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a b s t r a c t

The Honey-Bee game is a two-player board game that is played on a connected hexagonal
colored grid or (in a generalized setting) on a connected graph with colored nodes. In a
single move, a player calls a color and thereby conquers all the nodes of that color that
are adjacent to his own current territory. Both players want to conquer the majority of
the nodes. We show that winning the game is PSPACE-hard in general, NP-hard on series-
parallel graphs, but easy on outer-planar graphs.

In the solitaire version, the goal of the single player is to conquer the entire graph with
the minimum number of moves. The solitaire version is NP-hard on trees and split graphs,
but can be solved in polynomial time on co-comparability graphs.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

TheHoney-Bee game is a popular two-player board game that shows up inmany different variants and at many different
places on the web (the game is best be played on a computer). For a playable version we refer the reader for instance to Axel
Born’s web-page [4]; see Fig. 1 for a screenshot. The playing field in Honey-Bee is a grid of hexagonal honey-comb cells
that come in various colors; the coloring changes from game to game. The playing field may be arbitrarily shaped and may
contain holes, but must always be connected. In the beginning of the game, each player controls a single cell in some corner
of the playing field. Usually, the playing area is symmetric and the two players face each other from symmetrically opposing
starting cells. In every move a player may call a color c , and thereby gains control over all connected regions of color c that
have a common border with the area already under his control. The only restriction on c is that it cannot be one of the two
colors used by the two players in their last move before the current move, respectively. A player wins when he controls the
majority of all cells. On Born’s web-page [4] one can play against a computer, choosing from four different layouts for the
playing field. The computer uses a simple greedy strategy: ‘‘Always call the color c that maximizes the immediate gain’’.
This strategy is short-sighted and not very strong, and an alert human player usually beats the computer after a few practice
matches.

In this paper we perform a complexity study of the Honey-Bee game when played by two players on some arbitrary
connected graph instead of the hex-grid of the original game. We will show in Section 4 that Honey-Bee-2-Players is NP-
hard on series-parallel graphs but PSPACE-complete in general. On outer-planar graphs, however, it is easy to compute a
winning strategy.

In the solitaire (single-player) version of Honey-Bee the goal for the single player is to conquer the entire playing field as
quickly as possible. Intuitively, a good strategy for the solitaire game will be close to a strong heuristic for the two-player
game. For the solitaire version, our results draw a sharp separation line between easy and difficult cases. In particular,
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Fig. 1. Born’s ‘‘Biene’’. The human player (starting from the top-left corner) is on the edge of losing against the computer (starting from the bottom-right
corner).

we show in Section 3 that Honey-Bee-Solitaire is NP-hard for split graphs and for trees, but polynomial-time solvable on
co-comparability graphs (which include interval graphs and permutation graphs). Thus, the complexity of the game is well-
characterized for the class and subclasses of perfect graphs; see Fig. 2 for a summary of our results. Note that trees are planar
graphs; hence our results also imply hardness for planar graphs.
Related Work. The popular game Flood It is a special case of Honey-Bee-Solitaire played on a square grid. Verbin showed
NP-hardness of flooding a star with four colors and a grid with six colors [19]. Later, Arthur et al. improved this result by
showing NP-hardness for flooding a grid with three colors from an arbitrary start cell [2]. They also studied approximability
of optimal flooding. Similar to our hardness proofs, their proofs are also by reduction from a variant of SCS (however, we are
using a different variant).

There aremanyother board gameswith a similar flavor asHoney-Bee-Solitaire.We justwant tomentionClickomania [3]
and Tetris [5] which have also been proven to be difficult. Actually, many two-player board games are PSPACE-hard, such
as for example Go [11,20], Gobang [14], Hex [15], Othello [10], two-player Tetris [16], and Sabotage [12], while some games
are even Exptime-hard, such as for example Checkers [17], Chess [7], and Shogi [1]. For a survey of board games and an
extensive list of references we refer to the survey paper by Demaine and Hearn [6].

2. Definitions

We model Honey-Bee in the following graph-theoretic setting. The playing field is a connected, simple, loopless,
undirected graph G = (V , E). There is a set C of k colors, and every node v ∈ V is colored by some color col(v) ∈ C; we
stress that this coloring does not need to be proper, that is, there may be edges [u, v] ∈ E with col(u) = col(v). For a
color c ∈ C , the subset Vc ⊆ V contains the nodes of color c . For a node v ∈ V and a color c ∈ C , we define the color-c-
neighborhood Γ (v, c) as the set of nodes in Vc either adjacent to v or connected to v by a path of nodes of color c . Similarly,
we denote by Γ (W , c) =


w∈W Γ (w, c) the color-c-neighborhood of a subsetW ⊆ V . For a subsetW ⊆ V and a sequence

γ = ⟨γ1, . . . , γb⟩ of colors in C , we define a corresponding sequence of node sets W1 = W and Wi+1 = Wi ∪ Γ (Wi, γi), for
1 ≤ i ≤ b. We say that sequence γ started on W conquers the final node set Wb+1 in b moves, and we denote this situation
byW →γ Wb+1. The nodes in V − Wb+1 are called free nodes.

In the solitaire version of Honey-Bee, the goal is to conquer the entire playing field with the smallest possible number of
moves. Note that Honey-Bee-Solitaire is trivial in the case of only two colors. But as we will see in Section 3, the case of
four colors can already be difficult.

Problem Honey-Bee-Solitaire
Input: A graph G = (V , E); a set C of k colors and a coloring col : V → C; a start node v0 ∈ V ; and a bound b.

