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Abstract

We consider a partially hyperbolic set K on a Riemannian manifold M whose tangent space splits as
TKM = Ecu ⊕ Es , for which the center-unstable direction Ecu expands non-uniformly on some local
unstable disk. We show that under these assumptions f induces a Gibbs–Markov structure. Moreover, the
decay of the return time function can be controlled in terms of the time typical points need to achieve some
uniform expanding behavior in the center-unstable direction. As an application of the main result we obtain
certain rates for decay of correlations, large deviations, an almost sure invariance principle and the validity
of the central limit theorem.
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1. Introduction

Remarkable advances in the study of dynamical systems, specially the statistical properties of
those with chaotic behavior, have been achieved through the idea of inducing. Roughly speaking,
this consists of replacing the initial dynamical system by another one whose dynamical features
are easier to understand and from which one can recover much information on the initial system.
This idea goes back to the 70’s where Markov partitions have been used to study the statistical
properties of uniformly hyperbolic dynamical systems via conjugations to shifts. Since then,
a main goal in dynamical systems theory is to enlarge that strategy to wider classes of systems.

A main achievement in this direction has been attained by Young in [23,24]. In these works
she developed an abstract framework, the Young towers, that proved usefulness in a systematic
treatment of several classes of dynamical systems, including Axiom A attractors, piecewise hy-
perbolic maps, billiards with convex scatterers, logistic maps, intermittent maps and Hénon-type
attractors. The latter case has actually been treated by Benedicks and Young in [9]. A prepon-
derant role in this context is played by Gibbs–Markov structures, which may be understood as
a generalization of the classical Markov partitions and are naturally associated to an inducing
scheme that gives rise to a Young tower. Many statistical properties on the dynamics of these
induced structures can be recovered from the Gibbs–Markov map that one obtains quotient-
ing out by stable leaves. Gibbs–Markov maps constitute themselves object of great dynamical
interest; see e.g. [2,3] for Aaronson and Denker contributions on the statistical properties of
Gibbs–Markov maps, whose main ideas go back to Aaronson’s book [1] on infinite ergodic the-
ory.

A Gibbs–Markov structure is characterized by a suitable region of the phase space partitioned
into subsets (possibly infinitely many) each of which with a given return time. Comparing to
the classical Markov partitions, a main difference lies on the possibility of infinitely many re-
turn times, as long as the measure of points with larger and larger returns decays to zero. The
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flexibility conferred by the chance of arbitrarily large return times is a fundamental step to-
wards applications to non-uniformly hyperbolic dynamical systems, where large waiting times
are needed to reach good expansion rates in the center-unstable direction of some points. In cer-
tain cases we are able to determine the speed at which the return times decay, given in terms of
the time that generic points need to achieve the good expansion rates.

Dynamical systems that do not fit the class of uniformly hyperbolic ones but combine non-
uniform expanding/contracting central directions with other directions of uniformly hyperbolic
behavior give rise to a wider class of partially hyperbolic dynamical systems. The case of par-
tially hyperbolic diffeomorphisms for which the tangent bundle over some attracting set splits
as Ecs ⊕ Eu, the sum of one invariant sub-bundle with non-uniformly contracting behavior and
another one with uniformly expanding behavior, has been treated in [12], where some Gibbs–
Markov structures were obtained to deduce decay of correlations and the validity of the central
limit theorem for the SRB measures which had been obtained in [10]; see also [11,21]. Limit
theorems for partially hyperbolic systems of this type were also obtained in [13].

