
Performance Improvements for a Large-Scale Geological

Simulation

David Apostal14, Kyle Foerster24, Travis Desell14, and William Gosnold34

1 Department of Computer Science
2 Department of Electrical Engineering

3 Harold Hamm School of Geology and Geological Engineering
4 University of North Dakota, Grand Forks, ND 58203, USA

Abstract

Geological models have been successfully used to identify and study geothermal energy re-
sources. Many computer simulations based on these models are data-intensive applications.
Large-scale geological simulations require high performance computing (HPC) techniques to
run within reasonable time constraints and performance levels. One research area that can
benefit greatly from HPC techniques is the modeling of heat flow beneath the Earth’s surface.
This paper describes the application of HPC techniques to increase the scale of research with a
well-established geological model. Recently, a serial C++ application based on this geological
model was ported to a parallel HPC applications using MPI. An area of focus was to increase the
performance of the MPI version to enable state or regional scale simulations using large num-
bers of processors. First, synchronous communications among MPI processes was replaced by
overlapping communication and computation (asynchronous communication). Asynchronous
communication improved performance over synchronous communications by averages of 28%
using 56 cores in one environment and 46% using 56 cores in another. Second, an approach for
load balancing involving repartitioning the data at the start of the program resulted in runtime
performance improvements of 32% using 48 cores in the first environment and 14% using 24
cores in the second when compared to the asynchronous version. An additional feature, model-
ing of erosion, was also added to the MPI code base. The performance improvement techniques
under erosion were less effective.

Keywords:

Contents

1 Introduction 257

2 Related Work 259

Procedia Computer Science

Volume 29, 2014, Pages 256–269

ICCS 2014. 14th International Conference on Computational Science

256 Selection and peer-review under responsibility of the Scientific Programme Committee of ICCS 2014
c© The Authors. Published by Elsevier B.V.

doi: 10.1016/j.procs.2014.05.023

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81123342?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.023&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.procs.2014.05.023&domain=pdf

3 Approach 260
3.1 Asynchronous MPI Implementation . 260
3.2 Initial Data Partitioning . 260
3.3 Erosion . 263

4 Results 263
4.1 Experimental Testbed . 263
4.2 Small 3-D Results . 264
4.3 Medium 3-D Results . 265
4.4 Large 3-D Results . 265
4.5 Data Partitioning Results . 265
4.6 Erosion Results . 266

5 Conclusion 268

1 Introduction

Current physical technology is incapable of probing physical phenomena to sufficient depths in
the Earth’s crust to accurately develop geological models, especially for gravitational, magnetic,
electrical and thermal potential fields. The challenge with both forward and inverse modeling
of unknown sources for potential fields is that a large number of source configurations can
yield nearly identical results. One dimensional and 2-D models in particular can yield invalid
results even with reasonable assumptions on key parameters. Models of the Earth’s internal
heat can be further complicated by transient signals due to ground water convection on local
and regional scales, magma intrusion, crystallization and cooling at different depths, variation
in the distribution of radioactive heat sources and climate driven changes in ground surface
temperature. One of the most useful tools available to the geological community is the adoption
of an adequate simulation that can process and evaluate the efficacy of geothermal systems,
with particular concern being simulations at a state or regional scale.

There are numerous simulation models used in geothermal studies. This work extends a
well-established simulation model that has been used at the University of North Dakota [5,
7, 14, 8]. This model performs a finite-difference heat flow simulation with convection and
conduction. The model can be used to study a 2-D or 3-D geologic region. Several characteristics
of the materials in the region are considered when measuring heat flow. The simulator that
implements this model divides the region into cells and uses the current temperature of each
cell to calculate the temperatures of each cell at the next timestep. Calculations for conduction
require more computations than the calculations for convection. A Fortran implementation
was recently ported to C++ to allow for easier maintenance and improvement of the program.
While converting the program to C++, a number of enhancements were made to the application
and the geological model. Some of the enhancements include:

• increasing the number of allowed material properties from eight to up to 99,

• incorporating OpenGL for a better visual representation of the simulation and the intro-
duction of 3-D visualization,

• and expanding the geological model from two dimensions to three dimensions which allows
for simulations with greater detail of larger areas.

With the intent of running simulations on a state or regional scale, multiple versions of
the program were implemented to take advantage of HPC environments such as MPI [16]. A

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

257

Figure 1: Imbalance caused by conduction operations.

synchronous MPI version of the program was implemented and tested on a HPC cluster using
28 Sun Microsystems x2200 compute nodes. The synchronous MPI version demonstrated 24x
speedup over the serial C++ version of the program.