Question: Does there exist a color sequence γ = ⟨γ1, . . . , γb⟩ of length b such that {v0} →γ V?

In the two-player version of Honey-Bee, the two players A and B start from two distinct nodes a0 and b0 and then extend
their regions step by step by alternately calling colors. Player A makes the first move. One round of the game consists of a
move of A followed by a move of B. Consider a round, where at the beginning the two players control node setsWA andWB,
respectively. If player A calls color c , then he extends his regionWA toW ′

A = WA ∪ (Γ (WA, c) − WB). If afterwards player B
calls color d, then he extends his regionWB toW ′

B = WB ∪ (Γ (WB, c) −W ′

A). Note that once a player controls a node, he can
never lose it again.



R. Fleischer, G.J. Woeginger / Theoretical Computer Science 452 (2012) 75–87 77

Fig. 2. Summary of the complexity results for Honey-Bee-Solitaire. NP-complete problems have a solid frame, polynomial-time solvable problems have a
dashed frame. The results for the graph classes in the three colored boxes imply all other results.

Fig. 3. Player A (circled nodes) is leading with four captured nodes over player B (squared nodes) with only two captured nodes. Player B would next like
to play black to capture all the white nodes in the next move. Without rule R2, player A could prevent this by repeatedly playing black.

Fig. 4. Player A who controls the black node at the left end of the path loses if he calls dark-gray and hence prefers to call light-gray (white and black are
not allowed by R1 and R2, respectively). Player B who controls the white node at the other end of the path loses if he calls light-gray and hence prefers to
call dark-gray (black and white are not allowed by R1 and R2, respectively). However, Rule R3 forces the players to move into the unoccupied territory,
thus the first player to move loses.

The game terminates as soon as one player controls more than half of all nodes. This player wins the game. To avoid
draws, we require that the number of nodes is odd. There are three important rules that constrain the colors that a player is
allowed to call.

R1. A player must never call the color that has just been called by the other player.
R2. A player must never call the color that he has called in his previous move.
R3. A player must always call a color that strictly enlarges his territory, unless rules R1 and R2 prevent him from doing so.

What is the motivation for these three rules? Rule R1 is a technical condition that arises from the graphical
implementation [4] of the game: whenever a player calls a color c , his current territory is entirely recolored to color c .
This makes it visually easier to recognize the territories controlled by both players. Furthermore, the regions controlled by
the two players usually become adjacent after some time; rule R1 prevents that one player may take over the region of the
other player. Rule R2 prevents the players from permanently blocking some color for the opponent. Fig. 3 shows a situation
where rule R2 actually prevents the game from stalling. Rule R3 is quite delicate, and is justified by situations as depicted
in Fig. 4. Rule R3 guarantees that every game must terminate with either a win for player A or a win for player B. Note that
rule R2 is redundant except in the case when a player has no move to gain territory (see Fig. 3).

Problem Honey-Bee-2-Players
Input: A graph G = (V , E) with an odd number of nodes; a set C of colors and a coloring col : V → C; two start
nodes a0, b0 ∈ V .

Question: Can player A enforce a win when the game is played according to the above rules?
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Fig. 5. A co-comparability graph corresponding to the order a < c , a < e, b < e, b < f , d < c , d < f and its curve intersection representation. Without a,
the graph would be a permutation graph with a straight line representation.

Note that Honey-Bee-2-Players is trivial in the case of only three colors: the players do not have the slightest freedom
in choosing their next color, and always must call the unique color allowed by rules R1 and R2. However we will see in
Section 4 that the case of four colors can already be difficult.

Finally we observe that calling a color c always conquers all connected components induced by Vc that are adjacent to the
current territory. Hence an equivalent definition of the game could use a graph with node weights (that specify the size of
the corresponding connected component) and a proper coloring of the nodes. Any instance under the original definition can
be transformed into an equivalent instance under the new definition by contracting each connected component of Vc , for
some c , into a single node of weight |Vc |. However, we are interested in restrictions of the game to particular graph classes,
some of which are not closed under edge contractions (such as for instance the hex-grid graph of the original Honey-Bee
game).

3. The solitaire game

In this section we study the complexity of finding optimally short color sequences for Honey-Bee-Solitaire. We will
show that this is easy for co-comparability graphs (arbitrary number of colors), while it is NP-hard for split graphs (arbitrary
number of colors), trees (four colors), and series-parallel graphs (three colors). Since the family of co-comparability graphs
contains interval graphs, permutation graphs, and co-graphs as sub-families, our positive result for co-comparability graphs
implies all other positive results in Fig. 2.

A first straightforward observation is that Honey-Bee-Solitaire lies in NP: any connected graph G = (V , E) can be
conquered in at most |V | moves, and hence such a sequence of polynomially many moves can serve as an NP-certificate.

3.1. The solitaire game on co-comparability graphs

A co-comparability graph G = (V , E) is an undirected graph whose nodes V correspond to the elements of some partial
order < and whose edges E connect any two elements that are incomparable in that partial order, i.e., [u, v] ∈ E if neither
u < v nor v < u holds. For simplicity, we identify the nodes with the elements of the partial order. Golumbic et al. [9]
showed that co-comparability graphs are exactly the intersection graphs of continuous real-valued functions over some
interval I . If two function curves intersect, the corresponding elements are incomparable in the partial order; otherwise,
the curve that lies completely above the other one corresponds to the larger element in the partial order (see Fig. 5 for an
example). If the curves are straight lines (i.e., linear functions), we have as a special case a permutation graph. More general
than co-comparability graphs are string graphs [18] which are the intersection graphs of Jordan curves in the plane.