Our main goal in this work is to prove the existence of Gibbs–Markov structures in the case
of partially hyperbolic diffeomorphisms with an attracting set over which the tangent bundle
splits as Es ⊕ Ecu, the sum of a sub-bundle Es having uniformly contracting behavior with
another one Ecu having non-uniform expanding behavior. This kind of attracting set has been
previously considered in [5], where the existence of SRB measures was established. The method
used in [5] is based on the simple idea of iterating forward Lebesgue measure on some center-
unstable disk and obtaining the absolute continuity with respect to Lebesgue measure on local
unstable disks of weak* accumulation points. Due to the simplicity of the method, it gives not
much information on the properties of such SRB measures. As a byproduct of the machinery
that we develop here, we are also able to deduce the existence of the SRB measure. Our method
uses deeper knowledge on the geometrical structure of the attractor, thus enabling us to prove the
existence of a Gibbs–Markov structure inside it, leading to an inducing scheme. As an immediate
consequence of our main result, combined with others from [8,18,20], we easily deduce some
statistical properties of these dynamical systems, namely decay of correlations, central limit
theorem, large deviations and a multidimensional almost sure invariant principle. Let us point out
that the case Es ⊕ Ecu that we consider here is, for our purposes, considerably more difficult to
deal with than the dual case Ecs ⊕Eu, since the richest part of the dynamics in the neighborhood
of an attracting set occurs in the unstable direction, where in our case the expansion is attained
just asymptotically.

The final part of the proof of our main result follows the strategy used in [6] for non-
uniformly expanding endomorphisms (non-invertible smooth dynamical systems). The argument
gives no optimal conclusions outside the polynomial case. The lack of efficiency for expo-
nential or subexponential decays essentially relies on [6, Proposition 6.1] which still has no
suitable generalizations. A main achievement in this direction has been obtained in [14] by
mean of a different geometrical construction, leading to exponential and subexponential de-
cays of return times. The construction in [6] can be thought of as being local, in the sense that
the partition is obtained by considering convenient returns of points in a small disk to itself.
The construction performed in [14] uses instead a finite global partition of the whole attractor
as a starting point. However, this strategy has no natural generalization to the present setting
of partially hyperbolic diffeomorphisms, mostly due to the non-compactness of unstable mani-
folds.
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1.1. Overview

This paper is organized as follows. In the remaining of this introduction we consider three
subsections. In the first one we define the Gibbs–Markov structures. In the second subsection we
introduce partial hyperbolicity and state our main result on the existence of Gibbs–Markov struc-
tures for certain partially hyperbolic attractors. In the final subsection we define some limit laws
and state some statistical consequences of our main result. In Section 2 we recall some results on
hyperbolic times and bounded distortion from [5]. The construction of Gibbs–Markov structures
for partially hyperbolic attractors is performed in Section 3. We begin with some results on the
recurrence of disks, and then present an algorithmic construction that gives rise to the product
structure. Finally, in Section 3.5 we prove some results on the regularity of the stable and un-
stable foliations. This comprises the generalization of classical results for uniformly hyperbolic
attractors to our setting, namely the Hölder continuity of the central-unstable direction and the
absolute continuity of the stable foliation. Finally, the estimates on the decay of return times is
obtained in Section 4.

1.2. Gibbs–Markov structures

Here we present the structures which have been introduced in [23] and constitute the main
object of our interest. These structures comprise the dynamical and geometrical essence of the
return map to the base of a Young tower.

Let f : M → M be a diffeomorphism of a Riemannian manifold M . We say that f is C1+
if f is C1 and Df is Hölder continuous. Let Leb denote the Lebesgue measure on the Borel
sets of M associated to the Riemannian structure. Given a submanifold γ ⊂ M we use Lebγ to
denote the Lebesgue measure on γ induced by the restriction of the Riemannian structure to γ .

An embedded disk γ ⊂ M is called an unstable manifold if dist(f −n(x), f −n(y)) → 0 as
n → ∞ for every x, y ∈ γ . Similarly, γ is called a stable manifold if dist(f n(x), f n(y)) → 0 as
n → ∞ for every x, y ∈ γ . Let Emb1(Du,M) be the space of C1 embeddings from Du into M .
We say that Γ u = {γ u} is a continuous family of C1 unstable manifolds if there is a compact
set Ks , a unit disk Du of some R

n, and a map Φu :Ks × Du → M such that

• γ u = Φu({x} × Du) is an unstable manifold;
• Φu maps Ks × Du homeomorphically onto its image;
• x �→ Φu|({x} × Du) is a continuous map from Ks to Emb1(Du,M).

