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Abstract

The homogeneous Dirichlet boundary value problem

uit � Dui ¼
Yn

j¼1

u
pij

j ; i ¼ 1; 2;y; n

in a bounded domain OCRN is considered, where pijX0 ð1pi; jpnÞ are constants. Denote by

I the identity matrix and P ¼ ðpijÞ; which is assumed to be irreducible. We find out that

whether or not I � P is a so-called M-matrix plays a fundamental role in the blow-up

theorems.
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1. Introduction

Let OCRN be a bounded domain with smooth boundary @O: Denote u ¼
ðu1; u2;y; unÞ and

f ðuÞ ¼
Yn

j¼1

u
p1j

j ;
Yn

j¼1

u
p2j

j ;y;
Yn

j¼1

u
pnj

j

 !
;

*Corresponding author.

E-mail address: lieyuxiang@yahoo.com.cn (Y. Li).

0022-0396/03/$ - see front matter r 2002 Elsevier Science (USA). All rights reserved.

PII: S 0 0 2 2 - 0 3 9 6 ( 0 2 ) 0 0 0 7 5 - X

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81123376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


where pijX0 ð1pi; jpnÞ are constants. We shall consider in this paper the following

Dirichlet problem:

ut ¼ Duþ f ðuÞ; xAO; t40;

uj@O ¼ 0; t40;

uðx; 0Þ ¼ u0ðxÞ; xAO;

ð1Þ

where

u0ðxÞ ¼ ðu10ðxÞ; u20ðxÞ;y; un0ðxÞÞ is a continuous;

positive in O and bounded vector function: ð2Þ

Such a system constitutes a simple example of a reaction–diffusion system exhibiting
a nontrivial coupling on the unknowns u1ðx; tÞ; u2ðx; tÞ;y; unðx; tÞ: These can be
thought of as the temperatures of n substances which constitute a combustible
mixture, where heat release is described by the power laws on the right-hand side of
(1); see [2].

This paper is mainly concerned with the question of the lifespan of solutions of (1).
To this end, we define

jjuðtÞjj ¼
Xn

i¼1

jjuið�; tÞjj
N
;

then we shall say that u blows up in a time ToN if

lim sup
t-T

jjuðtÞjj ¼ N:

When n ¼ 1; (1) has been studied extensively by many authors; see
[5,8,12,14,17,18,20] and the references therein.

For the reaction–diffusion systems involving two components, the questions about
when, where and how blow-up occurs have all been investigated in the past two
decades. Several interesting blow-up conditions are suggested; see [3,7–
10,15,16,20,27] and the references therein. Friedman and Giga [13] also obtained a
single-point blow-up for semilinear parabolic systems under some conditions.
Recently, the blow-up rate is estimated by several authors assuming varies of
conditions on the matrix P and initial data; see [1,6,26,28] and the references therein.

Parabolic systems involving n components have appeared in the literature; see
[11,29].

In this paper we shall investigate the blow-up conditions of (1) with n components.
To proceed further, we need some concepts from the theory of M-matrices. First we
introduce some symbols, following the book [4]. AX0 if each elements of the vector
or matrix A is nonnegative. A40 if AX0 and at least one element is positive. Ab0 if
each element is positive. Similarly AbB if A � Bb0:
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Definition 1.1 (See Berman and Plemmons [4, Definition 1.2, pp. 27]). An n � n

matrix A is reducible if for some permutation matrix Q

QAQt ¼
B 0

C D

" #
;

where B and C are square matrices and Qt is the transpose of Q: Otherwise, A is
irreducible.

Throughout this paper, P ¼ ðpijÞ is assumed to be irreducible, since if not the case,

system (1) can be reduced to two subsystems with one being not coupled with the
other.

The so-called M-matrices play a fundamental role in the blow-up theorems.
Following [4], we give its definition.

Definition 1.2 (See Berman and Plemmons [4, Definition 1.2, pp. 133]). Any matrix
A is called an M-matrix if A can be expressed in the form

A ¼ sI � B; s40; BX0 ð3Þ

with sXrðBÞ; the spectral radius of B: If s4rðBÞ; A is called a nonsingular M-
matrix.

Let I be the identity matrix. Our main result is the following theorem.

Theorem 1.1. (i) If I � P is an M-matrix, then all solutions of (1) are global.
(ii) If I � P is not an M-matrix, then there exist both nontrivial global solutions and

nonglobal solutions of (1).

We would like to point out that, by introducing the M-matrix, the blow-up
theorem of the semilinear parabolic system has a consistent and concise form.

In [9], the authors studied the blow-up conditions for the system (1) with n ¼ 2:
They proved that:

(a) If p1141 or p2241 or p12p214ð1� p11Þð1� p22Þ; (1) admits both global and
nonglobal solutions.

(b) If p11p1; p22p1 and p12p21pð1� p11Þð1� p22Þ; all solutions of (1) are global.