Lemma 3.1. The class of co-comparability graphs is closed under edge contractions.

Proof. Consider an edge (u, v) in a co-comparability graph G. Contracting the edge into a single nodew adjacent to all nodes
that were adjacent to u and v changes the corresponding order relation as follows. For all nodes x ≠ u, v, w < x if u < x
and v < x, w > x if u > x and v > x, and w is incomparable to x otherwise. Since u and v must have been incomparable in
G, the cases u < x < v and u > x > v cannot happen, so the last of the three cases above can only occur if at least one of u
and v was incomparable to x, i.e., connected to x by an edge in G which is preserved in the contracted graph. �

Therefore, we may w.l.o.g. restrict our analysis of Honey-Bee-Solitaire to co-comparability graphs with a proper node
coloring where adjacent nodes have distinct colors (in the solitaire game the weight of a node after an edge contraction is
not important). In this case, every color class is totally ordered because incomparable node pairs of the same color have been
contracted.

Consider an instance of Honey-Bee-Solitaire with a minimal start node v0 (in the partial order on V ); a maximal start
node could be handled similarly.
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Lemma 3.2. Conquering a node will simultaneously conquer all smaller nodes of the same color.

Proof. If we start at a minimal node v0 and at some time later conquer a node v of color c , then we must have conquered
a path p from v0 to v. In the function graph representation of the graph this means we have found a sequence of function
graphs connecting v0 to v, but this must intersect all nodes smaller than v, i.e., these nodes must be adjacent in the graph
to some node on p. Thus, conquering v will at the same time conquer all smaller nodes of color c (if they had not been
conquered before). �

For any color c , let Max(c) denote the largest node of color c. Let M be the set of all these nodes, for all colors c , and let
Mmax be the set of maximal elements of the partial order. Note that |M| = k, the number of colors (all color classes are totally
ordered and have therefore exactly one maximum element each), andMmax ⊆ M .

Lemma 3.3. The nodes in Mmax form a clique in G.

Proof. Let u, v ∈ Mmax. If u and v are not connected in G, then either u < v or v < u, contradicting their maximality. Thus,
all nodes inMmax form a clique. �

By Lemma 3.2, it suffices to find a shortest color sequence conquering the setM .We can do this by a single source shortest
path computation. We assign every node Max(c) weight 0, and all other nodes weight 1. Then we compute shortest paths
(with respect to the node-weights) from v0 to all the nodes in Mmax. Let OPT denote the cost of a cheapest path to reach at
least one node inMmax.

For a color sequence γ = ⟨γ1, . . . , γb⟩, we define the length of γ as |γ | = b. We also define the essential length ess(γ )
of γ as |γ | minus the number of steps where γ conquers a node in M . Obviously, |γ | = ess(γ ) + k for any minimal color
sequence γ conquering the entire graph (γ needs one step for each node inM). Note that OPT is the smallest essential cost
of any color sequence conquering at least one node inMmax.

Lemma 3.4. The optimal solution for Honey-Bee-Solitaire has cost OPT + k.

Proof. Let γ be a shortest color sequence conquering the entire graph starting at v0. After conquering the first node inMmax,
γ only needs to conquer all remaining nodes inM to conquer the entire graph. This can be done with one step for each color
by Lemmas 3.2 and 3.3. Thus, |γ | = ess(γ ) + k ≥ OPT + k, with equality if γ is an optimal color sequence. �

Theorem 3.5. Honey-Bee-Solitaire starting at an extremal node v0 can be solved in polynomial time on co-comparability
graphs.

Proof. Given the co-comparability graph G, we can compute the underlying partial order in polynomial time [9]. Assigning
the weights and solving one single source shortest path problem starting at v0 also takes polynomial time. �

We can also formulate this algorithm as a dynamic program. For any node v, let D(v) denote the essential length of the
shortest color sequence γ that can conquer v when starting at v0. For any color c , let minv(c) denote the smallest node of
color c connected to v, if such nodes exist. Then we can compute D(v) recursively as follows:

D(v0) = 0

and

D(v) = min
c

(D(minv(c)) + δv) ,

where D(minv(c)) = ∞ ifminv(c) is undefined, and δv = 0 (1) if v is (not) inM .
This dynamic program simulates the shortest path computation of our first algorithm and we have OPT = minv D(v),

where we minimize over all maximal nodes v ∈ Mmax. We now extend the dynamic program to the case that v0 is not
an extremal element. The problem is that we now must extend our territory in two directions. If we choose a move that
makes good progress upwards it may make little progress downwards, or vice versa. In particular, the optimal strategy
cannot be decomposed into two independent optimal strategies, one conquering upwards and one conquering downwards.
Analogously to the algorithm above, for any color c and node v define Min(c) as the smallest node of color c , and maxv(c)
as the largest node of color c connected to v.

