PfFþ \ ð½0; r
 � ½0; e
Þ erased from the rightg ¼ PfX e
1Xrg ¼ aðeÞ: & (54)

Proposition 13. For every 0pxpr; 0pype;

Hðr; e;x; yÞ ¼ aðyÞ � e�xy

Z e

y

aðsÞ
1� e�ðr�xÞs

s
ds.

Proof. We observe that

fFþ \ ð½0; r
 � ½0; e
n½0; x
 � ½y; e
Þ erased from the rightg ¼ A1 [ A2;
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where

A1 ¼ fX
y
1 2 ½r;x þ r
g,

A2 ¼ fFþ \ ð½0; x
 � ½0; y
Þ ¼ ;;Fþ \ ð½x; r
 � ½0; e
Þ erased from the rightg.

We then obtain the following formula which is the key point of the proof of
Proposition 13:

Hðr; e;x; yÞ ¼ PðA1Þ þ PðA2Þ � PðA1 \ A2Þ. (55)

Using Theorem 12, we have

PðA1Þ ¼

Z xþr

r

yaðyÞe�yðu�rÞ du ¼ aðyÞð1� e�xyÞ. (56)

The invariance of Fþ under every positive translation combined with Theorem 10
implies:

PðA2Þ ¼ PfFþ \ ð½0;x
 � ½0; y
Þ ¼ ;g

� PfFþ \ ð½0; r � x
 � ½0; e
Þ erased by the rightg

¼ e�xyGðr � x; eÞ

¼ e�xy 1�

Z e

0

aðsÞ
1� e�sðr�xÞ

s
ds

� �
. ð57Þ

It remains to determine PðA1 \ A2Þ: To this end, we remark that the law of the
process Fþ conditioned on the event fFþ \ ð½0;x
 � ½0; y
Þ ¼ ;g is the same as
TxðFþÞ:
Consequently, we have

PðA1 \ A2Þ ¼ PfX
y
1 2 ½r; x þ r
jFþ \ ð½0; x
 � ½0; y
Þ ¼ ;g

� PfFþ \ ð½0;x
 � ½0; y
Þ ¼ ;g

¼ PfX
y
1 2 ½r � x; r
g � e�xy

¼ e�xyðPfX
y
1Xr � xg � PfX

y
14rgÞ

¼ e�xy

Z y

0

aðvÞ
e�ðr�xÞv � e�rv

v
dv. ð58Þ

Inserting formulas (56)–(58) in (55), we get

Hðr; e;x; yÞ ¼ aðyÞð1� e�xyÞ þ e�xy 1�

Z e

0

aðsÞ
1� e�sðr�xÞ

s
ds

�
�

Z y

0

aðsÞ
e�sðr�xÞ � e�rs

s
ds

�
. ð59Þ
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We calculate the last integral in the following way:Z y

0

aðsÞ
e�sðr�xÞ � e�rs

s
ds ¼

Z y

0

aðsÞ
e�sðr�xÞ � 1

s
ds þ

Z y

0

aðsÞ
1� e�rs

s
ds

¼

Z e

0

aðsÞ
e�sðr�xÞ � 1

s
ds �

Z e

y

aðsÞ
e�sðr�xÞ � 1

s
ds

� ½aðsÞ
y0

¼

Z e

y

aðsÞ
1� e�sðr�xÞ

s
ds �

Z e

0

aðsÞ
1� e�sðr�xÞ

s
ds

þ 1� aðyÞ. ð60Þ

Combining equalities (59) and (60), we obtain Proposition 13. &

Proof of Theorem 1. Point (i) follows immediately from Propositions 7 and 10.
To prove point (ii), it suffices to demonstrate that

PfDeXtg ¼

e
le
aðeÞ2e�ðt�2rÞe if tX2r;

2

le

Z e

0

aðvÞ2e�ðt�rÞv dv � 1 if t 2 ½r; 2r
:

8>><>>: (61)

Using Proposition 7(ii) and (45), we have when t42r;

PfDeXtg ¼
aðeÞ
le

Z e

0

aðvÞe�rv dv � e�ðt�2rÞe

¼
aðeÞ
le

½vaðvÞ
e0 � e
�ðt�2rÞe

¼
e
le
aðeÞ2e�ðt�2rÞe.

It remains to calculate PfDeXtg when t 2 ½r; 2r
: Using Propositions 7(iii) and 13, we
obtain:

PfDeXtg ¼
1

le

Z e

0

aðvÞe�ðt�rÞv aðvÞ � e�ð2r�tÞv

Z e

v

aðsÞ
1� e�ðt�rÞs

s
ds

� �
dv

¼
1

le

Z e

0

aðvÞ2e�ðt�rÞv dv �
1

le

Z e

0

aðsÞ
1� e�ðt�rÞs

s

Z s

0

e�rvaðvÞdv

� �
ds

¼
1

le

Z e

0

aðvÞ2e�ðt�rÞv dv �
1

le

Z e

0

aðsÞ
1� e�ðt�rÞs

s
saðsÞds

¼
2

le

Z e

0

aðvÞ2e�ðt�rÞv dv � 1.