Continuous families of C1 stable manifolds are defined similarly. We say that Λ ⊂ M has a prod-
uct structure if there exist a continuous family of unstable manifolds Γ u = {γ u} and a continuous
family of stable manifolds Γ s = {γ s} such that

• Λ = (
⋃

γ u) ∩ (
⋃

γ s);
• dimγ u + dimγ s = dimM ;
• each γ s meets each γ u in exactly one point;
• stable and unstable manifolds meet transversally with angles bounded away from 0.

Let Λ ⊂ M have a product structure whose associated defining families are Γ s and Γ u. A sub-
set Λ0 ⊂ Λ is called an s-subset if Λ0 also has a hyperbolic product structure, and its defining
families, Γ s and Γ u, can be chosen with Γ s ⊂ Γ s and Γ u = Γ u; u-subsets are defined similarly.
0 0 0 0
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Given x ∈ Λ, let γ ∗(x) denote the element of Γ ∗ containing x, for ∗ = s, u. For each n � 1 we
let (f n)u denote the restriction of the map f n to γ u-disks and detD(f n)u denote the Jacobian
of D(f n)u.

We require that the product structure satisfies several properties that we explicit below in
(P1)–(P5). From here on we assume that C > 0 and 0 < β < 1 are constants depending only
on f and Λ.

(P1) Markov: there are pairwise disjoint s-subsets Λ1,Λ2, . . . ⊂ Λ such that
(a) Lebγ ((Λ \ ⋃

Λi) ∩ γ ) = 0 on each γ ∈ Γ u;
(b) for each i ∈ N there is Ri ∈ N such that f Ri (Λi) is u-subset, and for all x ∈ Λi

f Ri
(
γ s(x)

) ⊂ γ s
(
f Ri (x)

)
and f Ri

(
γ u(x)

) ⊃ γ u
(
f Ri (x)

)
.

This allows us to define the return time function R :Λ → N as R|Λi = Ri .
(P2) Contraction on Γ s : for all y ∈ γ s(x) and n � 1

dist
(
f n(y), f n(x)

)
� Cβn.

(P3) Backward contraction on Γ u: for all x, y ∈ Λi with y ∈ γ u(x), and 0 � n < Ri

dist
(
f n(y), f n(x)

)
� CβRi−n dist

(
f Ri (x), f Ri (y)

)
.

(P4) Bounded distortion: for all x, y ∈ Λi with y ∈ γ u(x)

log
detD(f Ri )u(x)

detD(f Ri )u(y)
� C dist

(
f Ri (x), f Ri (y)

)η
.

(P5) Regularity of the foliations:
(a) for all y ∈ γ s(x) and n � 0

log
∞∏

i=n

detDf u(f i(x))

detDf u(f i(y))
� Cβn;

(b) given γ, γ ′ ∈ Γ u, define φ :γ ∩Λ → γ ′ ∩Λ as φ(x) = γ s(x)∩γ . Then φ is absolutely
continuous and

d(φ−1∗ Lebγ )

d Lebγ ′
(x) =

∞∏
i=0

detDf u(f i(x))

detDf u(f i(φ(x)))
.

See Section 3.5 for a precise definition of absolute continuity. A set with a product structure for
which properties (P1)–(P5) above hold will be called a Gibbs–Markov structure.

1.3. Partially hyperbolic attractors

Let K ⊂ M be a compact invariant set for a C1 diffeomorphism f :M → M , meaning that
f (K) = K . We say that K has a dominated splitting if there exists a continuous Df -invariant
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splitting TKM = Ecs ⊕ Ecu and 0 < λ < 1 such that for some choice of a Riemannian metric
on M

∥∥Df
∣∣ Ecs

x

∥∥ · ∥∥Df −1
∣∣ Ecu

f (x)

∥∥ � λ, for all x ∈ K. (1)

We call Ecs the center-stable bundle and Ecu the center-unstable bundle. We say that K is
partially hyperbolic if it has a dominated splitting TKM = Ecs ⊕Ecu for which Ecs is uniformly
contracting: there is 0 < λ < 1 such that for some choice of a Riemannian metric on M

∥∥Df
∣∣ Ecs

x

∥∥ � λ, for all x ∈ K. (2)

Fixing some small number c > 0, we say that f is non-uniformly expanding in the central-
unstable direction at a point x ∈ K if

lim sup
n→+∞

1

n

n∑
j=1

log
∥∥Df −1

∣∣ Ecu
f j (x)