Unfortunately, we must now redefine the essential length of a color sequence γ . In our original definition, we did not
count coloring steps that conquered maximal elements of some color class. This is intuitively justified by the fact that these
stepsmust be done by any color sequence conquering the entire graph at some time, therefore it is advantageous to do them
as early as possible (which is guaranteed by giving these moves cost 0). But now we must also consider the minimal nodes
of each color class. An optimal sequence conquering the entire graph will at some time have conquered a minimal node and
a maximal node. Afterwards, it will only call extremal nodes for some color class. If both extremal nodes of a color class are
still free, we only need onemove to conquer both simultaneously. If one of them had been captured earlier, we still need to
conquer the other one. This indicates that we should charge 1 for the first extremal node conquered while the second one
should be charged 0, as before. If both nodes are conquered in the same move, we should also charge 0. Therefore, we now
define the essential length ess(γ ) of γ as |γ |minus the number of steps where γ conquers the second extremal node of some
color class.
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For a node v below v0 or incomparable to v0 and a nodew above v0 or incomparable to v0 letD(v, w) denote the essential
length of the shortest color sequence γ that can conquer v and w when starting at v0. Note that we do not need to keep
track of which first extremal nodes of a color class have been conquered because we can deduce this from the two nodes v
and w currently under consideration. In particular, we can compute D(v, w) recursively as follows:

D(v0, v0) = 0

and

D(v, w) = min
c

(D(v,minw(c)) + δw(v),D(maxv(c), w) + δv(w)) ,

where δv(w) = 0 if and only if w is an extremal node of some color class c and the other extremal node of color class c is
either between v and w, or incomparable to either v or w, or both (it was either conquered earlier, or it will be conquered
in this step); otherwise, δv(w) = 1. Obviously, |γ | = ess(γ ) + k for any minimal color sequence γ conquering the entire
graph.

Lemma 3.6. The optimal solution for Honey-Bee-Solitaire has costminv,w(D(v, w)+ k), where we minimize over all minimal
nodes v and all maximal nodes w.

Proof. Let γ be a shortest color sequence conquering the entire graph starting at v0. Let v be the first minimal node
conquered by γ and w the first maximal node. After conquering v and w, γ only needs to conquer all remaining extremal
nodes of each color class to conquer the entire graph. This can be done with one step for each color by Lemmas 3.2 and 3.3.
Thus, |γ | ≥ D(v, w) + k, with equality if γ is an optimal color sequence. �

Theorem 3.7. Honey-Bee-Solitaire can be solved in polynomial time on co-comparability graphs. �

3.2. The solitaire game on split graphs

A split graph is a graph whose node set can be partitioned into an induced clique and into an induced independent set.
We will show that Honey-Bee-Solitaire is NP-hard on split graphs. Our reduction is from the NP-hard Feedback Vertex
Set (FVS) problem in directed graphs; see for instance Garey and Johnson [8].

Problem FVS
Input: A directed graph (X, A); a bound t < |X |.

Question:Does there exist a subset X ′
⊆ X with |X ′

| = t such that the directed graph induced by X−X ′ is acyclic?

Theorem 3.8. Honey-Bee-Solitaire on split graphs is NP-hard.

Proof. Consider an instance (X, A, t) of FVS. To construct an instance (V , E, b) ofHoney-Bee-Solitaire, we first build a clique
on the nodes in X and a new node v0 (which will be the start node of Honey-Bee-Solitaire). Each node x ∈ X ∪ {v0} has a
different color cx. Next, we build the independent set. For every arc (x, y) ∈ A, we introduce a corresponding node v(x, y) of
color cy which has degree one and which is only connected to node x in the clique. Finally, we set b = |X |+ t . We claim that
the constructed instance of Honey-Bee-Solitaire has answer YES, if and only if the considered instance of FVS has answer
YES.

Assume that the FVS instance has answer YES. Let X ′ with |X ′
| = t be a feedback set whose removal makes (X, A) acyclic.

Let π be a topological order of the nodes in X − X ′, and let τ be an arbitrary ordering of the nodes in X ′. Consider the color
sequence γ of length |X | + t that starts with τ , followed by π , and followed by τ again. We claim that {v0} →γ V . Indeed,
γ first runs through τ and π and thereby conquers all clique nodes. Every independent set node v(x, y) with y ∈ X ′ is
conquered during the first or second transversal of τ . Every independent set node v(x, y) with y ∈ X − X ′ is conquered
during the transversal of π , since π first conquers xwith color cx, and afterwards v(x, y) with color cy.

Next assume that the instance ofHoney-Bee-Solitaire has answer YES. Let γ be a color sequence of length atmost |X |+t
conquering V . Define X ′ as the set of nodes x such that color cx occurs at least twice in γ . As every color cx with x ∈ X must
appear at least once in γ , we conclude |X ′

| ≤ t . Consider an arc (x, y) ∈ Awith x, y ∈ X − X ′. Since γ contains color cy only
once, it must conquer node v(x, y) of color cy after node x of color cx. Hence, γ induces a topological order of X − X ′. �

The construction in the proof above uses linearlymany colors.What about the case of few colors? On split graphs,Honey-
Bee-Solitaire can always be solved by traversing the color set C twice; the first traversal conquers all clique nodes, and the
second traversal conquers all remaining free independent set nodes. Thus, every split graph can be completely conquered
in at most 2|C | steps. If there are only few colors, we can simply check all color sequences of length at most 2|C |.

Theorem 3.9. If the number of colors is bounded by a fixed constant, Honey-Bee-Solitaire on split graphs is polynomial-time
solvable. In other words, Honey-Bee-Solitaire is fixed parameter tractable when parameterized by the number of colors. �
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3.3. The solitaire game on trees

In this section we will show that Honey-Bee-Solitaire is NP-hard on trees, even if there are only four colors. We reduce
Honey-Bee-Solitaire from a variant of the Shortest Common Supersequence (SCS) problem which is known to be
NP-complete (see Middendorf [13]). Note that subsequences do not need to be contiguous.