In fact, by Theorem 2.3 in the next section, under the conditions of (b), I � P is an
M-matrix. So our theorem recovers their results.

Concerning the blow-up properties of the solutions of (1) with n ¼ 2; generally,
the eigenfunction method is applied; see [7,10,27] and the references therein. In
[9,27], a sub-solution technique is present, but their methods seemed to work only for
systems with two components.

As to the general problem (1), it seems difficult for the eigenfunction method to
work. In this paper we use the classical super- and sub-solution technique combining
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with the basic properties of M-matrices to give a complete picture of the blow-up
conditions. The sub-solution we construct is some powers of the function

v ¼ wðrÞ
T � wsðrÞt; ð4Þ

where

wðrÞ ¼ 1

2
1þ cos

pr

R

� �
:

For the local existence, uniqueness and comparison principle we refer to [9,
Theorem 1.1, Remark 2.6; 10, Lemma 2.2] and [19, Theorem VII.7.1]. For the sake
of convenience we state the comparison theorem here.

Lemma 1.1. Let %u and u be a pair of super- and sub-solution in a cylinder OT ¼
O� ð0;TÞ with T40 and satisfy

%ut � D%u� f ð%uÞX0Xut � Du� f ðuÞ; ðx; tÞAOT ;

%uj@Obuj@OX0; 0otoT ;

%uðx; 0Þbuðx; 0ÞX0; xAO:

Then

%uðx; tÞXuðx; tÞ; ðx; tÞAOT :

In the next section, we collect some properties of M-matrices as required. The last
section proves our theorem.

2. Several results of M-matrices

M-matrices have important applications, for instance, in iterative methods in
numerical analysis, in input–output analysis in economics and in the analysis of
Markov chains. For a detailed discussion, see Chapter 7–10 in the book by Berman
and Plemmons [4], also see [22,23]. In this paper we will demonstrate the relationship
between M-matrices and the blow-up properties for the general reaction–diffusion
systems.

M-matrices have close relation to the nonnegative matrices. First, we state the
classical Perron–Frobenius theorem for nonnegative matrices.

Theorem 2.1 (See Berman and Plemmons [4, Theorem 1.4, p. 27]). (a) If A is a

positive matrix, then rðAÞ; the spectral radius of A; is a simple eigenvalue, greater than

the magnitude of any other eigenvalue.
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(b) If AX0 is irreducible, then rðAÞ is a simple eigenvalue, and A has a positive

eigenvector x corresponding to rðAÞ:

In [4], the authors collected 50 equivalent conditions of nonsingular M-matrices.
Here are some of them.

Theorem 2.2 (See Berman and Plemmons [4, A1; p. 134; I27; p. 136]). The following

three statements are equivalent:

(a) A is a nonsingular M-matrix.
(b) All of the principal minors of A is positive.
(c) A is semi-positive; that is, there exists xb0 such that Axb0:

For the general M-matrices we also have similar equivalent conditions.

Theorem 2.3 (See Berman and Plemmons [4, A1; p. 149]). The following two

statements are equivalent:

(a) A is an M-matrix.
(b) All of the principal minors of A is nonnegative.

The singular, irreducible M-matrix plays a critical role in the proof of Theorem
1.1. The following theorem concerns with such matrices.

Theorem 2.4 (See Berman and Plemmons [4, Theorem 4.16, p. 156]). Let A is a

singular, irreducible M-matrix of order n: Then

(a) A has rank n � 1:
(b) There exists a vector xb0 such that Ax ¼ 0:
(c) Each principal sub-matrix of A other than A itself is a nonsingular M-matrix.

Since I � P is not always an M-matrix, the properties of nonM-matrices of the
form (3) are used in our argument.

Theorem 2.5. Assume that A is an irreducible nonM-matrix of the form (3). Then

(a) sorðBÞ:
(b) There exists a vector xb0 such that Ax50:

Proof. (a) follows directly from the definition of M-matrices. Now we prove (b).
Since that A is irreducible is equivalent to that B is irreducible, by Theorem 2.1(b),
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there exists a positive vector x such that Bx ¼ rðBÞx: Hence
Ax ¼ ðsI � BÞx ¼ ðs � rðBÞÞx50: &

3. Proof of Theorem 1.1

We divide the argument into three lemmata. In the following lemmata the
eigenvalue problem

�Dj ¼ lj; xAO1; jj@O1
¼ 0 ð5Þ

plays a crucial role, where the bounded domain O1**O: Denote by l1 the first
eigenvalue and by jðxÞ the corresponding eigenfunction.

Lemma 3.1. If I � P is a nonsingular M-matrix, then all solutions of (1) are globally

bounded.

Proof. Let jðxÞ be the first eigenfunction of (5) with min %O jðxÞ ¼ 1: Denote F ¼
maxO1

jðxÞ: Let c ¼ ðc1; c2;y; cnÞ be the positive vector asserted in Theorem 2.2(c).