However, there was a problem with the synchronous communication, where the processes
are blocked from performing any computations when sending data to or receiving data from
another process. In the geology simulation conduction and convection operations require that
results for each cell be communicated with adjacent cells at the end of each time step. With
multiple conduction and convection loops per time step, this can result in large communications
latencies over the course of a simulation, particularly when the sending and receiving processes
are running on separate physical processors.

To reduce latencies associated with synchronous communication, the MPI implementa-
tion was modified to use asynchronous communication. Asynchronous communication enables
greater overlapping of communication and computation. Asynchronous communication im-
proved performance by an average of upto 46% using 48 cores over synchronous communication.

Another source of latency occurs when the work load associated with conduction and con-
vection processing is not evenly distributed among processes. Processes with less work have
to wait for other processes. An analysis of the asynchronous simulation application using an
input file with a mostly balanced load of conduction and convection operations found differences
in wait times for both conduction and convection. The amount of time a process is waiting
corresponds to the time another process takes to perform calculations and return the results of
those calculations. The longest wait times were 2.35x and 2.9x longer than the shortest wait
times for conduction and convection operations respectively. The variations in wait times across
processes for conduction is shown in Figure 1. Figure 2 shows the imbalance across processes
for convection.

Repartitioning the data at the start of the program, or semi-static load balancing, was also
used to improve the geology simulation. Two similar approaches were implemented. These
approaches are based on the distribution of conduction and convection operations throughout
the region of study. A scoring system for evaluating each approach helps to select how the data
will be divided among the processes. Average gains of 26% using 48 cores and 14% using 56
cores in separate environments were observed. The repartitioning approaches should only be
applied in cases where the number of conduction and convection operations performed by each
process is consistent throughout the simulation.

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

258

Figure 2: Convection is uneven across processes.

2 Related Work

Computer applications can achieve reductions in execution times by dividing the program in
ways so that different tasks execute simultaneously on different processors, by dividing the data
across multiple processors, or some combination of both task and data division. This section
describes several approaches to improving performance with load balancing. Static load balanc-
ing assigns a distribution of work to each process. Semi-static load balancing estimates the cost
of different data distributions at program initialization and attempts to select a distribution
that will perform well. The repartitioning of data described in this paper falls into this cate-
gory. Dynamic load balancing monitors system performance and redistributes the load during
runtime.

There have been several studies involving approaches for partitioning large graphs. Leland et
al. showed that static load balancing algorithms can be effective when applied appropriately
to the right problem and computing environment [13]. For example, a partition method that
causes a large amount of communication impacts performance less in a computation-bound
problem.

Initial partitioning of large data models for power or water system equipment has been
studied by Capko et al. The authors identified an algorithm for initial partitioning when the
network graph is disjoint [4]. The geology simulator does not process disjoint graphs, but the
grid representing the region being simulated can easily exceed millions of cells.

Meyer et al. developed a method for measuring the computational cost associated with read
accesses needed to render images of geological data. With the authors’ approach, system load
is measured as a single integral of the cost function rather than a sum of a series [15]. They
describe their approach to semi-static and dynamic methods of load balancing.

PREMA is a system that enables dynamic load balancing in the context of applications
that are asynchronous and highly adaptive. It monitors the performance of physical processors.
PREMA uses mobile objects to move tasks and data to another processor when load imbalances
are detected [2]. PREMA has been shown to perform well compared to other dynamic load
balancing systems ”in terms of minimizing idle cycles due to workload imbalances [3]”. The wait
times in Figures 1 and 2 of the geology simulator correspond to the idle cycles in PREMA. The
geology simulator is not asynchronous but is, when modeling erosion, highly adaptive because
erosion effectively eliminates conduction and convection operations.

A different approach to dynamic load balancing is Adaptive MPI. Where PREMA is a
system on which one can use different MPI implementations, Adaptive MPI is a customized
implementation of MPI [9]. Adaptive MPI provides a familiar programming environment and

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

259

Figure 3: Synchronous Communication for Conduction

integrates with a load balancing framework called Charm++ [12]. Like PREMA, Adaptive
MPI/Charm++ use mobile objects to migrate MPI threads from one processor to another.
Both also can use multiple virtual MPI processes per physical processor in order to maximize
performance by task switching when a process is idle during communication.