Problem SCS
Input: A positive integer t; finite sequences σ1, . . . , σs with elements from {0, 1} with the following properties:
(i) all sequences have the same length; (ii) every sequence contains exactly two 1s, and these two 1s are separated
by at least one 0; and (iii) every sequence ends with a 0.

Question: Does there exist a sequence σ of length t that contains σ1, . . . , σs as subsequences?

Middendorf’s hardness result also implies the hardness of the following variant of SCS:

Problem Modified SCS (MSCS)
Input:A positive integer t; finite sequences σ , . . . , σs with elements from {0, 1, 2, 3}with the following property:
in every sequence any two consecutive elements are distinct, and no sequence starts with 2 or 3.

Question: Does there exist a sequence σ of length t that contains σ1, . . . , σs as subsequences?

Theorem 3.10. MSCS is NP-complete.
Proof. Here is a reduction from SCS to MSCS. Consider an arbitrary sequence τ with elements from {0, 1}. We define
f (τ ) as the sequence obtained by replacing every occurrence of the element 0 ∈ τ by two consecutive elements 0 and
2, and by replacing every occurrence of the element 1 ∈ τ by two consecutive elements 1 and 3. Now consider an instance
(σ1, . . . , σs, t) of SCS. Construct an instance (σ ′

1, . . . , σ
′
s , t

′) of MSCS by setting σ ′

i = f (σi) for 1 ≤ i ≤ s and by defining
t ′ = 2t . Then for any sequence σ with elements from {0, 1}, σ is a common supersequence of σ1, . . . , σs if and only if f (σ )
is a common supersequence of σ ′

1, . . . , σ
′
s . This implies the NP-hardness ofMSCS. �

Theorem 3.11. Honey-Bee-Solitaire is NP-hard on trees, even in the case of only four colors.
Proof. We reduce MSCS to Honey-Bee-Solitaire on trees. Consider an instance (σ1, . . . , σs, t) of MSCS. As color set C =

{0, 1, 2, 3} we use the four letters in the strings of the MSCS instance. We first construct a root v0 of color 2, and then for
each sequence σi attach a path of length |σi| to v0; the j-th node on this path is colored by color k if the j-th letter in σi is the
letter k. Finally, we set b = t . It is straightforward to see that the constructed instance of Honey-Bee-Solitaire has answer
YES if and only if the instance ofMSCS has answer YES. �

Note that the proof of the previous theorem actually shows NP-hardness for stars with four colors.

3.4. The solitaire game on series-parallel graphs

A graph is series-parallel if it does not contain K4 as a minor. Equivalently, a series-parallel graph can be constructed from
a single edge by repeatedly doubling edges, or removing edges, or replacing edges by a path of two edges with a new node
in the middle of the path.
Theorem 3.12. Honey-Bee-Solitaire is NP-hard on series-parallel graphs, even in the case of only three colors.
Proof. The proof is by reduction from the supersequence problem SCS with binary sequences; see Section 3.3. Consider an
instance (σ1, . . . , σs, t) of SCS, and let n denote the common length of all sequences σi. Without loss of generalitywe assume
our color set is C = {0, 1, 2}. We create a start node v0 of color 2, and attach to it the following gadgets.

• For each sequence σi with 1 ≤ i ≤ s, there is a path Pi that consists of 2n nodes and that is attached to v0. The colors of
the n nodes with odd numbers encode the sequence σi, while the n dummy nodes with even numbers along the path all
receive color 2.

• There is also a control-gadget that consists of 3n nodes aj, bj, vj with 1 ≤ j ≤ n and a special node w. For 1 ≤ j ≤ n, node
aj has color 0 and is connected to vj−1 and vj (where node v0 is the starting node). For 1 ≤ j ≤ n, node bj has color 1 and
is connected to vj−1 and vj. All nodes vj have color 2. Node w is only adjacent to node vn and has color 1.

Finally, we set b = 2t + 1. We claim that the constructed instance of Honey-Bee-Solitaire has answer YES if and only if the
instance of SCS has answer YES.

Indeed, consider a super-sequence σ of length t for the SCS instance. Since every sequence σi endswith 0, wemay assume
without loss of generality that σ also ends with 0.We construct a color sequence by inserting the color 2 between every two
consecutive elements of σ , and we close the sequence by adding color 1. This color sequence conquers the entire graph, and
the final color 1 is needed to conquer node w. Vice versa, if there exists a color sequence of length b = 2t + 1 that conquers
the entire graph, then one easily constructs a super-sequence of length t for the SCS instance. �
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Fig. 6. An outer-planar graph with start nodes a0 and b0 . Player A (circled nodes) has conquered the light-gray colored nodes, i.e., U = 2 and L = 2.
Eventually, A will also conquer ℓ1 , since player B cannot reach it.

4. The two-player game

In this section we study the complexity of the two-player game. While on outer-planar graphs the players can compute
their winning strategies in polynomial time for an arbitrary number of colors, this problem is NP-hard for series-parallel
graphs with four colors, and PSPACE-complete on arbitrary graphs with four colors.

We stress that our negative results hold for four colors, which is the strongest possible type of result (recall that instances
with three colors are trivial to solve). We stress furthermore that the borderline between easy (outer-planar) and hard
(series-parallel) is very sharp and precise, if one consider the forbidden minors: series-parallel graphs do not contain K4 as
a minor, and outer-planar graphs contain neither K4 nor K2,3 as a minor.