∥∥ < −c. (NUE)

We define the expansion time function

E (x) = min

{
N � 1:

1

n

n−1∑
i=0

log
∥∥Df −1

∣∣ Ecu
f i(x)

∥∥ < −c, ∀n � N

}
. (3)

Note that E (x) is finite for the points x ∈ K satisfying (NUE).
In this work we consider partially hyperbolic sets of the same type of those considered in [5],

for which the center-stable direction is uniformly contracting and the central-unstable direction
is non-uniformly expanding. To highlight the uniform contraction in the center-stable direction
we shall write Es instead of Ecs.

Theorem A. Let f : M → M be a C1+ diffeomorphism and let K ⊂ M be a transitive partially
hyperbolic set such that TKM = Es ⊕ Ecu. Assume that for some local unstable disk D ⊂ K

and τ > 0 one has LebD{E > n} = O(n−τ ). Then there exists Λ ⊂ K with a Gibbs–Markov
structure. Moreover, Lebγ {R > n} = O(n−τ ) for any γ ∈ Γ u.

Remark 1.1. The existence of a disk D for which (NUE) is satisfied Lebesgue almost everywhere
can actually hold under very mild conditions. Indeed, as shown in [7, Theorem A], if K attracts
a positive Lebesgue measure set of points for which (NUE) holds, then K contains some local
unstable disk D for which (NUE) holds for LebD almost every point.

Remark 1.2. Under the assumptions of Theorem A we are able to say more about the set Λ

with the product structure. Actually, our construction gives that the set Λ itself coincides with
the union of the leaves in Γ u. This is not always the case, e.g. for Hénon attractors Λ is a Cantor
set; see [9].

An open class of diffeomorphisms for which K = M is partially hyperbolic and satisfies the
assumptions of Theorem A can be found in [5, Appendix A]. The calculations in [5] give that for
such diffeomorphisms one has LebD{E > n} decaying exponentially fast, which then implies that
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Lebγ {R > n} has super-polynomial decay, meaning that it decays faster than any polynomial.
Transitivity of the diffeomorphisms in that class has been proved in [22].

1.4. Limit laws

An f -invariant Borel probability μ in M is called an SRB measure if, for a positive Lebesgue
measure set of points x ∈ M ,

lim
n→+∞

1

n

n−1∑
j=0

ϕ
(
f j (x)

) =
∫

ϕ dμ, for any continuous ϕ : M → R. (4)

Defining the correlation function of observables ϕ,ψ :M → R as

Cn(ϕ,ψ) =
∣∣∣∣
∫ (

ϕ ◦ f n
)
ψ dμ −

∫
ϕ dμ

∫
ψ dμ

∣∣∣∣,
it is sometimes possible to obtain specific rates for which Cn(ϕ,ψ) decays to 0 as n tends to
infinity, at least for certain classes of observables with some regularity. Note that taking the
observables as characteristic functions of Borel sets we are led to the classical definition of
mixing.

The next two corollaries follow from Theorem A together with [8, Theorem B] and [8, Theo-
rem C]; see also [8, Remark 2.4].

Corollary B (Decay of correlations). Let f : M → M be a C1+ diffeomorphism and let K ⊂ M

be a transitive partially hyperbolic set such that TKM = Es ⊕ Ecu. Assume that there is a local
unstable disk D ⊂ K and τ > 1 such that LebD{E > n} = O(n−τ ). Then some power of f has
an SRB measure μ and Cn(ϕ,ψ) = O(n−τ+1) for Hölder continuous ϕ,ψ :M → R.

The existence of the SRB measure for f has already been proved in [5, Theorem A]. In
general, we can only assure that the correlation decay holds for some power of f . However, if
the return times associated to the elements of the Gibbs–Markov structure given by Theorem A
are relatively prime, i.e. gcd{Ri} = 1, then the same conclusion holds with respect to f . For
simplicity, from here on we assume that gcd{Ri} = 1. Otherwise, the same conclusions hold for
some power of f .