This completes the proof of equality (61).
We now generalize (ii) in determining the joint density of the couple

ðDe;LeÞ: Fixing tXr; s 2 ½0; e
; we use equality (19) of ðDe;LeÞ and apply Slivnyak’s
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formula (25) as in the proof of Lemma 6 to obtain that

PfDeXt;Lepsg ¼
1

le

Z s

0

Pfð0; vÞeAðFÞ; vð0;Le;vÞXtgdv.

Consequently, we get as in Proposition 7 that

PfDeXt;Lepsg ¼

Gðr; eÞ
le

Z s

0

Gðr; vÞ e�rv dv

� �
� e�ðt�2rÞe if tX2r;

1

le

Z s

0

Gðr; vÞHðr; e; 2r � t; vÞe�vðt�rÞ dv if t 2 ½r; 2r
:

8>>><>>>:
(62)

It then suffices to insert the expressions of G and H (see Propositions 10 and 13) into
(62) to deduce that

PfDeXt;Lepsg (63)

¼

aðeÞ
le

saðsÞe�ðt�2rÞe if tX2r;

1

le

Z s

0

aðvÞ2ð2e�ðt�rÞv � 1Þdv

�
saðsÞ
le

Z e

s

aðvÞ
1� e�ðt�rÞv

v
dv if t 2 ½r; 2r
:

8>>>>>>><>>>>>>>:
(64)

Points (iii) and (iv) of Theorem 1 are easy consequences of this last equality. &

Remark 14. (i) A similar formulation of points (i)–(ii) of Theorem 1 has been
obtained by Widom (see [21, p. 3893, results (37)–(39)]), through heuristic methods.
Besides, Coffman et al. [5,4] constructed a point process on a finite interval, by the
same erasing procedure as ours, and deduced analogous results by taking the limit
when the length of the interval goes to infinity. Their work mostly used analytic tools
such as Fourier transform and analytic functions.
(ii) Let us remark that the distribution of De has a decreasing density on ½r;þ1Þ;

with a transition at 2r: Since the distribution is of exponential type in the interval
½2r;þ1Þ; De has finite moments of any order. Applying Proposition 4, we obtain

1

NL

X
I2IL

jI jn�!EðDn
e Þ; when L ! þ1; nX1.

Besides, it is easy to verify that the first moment of De satisfies (20).

Using (24), we can prove easily that jI e0j has an explicit density.

Proposition 15. The law of jI e0j has a density jjI e0j
on ½r;þ1Þ such that

jjI e0j
ðxÞ ¼

e2aðeÞ2xe�ðx�2rÞe if x42r;

2x
R e
0 e�ðx�rÞvaðvÞ2v dv if rpxp2r:

(
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4. The law of the successive cracks on the positive half-line

Using stationarity of Le; we have determined some of its statistical characteristics
such as the distribution of the inter-crack distance. We would like to give an
enumerative description of the points in Le: It is actually more convenient to fix an
origin, namely 0, and to replace Le by Lþ

e (defined by (49)). We have already
considered the first crack position X e

1 and determined its distribution in Theorem 12.
Here we plan to go further, enumerating the point of Lþ

e as follows:

Lþ
e ¼ fX e

n; n 2 N�g,

where 0oX e
1oX e

2o � � �oX e
no � � � ; nX1:

Let Y e
n; nX1; be the positive real number such that

ðX e
n;Y

e
nÞ 2 Cþ \ ðRþ � ½0; e
Þ.

The aim of this section is the description of the distribution of fðX e
i ;Y

e
i Þ; 1pipng for

any nX1: A first answer is given by a recursive algorithm (see Theorems 16 and 17):
we compute the distribution of ðX e

1;Y
e
1Þ and the distribution of ðX e

iþ1;Y
e
iþ1Þ

conditionally on ðX e
1;Y

e
1; . . . ;X

e
i ;Y

e
i Þ; 1pipn � 1:We interpret this result by using a

Markov chain model (see Theorem 18) and we prove the convergence in law of the
couple ðX e

nþ1 � X e
n;Y

e
nÞ to ðDe;LeÞ (see Theorem 19).

We observe in particular that fX e
n; nX1g is not a renewal sequence, for instance

ðX e
2 � X e

1Þ is not independent of X e
1: However we prove (see Theorem 2) that

fX e
n; nX1g is a ‘‘conditional renewal process’’ (see Theorem 2 for a detailed

explanation of this expression).
Let us start with the density of ðX e

1;Y
e
1Þ:

Theorem 16. The law of the couple ðX e
1;Y

e
1Þ has a density jðX e

1;Y
e
1Þ

such that for every

u; v 2 R;

jðX e
1;Y

e
1Þ
ðu; vÞ ¼ ð1fu4rge

�ðu�rÞee�rv þ 1f0puprge
�uvÞaðvÞ1f0pvpeg. (65)

Proof. It suffices to prove that for every xX0 and 0pype:

PfX e
1Xx;Y e

1pyg ¼

y

e
aðyÞe�ðx�rÞe if x4r;

1� aðyÞ �
R y

0

aðvÞ
v

�ð1� e�xvÞdv þ
y

e
aðyÞ otherwise:

8>>>>><>>>>>:
(66)

We notice that

PfX e
1Xx;Y e

1pyg ¼ PfX e
1Xx;X e

1 ¼ X
y
1g

¼ PfX
y
1Xx;X e

1 ¼ X
y
1g

¼

Z þ1

x

PfX e
1 ¼ X

y
1jX

y
1 ¼ ugPfX

y
1 2 dug. ð67Þ
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Moreover, ðX e
1 ¼ X

y
1Þ if and only if there is no positive eraser in ð½0;X y

1
 � ½y; e
Þ;
which means that for every uX0;

PfX e
1 ¼ X

y
1jX

y
1 ¼ ug ¼

1 if upr;

PfF \ ½0; u � r
 � ½y; e
 ¼ ;g otherwise:

(
Since F is a Poisson point process,

PfX e
1 ¼ X

y
1jX

y
1 ¼ ug ¼

1 if upr;

e�ðu�rÞðe�yÞ otherwise:

�
(68)

Inserting equalities (51) and (68) in (67), we get the result (66), via (60). &

The following proposition provides the law of the couple ðX e
nþ1 � X e

n;Y
e
nþ1Þ

conditionally on ðX e
1;Y

e
1; . . . ;X

e
n;Y

e
nÞ:

Proposition 17. For every nX1; the distribution of the couple ðX e
nþ1 � X e

n;Y
e
nþ1Þ

conditionally on ðX e
1;Y

e
1; . . . ;X

e
n;Y

e
nÞ has a density yeðY e

n; �Þ:

yeðy; u; vÞ ¼ ½1fu42rg1f0pvpege
�rðyþvÞe�ðu�2rÞe

þ 1frpup2rgf1f0pvpyge
�ðu�rÞye�rv þ 1fyovpege

�rye�ðu�rÞvg

aðvÞ
aðyÞ

, ð69Þ

where y; v 2 ½0; e
 and uX0:

Proof. Let Zn ¼ ðX e
1;Y

e
1; . . . ;X

e
n;Y

e
nÞ and z ¼ ðx1; . . . ; xn�1;x; y1; . . . ; yn�1; yÞ where

0ox1o � � �oxn�1ox and y1; . . . ; yn�1; y 2 ½0; e
: It suffices to demonstrate

PfX e
nþ1 � X e

nXu;Y e
nþ1pvjZn ¼ zg

¼

e�ry

aðyÞ
v

e
aðvÞe�ðu�2rÞe if u42r;

ðe�ðu�rÞy � e�ryÞ
aðvÞv
aðyÞy

þ e�ry aðvÞv
aðyÞe

if rpup2r

and vpy;

e�ðu�rÞy �
e�ry

aðyÞ

Z v

y

ð1� e�ðu�rÞsÞ

�
if rpup2r

�
aðsÞ

s
ds þ aðvÞ 1�

v

e

� ��
and v4y:

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð70Þ

Our approach is based on the following properties:
(i) the distribution of bF ¼ T�X e

nðFþÞ \ ðRþÞ
2 conditionally on Zn is the same as the

distribution of Fþ conditionally on fFþ \ ð½0; r
 � ½0;Y e
n
Þ empty or erased

from the rightg:
(ii) ðX e

nþ1 � X e
n � r;Y e

nþ1Þ is the first point on the right of the point process
T�rðbFÞ \ ðRþÞ

2:



ARTICLE IN PRESS

P. Calka et al. / Stochastic Processes and their Applications 115 (2005) 983–10161006
Using points (i) and (ii) above, (47) and (54), we get

PfX e
nþ1 � X e

nXu;Y e
nþ1pv jZn ¼ zg

¼

PfFþ \ ð½0; r
 � ½0; y
Þ empty or erased from the right;

X e
1ðT

�rðFþÞÞXu � r;Y e
1ðT

�rðFþÞÞpvg

PfFþ \ ð½0; r
 � ½0; y
Þ empty or erased from the rightg

¼
1

aðyÞ

PfFþ \ ð½0; r
 � ½0; y
Þ empty or erased from the right;

X e
1ðT

�rðFþÞÞXu � r;Y e
1ðT

�rðFþÞÞpvg;
ð71Þ

where ðX e
1ðT

�rðFþÞÞ;Y
e
1ðT

�rðFþÞÞÞ is the first point on the right of the process
T�rðFþÞ \ ðRþÞ

2: In particular, ðX e
1ðT

�rðFþÞÞ;Y
e
1ðT

�rðFþÞÞÞ is distributed as
ðX e

1;Y
e
1Þ:

Case 1: u42r: We have that

fFþ \ ð½0; r
 � ½0; y
Þ empty or erased from the right;

X e
1ðT

�rðFþÞÞXu � r;Y e
1ðT

�rðFþÞÞpvg

¼ fFþ \ ð½0; r
 � ½0; y
Þ ¼ ;g \ fX e
1ðT

�rðFþÞÞXu � r;Y e
1ðT

�rðFþÞÞpvg,

the two events of the intersection being independent.
Using this remark, (71) and (66), we obtain