3 Approach

3.1 Asynchronous MPI Implementation

The initial MPI implementation used synchronous communications as shown in Figure 3. To
improve the MPI version overlapping of communication and computation using asynchronous
communication was implemented by dividing the data cells into two areas: edge cells and non-
edge cells. The results of computations for edge cells must be communicated to another process
at the end of each simulation time step. The overlapping of communication and computation
is achieved by first calculating and updating the edge cells and then sending them with asyn-
chronous MPI send and receive functions. While a process is waiting for the asynchronous
communication to finish, it finishes performing calculations on all non-edge cells. Once the
process finishes updating all of the non-edge cells, it makes sure the send and receive operations
have completed by calling the MPI Waitall function to verify that the asynchronous commu-
nication has finished. An example of overlapping the communication and computation of the
program is shown in Figure 4. This process demonstrates the greatest degree of performance
when the computation times are greater than or equal to communication times. This allows for
the largest amount of overlapping of communication and computation and produces the largest
performance gain when compared to the synchronous version of the program.

3.2 Initial Data Partitioning

The MPI-based simulator divided rows of data evenly among the available processes. Each
process performed computations on a contiguous block of the input file. Each block had ap-
proximately the same number of rows. For example, if the simulator processed an input file
with 80 rows of data on a cluster with four processors, each processor processed a block of 20
contiguous rows of data.

However, this approach does not consider the number of conduction and convection opera-
tions indicated by individual rows in the input file.

Consider the example distribution of conduction and convection operations shown in Table 1.
The table shows the total combined number of conduction and convection operations in each

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

260

Figure 4: Asynchronous Communication for Conduction

row of an input file. With this input and the original approach to work load distribution, the
load would be divided among four processes as shown in Table 2. The rank 1 process has
nearly four times more load than the rank 0 process. More analysis of the simulator input files
is needed in order to create a more even division of load.

Table 1: Example Load Distribution in an Input File

Load 1 2 4 9 9 9 6 7 4 4 2 1

Row 0 1 2 3 4 5 6 7 8 9 10 11

Table 2: Load Balance
Load 7 27 17 7

Rank 0 1 2 3

3.2.1 Constraints

The geology simulation application has a number of constraints with respect to how the data
is divided and distributed. Informally, each block of data must be contiguous and not overlap
with any other block. Also, each process must perform calculations on its associated data.

More formally, the constraints are as follows.

• Block 0 is comprised of data from rows 0 through (block 0 size - 1). Block n is comprised
of data from rows (block n-1 size) through (block n size - 1). Block n+1 is comprised of
data from (block n size) through the number of rows - 1).

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

261

• Process rank 0 must process block 0. Process rank n must process block n. Process rank
n + 1 must process block n + 1.

3.2.2 Load Distribution Approaches

The first step in creating a more balanced load distribution is counting the number of conduction
operations and convection operations indicated in the input file. This requires reading each code
in each row for each slice.

An optimal load per process must be determined before attempting to balance the load. This
is found by dividing the total number of convection and conduction operations for all input file
rows by the number of processes available. From the example above, a load of approximately
14.5 conduction and convection operations per process would be a near optimal distribution of
work. We assume the simulator runs on a cluster with a homogeneous processing environment.
If the environment is heterogeneous, another approach for identifying the optimal load per
process must be determined.

A greedy approach to load balancing involves assigning rows of data to a process until the
total load for the process exceeds the optimal load per process calculated earlier. When the
load assigned to a process exceeds the average load, that process is deemed fully loaded, and
the next row of data shall be assigned to the next process. In this approach the last process
will have a smaller load than the others unless the load in each block is equal. Table 3 shows
the load distribution using this approach for four processes and an optimal load value of 14.5.
We call this a top-down greedy approach because the loads are accumulated by reading from
the top of the input file.

Table 3: Top-Down Greedy Load Balance

Load 16 18 17 7

Rank 0 1 2 3

A similar greedy approach using the same optimal load value involves assigning rows starting
at the bottom of the input file and starting with the last process. Table 4 shows the resulting
load distribution using this bottom-up greedy approach.

Table 4: Bottom-Up Greedy Load Balance

Load 7 18 15 18

Rank 0 1 2 3

3.2.3 Scoring

At this point there are three different load distributions to consider. One must be selected
in order for the simulation to proceed. The approach we use to select a load distribution is
based on the cumulative differences between the optimal load and each process load. Using this
approach the distribution in Table 2 has a score of 30. The two greedy approaches in Table 3
and Table 4 have scores of 15. Therefore, the distribution from the top-down greedy approach
would be selected because no other approach has a lower score.