In the next result we obtain conditions for the validity of the Central Limit Theorem (CLT),
which states that the deviation of the average values of an observable along an orbit from the
asymptotic average is given by a Normal Distribution: given any Hölder continuous ϕ :M → R

which is not a coboundary (ϕ �= ψ ◦ f − ψ for any ψ ∈ L2) there exists σ > 0 such that

1√
n

n−1∑
j=0

(
ϕ ◦ f j −

∫
ϕ dμ

)
distr−−→ N(0, σ ), as n → ∞.

Corollary C (Central limit theorem). Let f : M → M be a C1+ diffeomorphism and let K ⊂ M

be a transitive partially hyperbolic set with TKM = Es ⊕ Ecu. Assume that there is a local
unstable disk D ⊂ K and τ > 2 such that LebD{E > n} = O(n−τ ). Then CLT holds for any
Hölder continuous ϕ :M → R which is not a coboundary.
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Given a Hölder continuous observable ϕ :M → R and ε > 0, we define the large deviation of
the time average with respect to the mean of ϕ as

Dn(ϕ, ε) = μ

({
x ∈ M:

∣∣∣∣∣1

n

n−1∑
j=0

ϕ
(
f j (x)

) −
∫

ϕ dμ

∣∣∣∣∣ > ε

})
.

The next result is a consequence of Theorem A together with [19, Theorem 4.2] and [18, Theo-
rem 1.2].

Corollary D (Large deviations). Let f : M → M be a C1+ diffeomorphism and let K ⊂ M be a
transitive partially hyperbolic set with TKM = Es ⊕ Ecu. Assume that there is a local unstable
disk D ⊂ K and τ > 2 such that LebD{E > n} = O(n−τ ). Then, for any Hölder continuous
ϕ :M → R and any ε > 0, we have Dn(ϕ, ε) = O(n−τ+1).

Given d � 1 and a Hölder continuous ϕ :M → R
d , we denote ϕn = ∑n−1

j=0(ϕ ◦ f j − ∫
ϕ dμ),

for each n � 1. We say that the sequence {ϕn}n satisfies a d-dimensional almost sure invariance
principle (ASIP) if there exists λ > 0 and a probability space supporting a sequence of random
variables {ϕ∗

n}n and a d-dimensional Brownian motion W(t) such that

1. {ϕn}n and {ϕ∗
n}n are equally distributed;

2. ϕ∗
n = W(n) + O(n1/2−λ), as n → ∞, almost everywhere.

The ASIP is said to be non-degenerate if the Brownian motion W(t) has non-singular covariance
matrix Σ . For the dynamical systems considered in this paper, there is a closed subspace Z of
infinite codimension in the space of all (piecewise) Hölder ϕ :M → R

d such that Σ is non-
singular whenever ϕ /∈ Z; see [20, Remark 1.2] and [16, Section 4.3].

The next result follows from Theorem A and [20, Theorem 1.6], and it strengthens Corollary C
above.

Corollary E (Almost sure invariance principle). Let f : M → M be a C1+ diffeomorphism and
let K ⊂ M be a transitive partially hyperbolic set with TKM = Es ⊕ Ecu. Assume that there is
a local unstable disk D ⊂ K and τ > 2 such that LebD{E > n} = O(n−τ ). Then {ϕn}n satisfies
an ASIP for any Hölder continuous ϕ /∈ Z.

2. Preliminaries

With the only exception of Lemma 2.7, the material contained in this section comes from [5].
Our aim is to recall some results on the Hölder continuity of the tangent direction of center-
unstable submanifolds, to introduce hyperbolic times and recall their main properties.

We fix continuous extensions of the two subbundles Es and Ecu to some neighborhood U of
K that we denote by Ẽs and Ẽcu. We do not require these extensions to be invariant under Df .
Given 0 < a < 1, we define the center-unstable cone field Ccu

a = (Ccu
a (x))x∈U of width a by

Ccu
a (x) = {

v1 + v2 ∈ Ẽs
x ⊕ Ẽcu

x such that ‖v1‖ � a‖v2‖
}
. (5)

We define the center-stable cone field Cs
a = (Cs

a(x))x∈U of width a in a similar way, simply
reversing the roles of the subbundles in (5). We fix a > 0 and U small enough so that, up to
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slightly increasing λ < 1, the domination condition (1) remains valid for any pair of vectors in
the two cone fields:

∥∥Df (x)vs
∥∥ · ∥∥Df −1(f (x)

)
vcu

∥∥ � λ
∥∥vs

∥∥∥∥vcu
∥∥

for every vs ∈ Cs
a(x), vcu ∈ Ccu

a (f (x)), and any point x ∈ U ∩ f −1(U). Note that the center-
unstable cone field is positively invariant:

Df (x)Ccu
a (x) ⊂ Ccu

a

(
f (x)

)
, whenever x,f (x) ∈ U .