PfX e
nþ1 � X e

nXu;Y e
nþ1pvjZn ¼ zg

¼
1

aðyÞ
PfFþ \ ð½0; r
 � ½0; y
Þ ¼ ;g � PfX e

1Xu � r;Y e
1pvg

¼
e�ry

aðyÞ
v

e
aðvÞe�ðu�2rÞe. ð72Þ

Case 2: rpup2r:
The independence property is not satisfied, but ðX e

1ðT
�rðFþÞÞ;Y

e
1ðT

�rðFþÞÞÞ is still
distributed with density jðX e

1;Y
e
1Þ
given by (65). Then going back to (71), we get

PfX e
nþ1 � X e

nXu;Y e
nþ1pvjY n ¼ yg

¼
1

aðyÞ

Z þ1

u�r

dw

Z v

0

Aðw; t; yÞjðX e
1;Y

e
1Þ
ðw; tÞdt, ð73Þ

where for every wX0; 0py; tpe;

Aðw; t; yÞ ¼ PfFþ \ ð½0; r
 � ½0; y
Þ erased by the right jX e
1ðT

�rðFþÞÞ ¼ w,

Y e
1ðT

�rðFþÞÞ ¼ tg.

It remains to determine the function A. To this end, let us notice that ð½0; r
 � ½0; y
Þ
has a non-empty intersection with the domain of relaxation Rðw þ r; tÞ if and only if
wpr and tpy: Consequently, we obtain

Aðw; t; yÞ ¼
e�wy�ðr�wÞt if wpr and tpy;

e�ry otherwise:

(
(74)
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Inserting formulas (74) and (65) in (73), we deduce result (70), via (45), which
completes the Proof of Proposition 17. &

We explicit the distribution of fðX e
i ;Y

e
i Þ; 1pipng starting with the law of

fY e
i ; iX1g:

Theorem 18. ðY e
nÞnX1 is a homogeneous Markov chain such that:
(i)
 Y e
1 has a density jY e

1
such that

jY e
1
ðyÞ ¼

e�ry

e
þ
1� e�ry

y

� �
aðyÞ1½0;e
ðyÞ;
(ii)
 the transition kernel of fY e
n; nX1g admits a transition probability density PY ;eðy; �Þ

such that for every y; v 2 ½0; e
;

PY ;eðy; vÞ ¼ 1f0pvpeg
e�rðyþvÞ

e
þ 1f0pvpyg e

�rv 1� e�ry

y

�
þ1fyovpeg e

�ry 1� e�rv

v

�
aðvÞ
aðyÞ

; ð75Þ
(iii)
 the stationary law of ðY e
nÞnX1 is the distribution of Le (cf. (2));
(iv)
 conditionally on ðX e
1;Y

e
1; . . . ;X

e
n;Y

e
nÞ the r.v. ðX e

nþ1 � X e
nÞ has a density which

depends only on Y e
n and is equal to PDe ðY e

n; �Þ (where PDe ðy; �Þ is defined by (3)).
Proof. Points (i), (ii) and (iv) follow easily from Theorem 16 and Proposition 17. In
order to obtain (iii), it suffices to prove that for every v 2 ½0; e
;

PfLepvg ¼

Z e

0

PY ;eðy; vÞPfLe 2 dyg. (76)

Using (75) and (45), we have for any v 2 ½0; e
;Z e

0

PY ;eðy; vÞaðyÞ2 dy ¼ aðvÞ
e�rv

e

Z e

0

e�ryaðyÞdy þ e�rv

Z e

v

1� e�ry

y
aðyÞdy

�
þ

1� e�rv

v

Z v

0

e�ryaðyÞdy

�
¼ aðvÞ

e�rv

e
eaðeÞ þ e�rvðaðvÞ � aðeÞÞ þ

1� e�rv

v
vaðvÞ

� �
¼ aðvÞ2. ð77Þ

Combining (77) with (2), we obtain equality (76) which completes the Proof of
Theorem 18. &

Proposition 17 implies that ðX e
n;Y

e
nÞnX1 is a Markov chain. It seems natural to

investigate its limit distribution. More precisely, we have the following result.
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Theorem 19. The couple ðX e
nþ1 � X e

n;Y
e
nÞ converges in law when n ! þ1; and the

limit distribution coincides with the law of ðDe;LeÞ (see Theorem 1).

Proof. Let us begin with proving the convergence of the Markov chain ðY e
nÞnX1 to its

stationary distribution m; i.e. the distribution of Le:
The transition probability of ðY e

nÞnX1 has a density PY ;eðy; �Þ; y 2 ½0; e
 (see
Theorem 18(ii)) such that the function ðy; vÞ7�!PY ;eðy; vÞ is continuous and
everywhere positive on ð0; e
2: Consequently, following [6, Example 6.2. of Section
5], we deduce that ðY e

nÞnX1 is a Harris chain. Moreover, since we have proved the
existence of a stationary distribution (see Theorem 18(iii)), it is also recurrent (see [6,
Exercise 6.11 of Section 5]). An application of the beginning of Section 5.6.c of [6]
shows that ðY e