4.1. The two-player game on outer-planar graphs

A graph is outer-planar if it contains neitherK4 norK2,3 as aminor. Outer-planar graphs have a planar embedding inwhich
every node lies on the boundary of the so-called outer face (which is the unique infinite face in the embedding). For example,
every tree is an outer-planar graph. Our approach crucially hinges on the ordering of the vertices along the outer face, and
both players essentially follow this ordering while extending their regions. This also is the main difference to series-parallel
graphs, which do not have such an ordering and on which the game is hard.

Consider an outer-planar graph G = (V , E) as an instance of Honey-Bee-2-Players with starting nodes a0 and b0 in V ,
respectively. The starting nodes divide the nodes on the boundary of the outer face F into an upper chain u1, . . . , us and a
lower chain ℓ1, . . . , ℓt , where u1 and ℓ1 are the two neighbors of a0 on F , while us and ℓt are the two neighbors of b0 on F .
We stress that these two chains are not necessarily disjoint (for instance, articulation nodes will occur in both chains). In
particular, it might happen that u1 = ℓ1 or us = ℓt .

Now consider an arbitrary situation in the middle of the game. Let U (respectively L) denote the largest index k such that
player A has conquered node uk (respectively node ℓk). See Fig. 6 to illustrate these definitions and the following lemma.

Lemma 4.1. Let X denote the set of nodes among u1, . . . , uU and ℓ1, . . . , ℓL that currently do neither belong to A nor to B. Then
no node in X can have a neighbor among uU+1, . . . , us, b0, ℓt , . . . , ℓL+1.

Proof. The existence of such a node in X would lead to a K4-minor in the outer-planar graph. This is true because X cannot
articulation nodes (there cannot be a shortcut to bypass such nodes). Therefore any node in X is cut off by an edge where
player A jumped ahead, see Fig. 6 for an example. �

Theorem 4.2. Honey-Bee-2-Players on outer-planar graphs is polynomial-time solvable.

Proof. The two indices U and L encode all necessary information on the future behavior of player A. Eventually, he will own
all nodes u1, . . . , uU and ℓ1, . . . , ℓL, and the possible future expansions of his area beyond uU and ℓL only depend on U and
L. Symmetric observations hold true for player B.

As every game situation can be concisely described by just four indices, there is only a polynomial number O(|V |
4) of

relevant game situations. The rest is routine work in combinatorial game theory: we first determine the winner for every
end-situation, and then byworking backwards in timewe can determine thewinners for the remaining game situations. �

4.2. The two-player game on series-parallel graphs

Recall from Section 3.4 that a graph is series-parallel if it does not contain K4 as a minor. Note that series-parallel graphs
are planar, which yields that our hardness result proved in this section also holds for the class of planar graphs. We stress
that we do not know whether the two-player game on series-parallel graphs is contained in the class NP (and we actually
see no reason why it should lie in NP); therefore the following theorem only states NP-hardness.
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Fig. 7. The graph constructed in the proof of Theorem 4.3 for the sequences σ1 = 1001, σ2 = 0101, σ3 = 1010, and t = 4. The optimal SCS solution is
10101. Thus, B can win this game.

Theorem 4.3. For four (or more) colors, problem Honey-Bee-2-Players on series-parallel graphs is NP-hard.

Proof. We use the color set C = {0, 1, 2, 3}. A central feature of our construction is that player Bwill have no real decision
power, but will only follow the moves of player A: if player A starts a round by calling color 0 or 1, then player Bmust follow
by calling the other color in {0, 1} (or waste his move). And if player A starts a round by calling color 2 or 3, then player B
must call the other color in {2, 3} (or waste his move). In the even rounds the players will call the colors in {0, 1} and in
the odd rounds they will call the colors in {2, 3}. Both players are competing for a set of honey pots in the middle of the
battlefield, and need to get there as quickly as possible. If a player deviates from the even–odd pattern indicated above, he
might perhaps waste his move and delay the game by one round (in which neither player comes closer to the honey pots),
but this remains without further impact on the outcome of the game.

The proof is by reduction from the supersequence problem SCS with binary sequences; see Section 3.3. Consider an
instance (σ1, . . . , σs, t) of SCS, and let n denote the common length of all sequences σi. We first construct two start nodes
a0 and b0 of colors 2 and 3, respectively. For each sequence σi with 1 ≤ i ≤ swe do the following:

• We construct a path Pi that consists of 2n − 1 nodes and that is attached to a0: the n nodes with odd numbers mimic
sequence σi, while the n − 1 nodes with even numbers along the path all receive color 2. The first node of Pi is adjacent
to a0, and its last node is connected to a so-called honey pot Hi.

• The honey pot Hi is a long path consisting of 4st nodes of color 3. Intuitively, wemay think of a honey pot as a single node
of large weight, because conquering one of the nodes will simultaneously conquer the entire path.

• Every honey potHi can also be reached from b0 by another path Qi that consists of 2t−1 nodes. Nodes with odd numbers
get color 0, and nodes with even numbers get color 3. The first node of Qi is adjacent to b0, and its last node is connected
to Hi. Furthermore, we create for each odd-numbered node (of color 0) a new twin node of color 1 that has the same two
neighbors as the color 0 node. Note that for every path Qi there are t twin pairs.

Finallywe create a private honey potHB for player B that is connected to node b0 and that consists of 4s(s−1)t+(2n−1)s
nodes of color 2. This completes the construction; see Fig. 7 for an example.