Actually, the domination property together with the invariance of Ecu = Ẽcu|K imply that

Df (x)Ccu
a (x) ⊂ Ccu

λa

(
f (x)

) ⊂ Ccu
a

(
f (x)

)
,

for every x ∈ K , and this extends to any x ∈ U ∩ f −1(U) just by continuity.
We say that an embedded C1 submanifold N ⊂ U is tangent to the center-unstable cone

field, if the tangent subspace to N at each point x ∈ N is contained in the corresponding cone
Ccu

a (x). Then f (N) is also tangent to the center-unstable cone field, if it is contained in U , by
the domination property. The tangent bundle of N is said to be Hölder continuous if x �→ TxN

defines a Hölder continuous section from N to the corresponding Grassman bundle of M . Given
a C1 submanifold N ⊂ U , we define

κ(N) = inf
{
C > 0: the tangent bundle of N is (C, ζ )-Hölder

}
. (6)

The next result contains all the information we need on the Hölder control of the tangent direction
and its proof can be found in [5, Corollary 2.4].

Proposition 2.1. There exists C1 > 0 such that, given any C1 submanifold N ⊂ U tangent to the
center-unstable cone field, then

1. there exists n0 � 1 such that κ(f n(N)) � C1 for every n � n0 such that f k(N) ⊂ U for all
0 � k � n;

2. if κ(N) � C1, then κ(f n(N)) � C1 for every n � 1 such that f k(N) ⊂ U for all 0 � k � n;
3. if N and n are as in the previous item, then the functions

Jk : f k(N) � x �→ log
∣∣det

(
Df

∣∣ Txf
k(N)

)∣∣, 0 � k � n,

are (L1, ζ )-Hölder continuous with L1 > 0 depending only on C1 and f .

The notion we introduce next allows us to derive uniform expansion and bounded distortion
estimates from the non-uniform expansion assumption in the center-unstable direction.

Definition 2.2. Given 0 < σ < 1, we say that n is a σ -hyperbolic time for x ∈ K if

n∏
j=n−k+1

∥∥Df −1
∣∣ Ecu

f j (x)

∥∥ � σk, for all 1 � k � n.
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In particular, if n is a σ -hyperbolic time for x, then Df −k | Ecu
f n(x) is a contraction for every

1 � k � n:

∥∥Df −k
∣∣ Ecu

f n(x)

∥∥ �
n∏

j=n−k+1

∥∥Df −1
∣∣ Ecu

f j (x)

∥∥ � σk. (7)

If a > 0 is sufficiently small and we choose δ1 > 0 also small so that the δ1-neighborhood of
K is contained in U , then, by continuity,

∥∥Df −1(f (y)
)
v
∥∥ � 1√

σ

∥∥Df −1
∣∣ Ecu

f (x)

∥∥‖v‖, (8)

whenever x ∈ K , dist(x, y) � δ1, and v ∈ Ccu
a (y).

Given any disk Δ ⊂ M , we use distΔ(x, y) to denote the distance between x, y ∈ Δ, mea-
sured along Δ. The distance from a point x ∈ Δ to the boundary of Δ is distΔ(x, ∂Δ) =
infy∈∂Δ distΔ(x, y). The next result has essentially been proved in [5, Lemma 2.7]; see [7,
Lemma 4.2] for a detailed proof.