nÞnX1 is an aperiodic recurrent Harris chain. Consequently, applying
the convergence theorem for Harris chains (see [6, Theorem (6.8)]), we deduce that
ðY e

nÞnX1 converges to m in the sense of the total variation distance k � k (let us notice
that the note following Durrett’s theorem guarantees that the starting law of ðY e

nÞnX1

given by Theorem 18(i) satisfies the required hypothesis for the convergence). We
recall that the variation distance between two probability measures m1; m2 with
support in ½0; e
 is

km1 � m2k ¼ sup
f

Z
f dm1 �

Z
f dm2

���� ����,
where f belongs to the set of measurable functions defined on ½0; e
; with values in
½0; 1
: In particular, ðY e

nÞnX1 converges in distribution to m:
We now prove the convergence in distribution of ðX e

nþ1 � X e
n;Y

e
nÞ: Let us consider

a continuous bounded measurable function h : Rþ � ½0; e
�!R: Using Theorem
18(iv), we get for every nX1;

EfhðX e
nþ1 � X e

n;Y
e
nÞg ¼

Z e

0

Z þ1

0

hðx; yÞPDeðy; xÞdx

� �
PfY e

n 2 dyg. (78)

But y 7�!
Rþ1

0 hðx; yÞPDeðy; xÞdx is a bounded and continuous function, therefore

lim
n!þ1

EfhðX e
nþ1 � X e

n;Y
e
nÞg ¼

Z e

0

Z þ1

0

hðx; yÞPDe ðy; xÞdx

� �
PfLe 2 dyg. (79)

Using (iii) and (iv) of Theorem 1, we obtain that the right-hand side of (79) is equal
to EfhðDe;LeÞg: &

Thanks to Proposition 17, we are able to prove Theorem 2.

Proof of Theorem 2. (i) Using Theorem 16, it suffices to have

EfhðZ1; r
0
1Þ1B0

1
g ¼ PðB0

1Þ

Z
hðu; vÞjðX e

1;Y
e
1Þ
ðu; vÞdudv (80)
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for every measurable and bounded function h on R2: Taking the conditional
expectation of hðZ1;r

0
1Þ1B0

1
with respect to Z1;r

0
1; we have

EfhðZ1;r
0
1Þ1B0

1
g ¼ EfhðZ1;r

0
1Þe

�ðZ1^rÞr0
1g

¼ C

Z þ1

0

du

Z e

0

hðu; vÞð1½0;r
ðuÞe
�uv

þ 1ðr;þ1ÞðuÞe
�ðu�rÞee�rvÞaðvÞdv

¼ C

ZZ
hðu; vÞjðX e

1;Y
e
1Þ
ðu; vÞdudv,

where C is a positive constant. Consequently, we get (80).
(ii) (a) Let us first prove that ðX e

1;Y
e
1;X

e
2 � X e

1;Y
e
2Þ is distributed as the vector

ðZ1;r1; r þ Z2; r
0
2Þ conditioned on the event B1 \ B0

2; i.e.

EfgðZ1; r1Þhðr þ Z2;r
0
2Þ1B1

1B0
2
g ¼ KEfgðX e

1;Y
e
1ÞhðX

e
2 � X e

1;Y
e
2Þtg, (81)

where g and h are two bounded Borel functions defined on R2 and K is a positive
constant, independent from g and h. It is clear that (5) and (6) imply:

jr0 ðxÞ ¼
eR e

0 aðvÞdv
aðxÞjrðxÞ. (82)

Consequently, the left-hand side of (81) is equal (up to a multiplicative constant) to

E gðZ1; r
0
1Þhðr þ Z2;r2Þ

aðr2Þ
aðr01Þ

1B0
1
1eB2

� �
,

where eB2 ¼ fx2XðZ2 ^ rÞðr2 _ r01Þ þ rðr2 ^ r01Þg:
We now take the conditional expectation with respect to x1; Z1; r

0
1; Z2;r2 in the

previous expectation and we obtain:

EfgðZ1; r1Þhðr þ Z2;r
0
2Þ1B1

1B0
2
g

¼ K1E gðZ1;r
0
1Þhðr þ Z2;r2Þ

aðr2Þ
aðr01Þ

1B0
1
e�ðZ2^rÞðr2_r

0
1
Þ�rðr2^r

0
1
Þ

� �
. ð83Þ

Inserting densities (4) and (5) of Z2 and r2 in (83), we thus get

EfgðZ1; r1Þhðr þ Z2;r
0
2Þ1B1

1B0
2
g

¼ K1E gðZ1;r
0
1Þ1B0

1

Z þ1

r

du

Z e

0

hðu; vÞe�ððu�rÞ^rÞðv_r0
1
Þ�rðv^r0

1
Þ

�
�jZðu � rÞjrðvÞ

aðvÞ
aðr01Þ

dv

�
¼ K2E gðZ1;r

0
1Þ1B0

1

Z
R2

þ

hðu; vÞ½1fu42rg1f0pvpeg

(
�e�rðvþr0

1
Þe�ðu�2rÞe þ 1frpup2rg

� ð1f0pvpr0
1
ge

�ðu�rÞr0
1e�rv þ 1fr0

1
ovpege

�ðu�rÞve�rr0
1Þ


aðvÞ
aðr01Þ

du dv

�
. ð84Þ
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Moreover, using (69), we obtain that

EfgðZ1; r1Þhðr þ Z2;r
0
2Þ1B1

1B0
2
g

¼ K2E gðZ1;r
0
1Þ1B0

1

ZZ
hðu; vÞyeðr01; u; vÞdudv

� �
. ð85Þ

Let us recall that Point (i) shows that, up to a multiplicative constant, the right-hand
side of (85) is equal to

E gðX e
1;Y

e
1Þ

ZZ
hðu; vÞyeðX e

1; u; vÞdudv

� �
.