Clearly we can choose cip1 for all 1pipn: And we have

ðI � PÞcb0: ð6Þ

Put

%u ¼ ððkjÞc1 ; ðkjÞc2 ;y; ðkjÞcnÞ in O; ð7Þ

where k is a large constant to be fixed later. Then a routine computation yields

D %ui þ
Yn

j¼1

%u
pij

j

p� l1cik
ci þ k

Pn

j¼1
pijcjF

Pn

j¼1
pijcj ð8Þ

for all 1pipn: It follows from (2) and(6) that k can be chosen so large that

D%uþ f ð%uÞp0 in O

and

%uðxÞbu0ðxÞ in O:

The comparison principle implies that uðx; tÞp%uðxÞ for all xAO and t40: &

The following lemma deals with the case where I � P is a singular M-matrix.
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Lemma 3.2. If I � P is a singular M-matrix, also all solutions of (1) exist globally.

Proof. Let c be the positive vector in Theorem 2.4(b). Then

ðI � PÞc ¼ 0:

Also let cip1 for all 1pipn: Put

%u ¼ ððkertjÞc1 ; ðkertjÞc2 ;y; ðkertjÞcnÞ;

where r ¼ maxif1=cig and jðxÞ is the first eigenfunction of (5). Then we have

%uit � D %ui �
Yn

j¼1

%u
pij

j Xl1cik
ci eci tjci40 in O� ð0;NÞ

for all 1pipn: Choose k sufficiently large that %uðx; 0Þbu0ðxÞ in O: Thus the
comparison principle implies this lemma. &

Finally, we consider the case where I � P is not an M-matrix.

Lemma 3.3. Assume that I � P is not an M-matrix. Then

(a) Solutions of (1) with small initial data exist globally.
(b) Solutions of (1) with large initial data become infinite in finite time.

Proof. For (a) to hold, the proof is very similar to that of Lemma 3.1. But here we
choose c to be the positive vector in Theorem 2.5(b) with cip1 for all 1pipn and we
have

ðI � PÞc50: ð9Þ

Choose %u in (7) and hence (8) holds. Now from (9), k can be chosen so small that

D%uþ f ð%uÞp0 in O:

For such a small constant k40; let u0ðxÞ be small that %uðxÞbu0ðxÞ in O: Then %uðxÞ is
a super-solution of (1).

That (b) holds requires some more details. We shall construct an unbounded self-
similar sub-solution to complete the proof. For the detailed discussion of self-similar
sub-solutions, we refer to [24,25]. But here the self-similar sub-solution has a
different form; see [21]. Without loss of generality, we may assume that 0AO; then
there exists a ball BRð0ÞCCO: Let

wðrÞ ¼ 1

2
1þ cos

pr

R

� �
; 0proR:
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Then

�Dw ¼ p
2R

p
R
cos

pr

R
þ n � 1

r
sin

pr

R


 �
;

hence there exists a unique r0Að0;RÞ such that

�Dwp0 for r0proR;

0p� Dwp
np2

2R2
and wXcos2

pr0

2R
for 0pror0: ð10Þ

Let

Vðr; tÞ ¼ T � wsðrÞt; 0otoT ;

where TAð0; 1Þ is small and s40 is large to be fixed later. Choose c as in (a) with

ciX1 and
Pn

j¼1 pijci4ci þ 1 for all 1pipn: This can be done according to (9). Put

u ¼ w

V

� �c1
;

w

V

� �c2
;y;

w

V

� �cn


 �
in BRð0Þ � ð0;TÞ:

Then a routine computation yields

%
uit � D

%
ui �

Yn

j¼1
%
u

pij

j

p
ciw

ciþs

V 1þci
þ
ð1þ sÞcið�DwÞþ

V1þci
� w

Pn

j¼1
pijcj

V

Pn

j¼1
pijcj

;

where hþ ¼ maxfh; 0g: Fix s such that ci þ s4
Pn

j¼1 pijcj for all 1pipn: From (10),

for r0proR; we have

%
uit � D

%
ui �

Yn

j¼1
%
u

pij

j

p
ciw

ciþs

V 1þci
� w

Pn

j¼1
pijcj

V

Pn

j¼1
pijcj

p0

for all 1pipn if To1 is sufficiently small. For 0pror0; we have

%
uit � D

%
ui �

Yn

j¼1
%
u

pij

j

p 1þ ð1þ sÞnp2

2R2


 �
ci

V1þci
�
ðcos2pr0

2R
Þ
Pn

j¼1
pijcj

V

Pn

j¼1
pijcj

p0
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for all 1pipn if also To1 is sufficiently small. Choose u0ðxÞ so large that
u0ðxÞbuðx; 0Þ in BRð0Þ: Since uðx; tÞb0 in BRð0Þ � ð0;TÞ; applying the comparison
theorem, uðx; tÞ must become infinite before T : Thus the proof is completed. &
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