Lemma 2.3. Let 0 < δ < δ1 and Δ ⊂ U be a C1 disk of radius δ tangent to the center-unstable
cone field. Then, there is n0 � 1 such that for x ∈ Δ ∩ K with distΔ(x, ∂Δ) � δ/2 and n � n0 a
σ -hyperbolic time for x there is a neighborhood Vn of x in Δ such that:

1. f n maps Vn diffeomorphically onto a center-unstable disk of radius δ1 around f n(x);
2. for every 1 � k � n and y, z ∈ Vn,

distf n−k(Vn)

(
f n−k(y), f n−k(z)

)
� σk/2 distf n(Vn)

(
f n(y), f n(z)

)
.

We call the sets Vn hyperbolic pre-balls and their images f n(Vn) hyperbolic balls. Notice
that the latter are indeed center-unstable balls of radius δ1. The next result follows from Proposi-
tion 2.1 and Lemma 2.3 above exactly as in the proof of [5, Proposition 2.8].

Corollary 2.4. There exists C2 > 1 such that given a disk Δ as in Lemma 2.3 with κ(Δ) � C1,
and given any hyperbolic pre-ball Vn ⊂ Δ with n � n0, then for all y, z ∈ Vn

log
|detDf n | TyΔ|
|detDf n | TzΔ| � C2 distf n(D)

(
f n(y), f n(y)

)ζ
.

The next result states the existence of σ -hyperbolic times for points satisfying (NUE) and its
proof can be found in [5, Lemma 3.1, Corollary 3.2].

Proposition 2.5. There are θ > 0 and σ > 0 such that for every x ∈ K with E (x) � n there exist
σ -hyperbolic times 1 � n1 < · · · < nl � n for x with l � θn.

Given n � 1, we define

Hn = {x ∈ K: n is a σ -hyperbolic time for x}.



1716 J.F. Alves, V. Pinheiro / Advances in Mathematics 223 (2010) 1706–1730
The next result follows from the proposition above as in [5, Proposition 3.5] or [6, Corollary 2.3].
It plays important role in the metric estimates of Section 4.

Corollary 2.6. Let D be a local unstable disk for which (NUE) holds LebD almost everywhere.
Given n � 1 and A ⊂ D \ {E > n} with LebD(A) > 0 we have

1

n

n∑
j=1

LebD(A ∩ Hj)

LebD(A)
� θ.

We finish this section with a technical lemma which will be useful in the proof of Proposi-
tion 4.3. We take δs > 0 sufficiently small so that local stable manifolds Ws

δs
(x) are defined for

all points x ∈ K and

∣∣log
∥∥Df −1

∣∣ Ecu
x

∥∥ − log
∥∥Df −1

∣∣ Ẽcu
y

∥∥∣∣ <
c

4
, (9)

for all x ∈ K and y ∈ Ws
δs

(x), where c > 0 is given by (NUE).

Lemma 2.7. Given 0 < ε < δ1, there exists Nε > 0 such that for every n � n0 and every x ∈
D ∩ Hn, the ball of radius ε centered at f n(z) inside the hyperbolic ball f n(Vn(x)) contains a
hyperbolic pre-ball Vk(z) with k � Nε .

Proof. Given n � n0 and x ∈ D ∩ Hn, let Bn
x = f n(Vn(x)) be the hyperbolic ball associated to

x with hyperbolic time n. Recall that Bn
x is a center-unstable ball of radius δ1 around f n(x). We

define the cylinder

Cn
x =

⋃
y∈Bn

x

Ws
δs

(y).

Since (NUE) holds for LebD almost every point and it remains valid by forward iteration, it
follows that LebBn

x
almost every point in Bn

x also satisfies (NUE). Given z ∈ Cn
x , we define

Ẽ (z) = min

{
N � 1:

1

n

n−1∑
i=0

log
∥∥Df −1

∣∣ Ẽcu
f i(w)

∥∥ < −3c

4
, ∀n � N

}
.

The fact that (NUE) holds for LebBn
x

almost every point in Bn
x together with (9) imply that Ẽ (z)

is well defined for Leb almost every point z ∈ Cn
x . Hence Ẽ (z) is well defined for Leb almost

every point z belonging to the set

C =
⋃

n�n0

Cn
x .
x∈D∩Hn
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Using Lemma 2.3 we may choose nε large enough so that any hyperbolic pre-ball of σ -hyper-
bolic time n � nε will have diameter not exceeding ε/2. Let now Bn

x (ε/2) denote the ball of
radius ε/2 around f n(x) inside Bn

x , and take

vε = min
n�n0

x∈D∩Hn

{
Leb

( ⋃
y∈Bn

x (ε/2)

Ws
δs

(y)

)}
.