Using Proposition 17, we obtain that the expectation above is equal to

EfgðX e
1;Y

e
1ÞhðX

e
2 � X e

1;Y
e
2Þg,

which completes the proof of (81).
(b) Our next objective is to prove Point (ii) in the general case, i.e. that for any

nX2; the distribution of ðX e
1;Y

e
1; . . . ;X

e
n�1 � X e

n�2;Y
e
n�1;X

e
n � X e

n�1;Y
e
nÞ is the

distribution of ðZ1; r1; . . . ; r þ Zn�1;rn�1; r þ Zn;r
0
nÞ conditioned on the event B1 \

� � � \ Bn�1 \ B0
n: As in the case n ¼ 2; it is equivalent to show that

EfgðZ1; r1; r þ Z2; r2; . . . ; r þ Zn�1;rn�1Þhðr þ Zn;r
0
nÞ1
Tn�1

i¼1
Bi

1B0
n
g

¼ KEfgðX e
1;Y

e
1; . . . ;X

e
n�1 � X e

n�2;Y
e
n�1ÞhðX

e
n � X e

n�1;Y
e
nÞg, ð86Þ

where g (resp. h) is a bounded Borel function on R2n (resp. R2) and K is a constant
independent from g and h.
In much the same way as (85), we can obtain that for every nX2;

EfgðZ1; r1; r þ Z2; r2; . . . ; r þ Zn�1;rn�1Þhðr þ Zn;r
0
nÞ1
Tn�1

i¼1
Bi

1B0
n
g

¼ KE gðZ1; r1; r þ Z2;r2; . . . ; r þ Zn�1;r
0
n�1Þ1

Tn�2

i¼1
Bi

1B0
n�1

(

�

Z
R2

þ

hðu; vÞyeðr0n�1; u; vÞdudv

)
. ð87Þ

It remains to use a reasoning by induction to deduce (86) from (87) and Proposition
17. This completes the proof of Theorem 2. &

Remark 20. (1) We emphasize that Theorem 2 leads us to simulate to 2n-vector

Zn ¼ ðX e
1;Y

e
1;X

e
2 � X e

1;Y
e
2; . . . ;X

e
n � X e

n�1;Y
e
nÞ; nX1.

Let us consider

Z0
n ¼ ðZ1; r1; r þ Z2; . . . ; r þ Zn�1;rn�1; r þ Zn;r

0
nÞ; nX1.

We will denote by jZn
(resp. jZ0

n
) the density of Zn (resp. Z0

n).
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Since x1; . . . ; xn are independent exponential variables with mean 1, we have

P
\n�1
i¼1

Bi \ B0
njZ1; . . . ; Zn; r1; . . . ;rn�1; r

0
n

( )

¼ exp �
Xn�1
k¼1

½ðZk ^ rÞðrk _ rk�1Þ þ rðrk ^ rk�1Þ


 

� ½ðrn ^ rÞðr0n _ rn�1Þ þ rðr0n ^ rn�1Þ


!
. ð88Þ

Consequently, Theorem 2(ii) implies that

jZn
¼

1

PðCnÞ
e�GnjZ0

n
, (89)

where Gn is the positive function defined on ðRþÞ
2n by

Gnðx1; y1; . . . ;xn; ynÞ ¼ Aðx1; y1; 0Þ þ
Xn

i¼2

Aðxi � r; yi; yi�1Þ, (90)

with

Aðx; y; y0Þ ¼ ðx ^ rÞðy _ y0Þ þ rðy ^ y0Þ.

In particular, combining (88) with (90), we obtain

GnðZ1;r1; r þ Z2;r2; . . . ; r þ Zn�1; rn�1; r þ Zn;r
0
nÞ

¼ � ln P
\n�1
i¼1

Bi \ B0
njZ1; . . . ; Zn;r1; . . . ;rn�1;r

0
n

( ) !
a:s.

We may apply the Hit or Miss Monte–Carlo Method (see [19, Chapter 4]). More
precisely, we first simulate Z0

n ¼ o and keep it with probability p ¼ e�GnðoÞ:
Otherwise we simulate a new independent copy of Z0

n and so on.
Let us remark that this procedure is not on-line in the following sense: if the

algorithm has been applied to construct the first n points ðX e
i ;Y

e
i Þ; 1pipn; then

ðX e
nþ1;Y

e
nþ1Þ cannot be obtained directly. In fact, the whole procedure has to be

applied once more to provide the ðn þ 1Þ points ðX e
i ;Y

e
i Þ; 1pipðn þ 1Þ:

(2) Besides, the function Gn has a geometrical interpretation. Aðx; y; y0Þ is the area
of the union of two rectangles, i.e.