Assume that the SCS instance has answer YES. During his first 2t − 1 steps, player B can only conquer the paths Qi and
his private honey pot HB. At the same time, player A can conquer all paths Pi by calling color 2 in his even moves and by
following a shortest 0–1 supersequence in his odd moves. Then, in round 2t player A will simultaneously conquer all the
honey pots Hi with 1 ≤ i ≤ s. This gives A a territory of at least 1 + (2n − 1)s + 4s2t nodes, and B a smaller territory of at
most 1 + (3t − 1)s + 4s(s − 1)t + (2n − 1)s nodes. Hence A can enforce a win.

Next assume that player A has a winning strategy. Player B can always conquer his starting node b0 and his private honey
pot HB. If B also manages to conquer one of the pots Hi, then he gets a territory of at least 1 + 4s(s − 1)t + (2n − 1)s + 4st
nodes and surely wins the game. Hence player A can only win if he conquers all s honey pots Hi. To reach them before player
B does, player Amust conquer themwithin his first 2t moves. In every odd round, player Awill call a color 0 or 1 and player B
will call the other color in {0, 1}. Hence, in the even rounds, colors 0 and 1 are forbidden for player A, and the only reasonable
move is to call color 2. Note that the slightest deviation of these forced moves would give player B a deadly advantage. In
order to win, the odd moves of player Amust induce a supersequence of length at most t for all sequences σi. Therefore, the
SCS instance has answer YES. �

4.3. The two-player game on arbitrary graphs

In this section we will show that Honey-Bee-2-Players is PSPACE-complete on arbitrary graphs. Our reduction is from
the PSPACE-complete Quantified Boolean Formula (QBF) problem; see for instance Garey and Johnson [8].

Problem QBF
Input: A quantified Boolean formula with 2n variables in conjunctive normal form: ∃x1∀x2 · · · ∃x2n−1∀x2n


j Cj,

where the Cj are clauses of the form


k ljk, where the ljk are literals.

Question: Is the formula true?
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Fig. 8. The variable gadget in the proof of Theorem 4.4.

Theorem 4.4. For four (or more) colors, problem Honey-Bee-2-Players on arbitrary graphs is PSPACE-complete.

Proof. We reduce from QBF. Let F = ∃x1∀x2 · · · ∃x2n−1∀x2n


j Cj be an instance of QBF. We construct a bee graph GF =

(V , E) with four colors (white, light-gray, dark-gray, and black) such that player A has a winning strategy if and only if F is
true. Let a0 (colored light-gray) and b0 (colored dark-gray) denote the start nodes of players A and B, respectively.

Each player controls a pseudo-path, that is, a path where some nodes may be duplicated as parallel nodes in a diamond-
shaped structure; see Fig. 8. Player A controls path PA and player B controls path PB. A so-called choice pair consists of a node
on a pseudo-path together with some duplicated node in parallel. The start nodes are at one end of the respective pseudo-
paths, and the players can conquer the nodes on their own path without interference from the other player. However,
they must do so in a timely manner because either path ends at a humongous honey pot, denoted respectively by HA and
HB. A honey pot is a large clique of identically-colored nodes (we may think of it as a single node of large weight, because
conquering one nodewill simultaneously conquer the entire clique). Both honey pots have the same size but different colors,
namely black (HA) and white (HB), and they are connected to each other by an edge. Consequently, both players must rush
along their pseudo-paths as quickly as possible to reach their honey pot before the opponent can reach it and to prevent
the opponent from winning by conquering both honey pots. The last nodes before the honey pots are denoted by af and bf ,
respectively. They separate the last variable gadgets (described below) from the honey pots. While rushing to the big honey
pots, the players also try to conquer smaller honey pots associated with each clause; player A must win all of them to win,
while player B tries to prevent this from happening.

Fig. 8 shows an overview of the pseudo-paths and one variable gadget in detail. A variable gadget is a part of the two
pseudo-paths corresponding to a pair of variables ∃x2i−1∀x2i, for some i ≥ 1. For player A, the gadget starts at node ai−1
with a choice pair aF2i−1 and aT2i−1, colored white and black, respectively. The first node conquered by A will determine the
truth value for variable x2i−1. In the same round, player B has a choice on his pseudo-path PB between nodes bF2i−1 and bT2i−1.
Since these nodes have the same color as A’s choices in the same round, B actually does not have a choice but must select
the other color not chosen by A.

Three rounds later, player B has a choice pair bF2i and bT2i, assigning a truth value to variable x2i. In the next step (which is
in the next round), player A has a choice pair aF2i and aT2i with the same colors as B’s choice pair for x2i. Again, this means that
A does not really have a choice but must select the color not chosen by B in the previous step. Since we want A to conquer
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Fig. 9. The waiting gadgets for existential variables (W F
2i−1 and W T

2i−1 , the two top paths) and universal variables (W F
2i and W T

2i , the two bottom paths) in
the proof of Theorem 4.4. Note that usually only one of the two waiting paths W F

k or W T
k would be connected to Hj because we may assume that a clause

does not contain xk and xk at the same time.

those clauses containing a literal set to true by player B, the colors in B’s choice pair have been switched, i.e., bF2i is black and
bT2i is white.

Note that all the nodes a0, . . . , an are light-gray and all the nodes b0, . . . , bn are dark-gray. This allows us to concatenate
as many variable gadgets as needed. Further note that af is white, while bf is light-gray.