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

262

After a distribution has been selected, the input file read pointer is restored to the point
saved at the beginning of the load balancing process. The details of the selected distribution
are broadcast to all process ranks.

3.3 Erosion

To allow the program to simulate a larger range of subdomains within the geothermal research
area, the ability to simulate erosion was added to the program. This capability allows for the
simulation of environments that are prone to erosion over extended periods of time, such as
canyons.

This feature was implemented by giving each cell erosion properties that define the erosion
rate in a given direction in m3/year and a percent volume remaining. For each time step of the
simulation, the program checks if a cell is adjacent to an air cell, which is defined as a cell with
0% volume remaining. If a cell is adjacent to an air cell, the program subtracts volume from
the cell’s remaining volume based on the direction of erosion and the cell’s defined erosion rate
for the given direction.

Along with the inclusion of erosion calculations, the conduction and convection calculations
were updated to handle the addition of air cells and erosion. This was done by updating
the conduction calculations to prevent the transfer of heat if one cell is an air cell and the
convection calculations were also updated to prevent convection from occurring for a given
cell if it is adjacent to an air cell. The convection and conduction calculations are also only
performed on non-air cells.

4 Results

The geology simulator was tested with four configurations: synchronous communication with
no load balancing, synchronous communications with load balancing, asynchronous communi-
cations with no load balancing, and asynchronous communications with load balancing enabled.
The average runtimes of four runs are reported. Each test was measured with MVAPICH2 [10].

Also, each configuration was tested with three data files: small 2-D, small 3-D, and large
3-D. The data files had 19250.67 year time-steps and 20E year runtimes. Sometimes during load
balance testing, the greedy approaches did not result in a more optimal load per process than
the default approach of dividing rows of data evenly among the processes. On these occasions
the default approach was used. These occasions are identified during the discussion of each
input file.

4.1 Experimental Testbed

Tests were conducted on two HPC cluster environments. One cluster called Hodor is housed
at the University of North Dakota Computational Research Center. Hodor has 32 nodes. Each
node has two quad core Intel 2643 processors with 64GB of RAM. Hodor nodes are connected
by an InfiniBand FDR link.

The second cluster is Stampede at the Texas Advanced Computing Center at the University
of Texas-Austin. Stampede has 6,400 nodes. Each node has two eight core Intel E5 processors
with 32GB of RAM. The Stampede nodes are also connected by an InfiniBand FDR link.
Access to Stampede was made possible by the Extreme Science and Engineering Discovery
Environment (ESEDE) project.

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

263

Figure 5: Results for Small 3-D input file on Hodor. The horizontal ticks are the average
runtimes.

Figure 6: Results for Small 3-D input file on Stampede.

Each simulator configuration was tested with between eight and 56 cores on both HPC
clusters. The job submission scripts on each cluster were set to use the maximum number of
cores available before using any additional nodes. There was less communications overhead on
Stampede because each processor has more cores than the processors on Hodor.

4.2 Small 3-D Results

With the Small 3-D data set the average runtime performance decreases as more cores are
utilized. However, the performance gains eventually level off because the program cannot
overcome the communications latency caused by larger numbers of cores. On Stampede there
was a noticable variation in the synchronous runtimes with 24 or more cores. This is an effect
of the number of cores per processor and the number of processors per node. there are 16 cores
per node on Stampede. Using more than 16 cores increases the network overhead. However,
the synchronous configurations were fairly consistent. The configurations with asynchronous
communications perform consistently better than their synchronous counterparts. On occasion
on both Stampede and Hodor the load balancing configurations actually perform less than
without load balancing.

With this input file and with 40 cores the default approach for dividing data among the
cores had the lowest load balancing score.

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

264

Figure 7: Results for Medium 3-D input file on Hodor.

Figure 8: Results for Medium 3-D input file on Stampede.
B

4.3 Medium 3-D Results

The medium 3-D input file produced similar results as the small 3-D input file as shown in
Figure 7 and Figure 8. There is less variation between minimum and maximum times with this
dataset than with the small 3-D input file because the simulator spends a smaller percentage of
time doing communications. The tests using eight cores used the default approach of dividing
rows of data evenly among the cores instead of one of the greedy approaches because the default
approach had the lowest load balancing score.