Aðx; y; y0Þ ¼

n½ð½0; ðx ^ rÞ
 � ½0; y0
Þ [ ð½x; x þ r
 � ½0; y
Þ
 if ypy0;

n½ð½0; r
 � ½0; y0
Þ [ ð½x þ r � ðx ^ rÞ;

x þ r
 � ½0; y
Þ
 else;

8><>: (91)

where n is the Lebesgue measure on R� Rþ:
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We deduce easily from (91) that

Gnðx1; y1; . . . ;xn; ynÞ ¼ n
[n
i¼1

Dðxi; yiÞ

 !
,

where

Dðx1; y1Þ ¼ ð½ð bx1 � rÞ _ 0; bx1 þ r
 � ½0; y1
ÞnRð bx2; y2Þ,

Dðxi; yiÞ ¼ ð½bxi � r; bxi þ r
 � ½0; yi
Þn½Rðdxi�1; yi�1Þ [ Rðdxiþ1; yiþ1Þ


if 2pipðn � 1Þ,

Dðxn; ynÞ ¼ ð½ bxn � r; bxn
 � ½0; yn
ÞnRðdxn�1; yn�1Þ,

Rðx; yÞ; ðx; yÞ 2 R� Rþ; is the set defined in (8) and with the convention bxi ¼Pi
k¼1xk; 1pipn:
By definition of the erasing procedure, the set

Sn
i¼1Dðxi; yiÞ is exactly the set of

points of ½0; bxn
 � Rþ which erase at least one of the points ðbxi; yiÞ; 1pipn and are
not erased by any of these n points. In other words, the set

Sn
i¼1Dðxi; yiÞ (denoted by

PEðx1; y1; . . . ;xn; ynÞ) is the domain of ‘‘potential erasers’’ of the points ðbxi; yiÞ;
1pipn (see Fig. 1). This geometrical interpretation provides us a more intuitive way
to rewrite Theorem 2: let us consider the sequences ðZiÞiX1; ðriÞiX1 and ðr0iÞ{X1 defined
as in Theorem 2 and a Poisson point process Fþ on Rþ � Rþ with intensity measure
1
ðRþÞ

2 ðx; yÞdxdy independent from the three sequences above. Then for every nX1;

ðX e
1;Y

e
1; ðX

e
2 � X e

1Þ;Y
e
2; . . . ; ðX

e
n � X e

n�1Þ;Y
e
nÞ
0

x

y

r

Fig. 1. Hachured domain of ‘‘potential erasers’’ of fðbxi; yiÞ; 1pip5g (black points).
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is distributed as ðZ1;r1; r þ Z2; r2; . . . ; r þ Zn�1;rn�1; r þ Zn;r
0
nÞ conditioned on the

event

fFþ \PEðZ1; r1; r þ Z2; r2; . . . ; r þ Zn;r
0
nÞ ¼ ;g.

5. The saturation case

In this section, the saturation model L1 is directly defined and we prove that L1

is the limiting process of Le when e ! þ1: As in Sections 2 and 4, the following
quantities related to L1 are introduced: l1; D1; L1; jI10 j and ðX1

i ;Y1
i Þ; iX1:Most

of the calculations done in the unsaturated case (i.e. Le) are valid in the saturated
case (i.e. L1) as well. Moreover, we obtain the convergence of le; De; Le; X e

1; . . . ; to
their analogues for L1:
More precisely, let us consider the process

L1 ¼ fx 2 R; 9yX0jðx; yÞ 2 Cg,

where C is the point process on R� Rþ defined in the first section. L1

is a saturation model in the sense that no new crack can be added. Con-
sequently, two successive points of L1 are separated by at least a distance r and at
most 2r:
As in the unsaturated case, l1; D1; L1 and jI10 j are, respectively, defined

as the mean number of points of L1 per unit length, the typical inter-crack
distance of L1 in the Palm sense, the typical stress level of a point of L1 and
the length of the smallest interval containing the origin and bounded by two
points of L1: The calculations of Sections 2 and 3 still hold when e is replaced
by þ1: Consequently, the analogues of Theorem 1 and Proposition 15 can be
obtained:

Theorem 21. We have:
(i)
 l1 ¼
Rþ1

0
aðvÞ2 dv;
(ii)
 (a) The distribution of D1 has a density jD1
given by

jD1
ðxÞ ¼

2

l1
1½r;2r
ðxÞ

Z þ1

0

e�ðx�rÞvvaðvÞ2 dv; (92)