The clause gadgets are very simple. Each clause Cj corresponds to a small honey potHj of color white. The size of the small
honey pots is smaller than the size of the large honey pots HA and HB, but large enough such that player A loses if he misses
one of them. Player A should conquer Hj if and only if Cj is true in the assignment chosen by the players while conquering
their respective pseudo-paths. We could connect aT2i−1 directly with Hj if Cj contains literal x2i−1, however then player A
could in subsequent rounds shortcut his pseudo-path by entering variable gadgets for the other variables in Cj from Hj. To
prevent this from happening, we place waiting gadgets between the variable gadgets and the clauses. They are basically a
copy of the remaining part of the pseudo-path.

Let a⋆
k denote the node on PA right after the choice pair aFk and aTk , for k = 1, . . . , 2n; similarly, b⋆

k are the nodes on PB
right after B’s choice pairs. A waiting gadget Wk consists of two copies W F

k and W T
k of the sub-path of PA starting at a⋆

k and
ending at an, see Fig. 9. If clause Cj contains literal xk,Hj is connected to the nodewT

n corresponding to an inW T
k ; if Cj contains

literal xk, Hj is connected to the node wF
n corresponding to an in W F

k . If k = 2i − 1 (i.e., we have an existential variable x2i−1

whose value is assigned by player A), then aF2i−1 and bF2i−1 are connected tow⋆F
2i−1, and aT2i−1 and bT2i−1 are connected tow⋆T

2i−1.
If k = 2i (i.e., we have a universal variable x2i whose value is assigned by player B), then aF2i and b⋆

2i are connected to w⋆F
2i ,

and aT2i and b⋆
2i are connected to w⋆T

2i .
Finally, we connect bf with all clause honey pots Hj to give player B the opportunity to conquer all those clauses that

contain no true literal. This completes the construction of GF . Fig. 10 shows the complete graph GF for a small example
formula F .

We claim that player A has a winning strategy on GF if and only if formula F is true. It is easy to verify that player A
can indeed win if F is true. All he has to do is to conquer those nodes in his existential choice pairs corresponding to the
variable values in a satisfying assignment for F . For the existential variables, he has full control to select any value, and for the
universal variables hemust pick the opposite color as selected by player B in the previous step, which corresponds to setting
the variable to exactly the value that player B has selected. Hence player B can block a move of player A by appropriately
selecting a value for a universal variable. Note that no other blocking moves of player B are advantageous: if B blocks A’s
next move by choosing a color that does not make progress on his own pseudo-path, then A will simply make an arbitrary
waiting move and then in the next round B cannot block A again. When player A conquers node an, he will simultaneously
conquer the last nodes in all waiting gadgets corresponding to true literals. Since every clause contains a true literal for a
satisfying assignment, player A can then in the next round conquer af together with all clause honey pots (which all have
color white). Player Bwill respond by conquering bf , and the game endswith both players conquering their own large honey
pots HA and HB, respectively. Since player A got all clause honey pots, he wins.

To make this argument work, we must carefully choose the sizes of the honey pots. Each pseudo-path contains 9n + 1
nodes, of which at most n can be conquered by the other player. The waiting gadgets contain two paths of length 9k + 6
for existential variables and 9k + 1 for universal variables, for k = n − 1, n − 2, . . . , 1, 0, respectively (see Fig. 10 for an
example). At the end, player A will have conquered one of the two paths completely and maybe some parts of the sibling
path, that is, we do not know exactly the final owner of less than n2 nodes. The clause honey pots should be large enough to
absorb this fuzziness, which means it is sufficient to give them 2n2 nodes. The honey pots HA and HB should be large enough
to punish any foul play by the players, that is, when they do not strictly follow their pseudo-paths. It is sufficient to give
them 2n3 nodes.

To see that F is true if player A has awinning strategy note that player Amust strictly followhis pseudo-path, as otherwise
player B could beat him by reaching the large honey pots first. Thus player A’s strategy induces a truth assignment for the
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Fig. 10. The reduction in the proof of Theorem 4.4 would produce this graph for the formula F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4).

existential variables. Similarly, player B’s strategy induces a truth assignment for the universal variables. Player A can only
win if he also conquers all clause honey pots, and hence the players must have chosen truth values that make at least one
literal per clause true. This means that formula F is satisfiable. �

5. Conclusions

We have modeled the well-known Honey-Bee puzzle game as a combinatorial game on colored graphs. For the solitaire
version, we have analyzed the complexity onmany classes of perfect graphs. For the two-player version, we have shown that
even the highly restricted case of series-parallel graphs is hard to tackle. Our results draw a clear separating line between
easy and hard variants of these problems.

In particular, we showed that both the single player and the two-player versions are NP-hard on planar graphs.
This implies that the original game played on a hex-grid with holes is also NP-hard for both variants. Furthermore, it is
straightforward to adapt the solitaire hardness proof to the case of a complete hex-grid without holes using a construction
similar to the proof of Lemma 2 in [2]. However, this approach does not seem to work for the two-player game (strings are
represented by concentric rings of different colors; the second playerwould have towork from inside out but simultaneously
for all these rings). Hencewepose the openproblemof deciding the complexity of the two-player gameon a hex-gridwithout
holes.
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Another open question is whether the two-player game is PSPACE-complete on series-parallel graphs and/or planar
graphs. Finally, we conjecture that the solitaire version is NP-hard on trees even for three colors, whereas we only managed
to establish NP-hardness for the case of four colors.
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