4.4 Large 3-D Results

Figure 9 and Figure 10 show again that the performance of the simulator continues to improve
as the number of processors increases. There is almost no difference between the minimum and
maximum times for each configuration. In the tests using 48 and 56 cores the default approach
of distributing rows of data among the cores had the lowest load balancing score.

4.5 Data Partitioning Results

The top-down and bottom-up greedy approaches to data partitioning were evaluated along
with the original distribution of data using different combinations of nodes and processes per
node. After initial testing, two modifications to the partitioning schemes were made. First, it
was observed that the time for conduction operations was longer than the time for convection
operations. On the Hodor cluster the time for a conduction operation takes 4.36x longer than a

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

265

Figure 9: Results for Large 3-D input file on Hodor.

Figure 10: Results for Large 3D input file on Stampede.

convection operation. As a result a factor was added as each conduction operation was counted.

The second modification was made after it was observed that in some cases of the top-down
and bottom-up approaches some processes were being assigned zero rows of data to process.
In particular, this was observed with data where the load per row was fairly uniform. The
greedy approach forced an entire row of data to be assigned to a process if the process load was
less than the previously computed optimal load. To address this aggressiveness a look ahead
was introduced when totaling the load for a process. The modification allows the top-down
and bottom-up approaches to consider if the load for the current process will be closer to the
optimal load with or without the next row of data. If the load is closer to the optimal load
without adding the next row of data, then the process is deemed fully loaded, and the next row
of data will be assigned to the next process.

These changes led to more uniform process loads as seen in Figures 11 and 12. Also, the
maximum difference in wait times between processes was reduced after repartitioning the input
data. Using the same mostly balanced input file, the longest wait times were reduced to 2.04x
and 2.06x longer than the shortest wait times (from 2.35x and 2.9x before data repartitioning)
for conduction and convection respectively.

4.6 Erosion Results

The addition of erosion to the program allows for the simulation of environments that change
due to erosion over extended periods of time. One example of this is shown in Figure 13, where
the simulation without erosion is shown beside a simulation with erosion. For this test a small
grove of air is in the top middle of the simulation area. As the simulation ran, the area around

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

266

Figure 11: Times for conduction are more uniform across processes.

Figure 12: Convection time is more uniform after modifying the data partitioning approaches.

the air slowly eroded outward demonstrating the ability of the program to simulate areas with
changing environments due to erosion.

This raises an issue concerning initial load balancing approaches. The eroded area represents
areas where neither conduction nor convection occurs. However, the initial load balancing was
based on conduction and convection operations occuring in the eroded areas. When simulating
erosion, the observed performance improvement for initial load balancing was only 2%.

Figure 13: Simulation Without Erosion (left) and With Erosion (right)

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

267

5 Conclusion

This paper presents HPC improvements to a geological simulation application that required
only modest changes to an existing MPI application. The initial MPI implementation used
synchronous communications. Enhancements to the MPI implementation were made to enable
state and regional scale simulations using large numbers of processors.

One technique for improving performance was using asynchronous messaging instead of
synchronous messaging. Asynchronous messaging allowed more overlapping of computation
and communication. Tests showed that asynchronous messaging increased runtime performance
over synchronous messaging by averages of 28% using 56 cores in one environment and 46%
using 56 cores in another environment.

Another technique for improving performance involved load balancing of the processes by
repartitioning the initial input data. Three approaches for data partitioning were combined
with a scoring system to select a distribution of data that was closest to an optimal per process
distribution of load. Repartitioning of data in this manner resulted in runtime performance
improvement averages of 32% using 48 cores and 14% using 24 cores in two different environ-
ments. However, the benefits of repartitioning were dependent on the data itself as well as the
computing environment.

An area of future work involves implementing dynamic load balancing to improve further the
performance of the simulator. This work should help when modeling erosion or when sources
of heat move in a geologic region because the amount of computation done on each process
changes as the simulation progresses.

Another area of interest involves applying optimizations specific to CUDA and the GPGPU
environment. The geology simulator may particularly benefit from the combined use of MPI
and CUDA. Clusters of GPGPU devices have been applied in wide-ranging fields [6, 11, 1].

Further enhancements to the existing data partitioning are also envisioned. For example,
another set of load distributions can be found using a different optimal value or a different
method of scoring. Also, more flexibility in data partitioning would be possible if individual
rows of data could be partitioned instead of the current data partitioning based on the loads
in complete rows of the input file.