(b) The two-dimensional r.v. ðD1;L1Þ has the following density:

jðD1 ;L1Þðy; uÞ ¼ jL1
ðyÞPD1ðy; uÞ, (93)

where jL1
(resp. PD1ðy; �Þ) is the density of L1 (resp. the density of D1

conditionally on L1 ¼ y) and

jL1
ðyÞ ¼

1

l1
aðyÞ21Rþ

ðyÞ, (94)
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PD1ðy; uÞ ¼ 1frpup2rg ye�ðu�rÞy þ
e�ry

aðyÞ

Z þ1

y

e�ðu�rÞvaðvÞdv

� �
; (95)
(iii)
 The distribution of jI10 j has a density jjI10 j given by

jjI10 jðxÞ ¼ 2x

Z þ1

0

e�ðx�rÞvvaðvÞ2 dv � 1½r;2r
ðxÞ. (96)
Remark 22. (i) In a different theoretical context, Rényi gave an equivalent
formulation of the point (i) in [18] (see result (0.10)) and he estimated that the
mean crack number at saturation is approximately 0.748 (for r ¼ 1). To our
knowledge, the other results of Theorem 23 are new.
(ii) Let us notice that the distribution of D1 has a decreasing density on ½r; 2r
 and

as for (20), by an easy calculation, we have

ED1 ¼
1

l1
.

We see at once that Le converges in law [15] to L1 and le tends to l1 when
e ! þ1: Moreover, we have the following:

Theorem 23. When e goes to infinity (saturation), ðDe;LeÞ (resp. jI e0j) converges in

distribution to ðD1;L1Þ: (resp. jI10 j).

Proof. Let us investigate the convergence of PfDeXt;Lepsg; tXr; sX0; when e !
þ1: We notice that

aðtÞ �
t!þ1

a0
t
, (97)

where

a0 ¼ ð1=rÞ exp �

Z 1

0

1� e�s

s
ds þ

Z þ1

1

e�s

s
ds

� �
.

Combining Theorem 1(ii) with (97), we obtain that

PfDeX2rg ¼
e
le

aðeÞ2 �!
e!þ1

0.

It remains to prove that for any t 2 ½r; 2r
 and sX0; PfDeXt;Lepsg converges to
PfD1Xt;L1psg which is clear from (63) and (93).
The same method holds for the convergence of jI e0j: &

Let us define in the same way as L1 the one-sided process Lþ
1 of the cracks on the

positive half-line. X1
1 ; . . . ;X1

n ; . . . denote the successive crack positions of this
process and Y1

1 ; . . . ;Y1
n ; . . . their corresponding stress levels. Similarly to Section 4,

we are able to determine the joint distribution of

fðX1
i ;Y1

i Þ; 1pipng; nX1.
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Theorem 24. (i) ðX1
1 ;Y1

1 Þ is a two-dimensional r.v. with density:

jðX1
1 ;Y1

1 Þðu; vÞ ¼ e�uvaðvÞ1f0puprg1fvX0g;

(ii) Conditionally on ðX1
1 ; . . . ;X1

n ;Y1
1 ; . . . ;Y1

n Þ; the couple ðX1
nþ1 � X1

n ;Y1
nþ1Þ

has a density y1ðY1
n ; �Þ such that for every y; u; vX0:

y1ðy; u; vÞ ¼ ðe�ðu�rÞye�rv1f0pvpyg þ e�rye�ðu�rÞv1fv4ygÞ
aðvÞ
aðyÞ

1frpup2rg.

Remark 25. (i) Since the process Lþ
1 is a saturation model, we obviously have

X1
1 pr and ðX1

nþ1 � X1
n Þ 2 ½r; 2r
; 8nX1 a:s.

However, we are not able to prove, as we did in Theorem 2, that ðX1
n ÞnX1 is a

‘‘conditional renewal process’’.
(ii) As in the non-saturated case, it suffices to have the law of ðX1

1 ;Y1
1 Þ on

the one hand and the law of ðY1
n ÞnX1 on the other to determine the positions

ðX1
n ÞnX1:
(iii) It is immediate that the sequence ðX e

i ;Y
e
i ÞiX1 converges in distribution to

ðX1
i ;Y1

i ÞiX1:

Theorem 18 may be easily generalized to the saturated case in the following way:

Theorem 26. ðY1
n ÞnX1 is a homogeneous Markov chain such that:
(i)
 Y1
1 has a density jY1

1
such that

jY1
1
ðyÞ ¼

1� e�ry

y
aðyÞ1Rþ

ðyÞ;
(ii)
 the law of Y1
nþ1 conditionally on fY1

n ¼ yg; yX0; is independent from n and has a

density PY ;1ðy; �Þ such that for every vX0;

PY ;1ðy; vÞ ¼ 1f0pvpygð1� e�ryÞ
e�rv

y
þ 1fyovge

�ry 1� e�rv

v

� �
aðvÞ
aðyÞ

;

(iii)
 the stationary law of ðY1
n ÞnX1 is the distribution of L1; with density given by (94);
(iv)
 conditionally on ðX1
1 ;Y1

1 ; . . . ;X1
n ;Y1

n Þ; the distribution of the r.v. ðX1
nþ1 � X1

n Þ

has a density which only depends on Y1
n and is equal to PD1ðY1

n ; �Þ (where

PD1ðy; �Þ is given by (95)).
Finally, Theorem 19 is generalized to the saturated case.

Theorem 27. The couple ðX1
nþ1 � X1

n ;Y1
n Þ converges in law when n ! þ1; and the

limit distribution is the law of ðD1;L1Þ (provided by (93)).
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