One potential limitation to further use of the application is the size of the input file required
to perform larger scale simulations. Future work designing alternative input file formats, in-
cluding binary files or distributed data files, could remove this limitation.

References

[1] David Apostal, Kyle Foerster, Amrita Chatterjee, and Travis Desell. Password recovery using MPI
and CUDA. In IEEE International Conference on High Performance Computing (HiPC), Pune,
India, 2012.

[2] K. Barker, A. Chernikov, N. Chrisochoides, and K. Pingali. A load balancing framework for
adaptive and asynchronous applications. Parallel and Distributed Systems, IEEE Transactions
on, 15(2):183–192, 2004.

[3] Kevin J. Barker and Nikos P. Chrisochoides. An evaluation of a framework for the dynamic
load balancing of highly adaptive and irregular parallel applications. In Proceedings of the 2003
ACM/IEEE conference on Supercomputing, SC ’03, pages 45–, New York, NY, USA, 2003. ACM.

[4] D. Capko, A. Erdeljan, M. Popovic, and G. Svenda. An optimal initial partitioning of large
data model in utility management systems. Advances in Electrical and Computer Engineering,
11(4):41–46, 2011.

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

268

[5] S.L. de Silva and W.D. Gosnold. Episodic construction of batholiths: Insights from the spatiotem-
poral development of an ignimbrite flare-up. Journal of Volcanology and Geothermal Research,
167(1):320–335, 2007.

[6] S. Dosopoulos, J. D. Gardiner, and J.-F. Lee. An MPI/GPU parallelization of an interior penalty
discontinuous galerkin time domain method for maxwells equations. Radio Science (2011), 46,
2011.

[7] W.D. Gosnold. Basin-scale groundwater flow and advective heat flow: An example from the
northern great plains. Geothermics in Basin Analysis, pages 99–116, 1999.

[8] Will Gosnold, Jacek Majorowicz, Rob Klenner, and Steve Hauck. Implications of post-glacial
warming for northern hemisphere heat flow. Transactions of the Geothermal Resources Council,
page 12, 2011.

[9] Chao Huang, Gengbin Zheng, Laxmikant Kalé, and Sameer Kumar. Performance evaluation of
adaptive MPI. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles and
practice of parallel programming, PPoPP ’06, pages 12–21, New York, NY, USA, 2006. ACM.

[10] Wei Huang, Gopalakrishnan Santhanaraman, H-W Jin, Qi Gao, and Dhabelswar K Panda. Design
of high performance MVAPICH2: MPI2 over InfiniBand. In Cluster Computing and the Grid, 2006.
CCGRID 06. Sixth IEEE International Symposium on, volume 1, pages 43–48. IEEE, 2006.

[11] D.A. Jacobsen, J.C. Thibault, and I. Senocak. An MPI-CUDA implementation for massively
parallel incompressible flow computations on multi-GPU clusters. Mechanical and Biomedical
Engineering Faculty Publications and Presentations, page 5, 2010.

[12] Laxmikant V. Kale and Sanjeev Krishnan. Charm++: a portable concurrent object oriented
system based on c++. SIGPLAN Not., 28(10):91–108, October 1993.

[13] R. Leland and B. Hendrickson. An empirical study of static load balancing algorithms. In Scalable
High-Performance Computing Conference, 1994., Proceedings of the, pages 682–685, 1994.

[14] Jacek Majorowicz, Will Gosnold, Allan Gray, Jan Safanda, Rob Klenner, and Martyn Unsworth.
Implications of post-glacial warming for northern alberta heat flow - correcting for the underes-
timate of the geothermal potential. Transactions of the Geothermal Resources Council, page 17,
2012.

[15] JanC. Meyer and AnneC. Elster. A load balancing strategy for computations on large, read-only
data sets. In Bo Kgstrm, Erik Elmroth, Jack Dongarra, and Jerzy Waniewski, editors, Applied
Parallel Computing. State of the Art in Scientific Computing, volume 4699 of Lecture Notes in
Computer Science, pages 198–207. Springer Berlin Heidelberg, 2007.

[16] ANL Mathematics and Computer Science. The message passing interface. available at: http:

//www.mcs.anl.gov/research/projects/mpi/index.htm(Mar,2014).

Performance Improvements for a Large-Scale Geological SimulationApostal, Foerster, Desell and Gosnold

269