Since the sizes and tangent directions of hyperbolic balls and stable disks are uniformly con-
trolled, this minimum vε must be strictly positive. Hence, as

Leb
{
z ∈ C: Ẽ (z) > n

} → 0, when n → ∞,

it is possible to choose Nε ∈ N large enough so that

Leb
{
z ∈ C: Ẽ (z) > Nε

}
� vε. (10)

We take Nε also satisfying θNε > nε . By the choice of vε , given n � n0 and x ∈ D ∩ Hn there
must be some z ∈ Ws

δs
(y) with y ∈ Bn

x (ε/2) such that Ẽ (z) � Nε . Using (9) we easily deduce
that E (z) � Nε; recall (3). Hence, by Proposition 2.5 there exists some σ -hyperbolic time h for
y with θNε < h � Nε . Since we have taken θNε > nε , then by the choice of nε we are done. �
3. Gibbs–Markov structure

In this section we describe the geometric construction of the product structure. This will be
made in three steps. In the first one we prove the existence of a center-unstable disk (a reference
disk) for which forward iterates come back to a neighborhood of itself, and whose projection
along stable leaves cover the disk completely. In the next step we use these returns to define a
partition on the reference disk. This part of the construction follows ideas from [6, Section 3].
Finally we use the partition on the reference leaf and the returns to define the product structure.

3.1. Returning disks

Let D be a local unstable disk as in Theorem A. Diminishing δ1 > 0, if necessary, we may
assume that D has radius δ1. Take 0 < δs < δ1/2 such that points in K have local stable manifolds
of radius δs . In particular, these local stable manifolds are contained in U ; recall (8).

Lemma 3.1. There are N0 � 1 and q ∈ K such that:

1. Ws
δs/2(q) intersects D in a point p with distD(p, ∂D) > δ1/2;

2. for each center-unstable disk γ u
1 of radius δ1 centered at a point in K there are 0 � j � N0

and a disk γ u
2 ⊂ γ u

1 of radius δ1/2 centered at a point z ∈ Ws
δs/4(f

−j (q)).

Proof. We start by observing that there is a constant α = α(ρ) > 0 with α → 0 as ρ → 0 for
which the following holds: given x ∈ K , ρ > 0 and y ∈ K with dist(x, y) < ρ having a local
unstable disk of radius δ1 centered at y, then Ws

δs
(x) intersects Wu

δ1
(y) in a point z with

distWs (x)(z, x) < α and distWu (y)(z, y) < δ1/2.

δs δ1
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In particular, such a point z has a neighborhood of radius δ1/2 inside Wu
δ1

(y).
Take ρ > 0 small so that 4α < δs . Since we are assuming f |K transitive, we may fix q ∈ K

and N0 ∈ N such that both (i) Ws
δs/2(q) intersects D in a point p with distD(p, ∂D) > δ1/2, and

(ii) {f −N0(q), . . . , f −1(q), q} is ρ-dense in K . By ρ-dense we mean that any other point in K

has one of the points in the set above at a distance less than ρ.
Hence, given any center-unstable disk γ u

1 of radius δ1 centered at a point y ∈ K , there
is 0 � j � N0 such that dist(f −j (q), y) < ρ. Then, by the choice of α and ρ, we have
that Ws

δs
(f −j (q)) intersects γ u

1 in a point z with distWs
δs

(f −j (q))(z, f
−j (q)) < α < δs/4 and

distγ u
1
(z, y) < δ1/2. �

Lemma 3.2. There is δ2 > 0 such that if γ u is a center-unstable disk of radius δ1/2 centered at a
point z ∈ Ws

δs
(w) with w ∈ K , then f j (γ u) contains a center-unstable disk of radius δ2 centered

at f j (z), for each 1 � j � N0.

Proof. Let us first prove the result for j = 1. Let f (y) be a point in ∂f (γ u) minimizing the
distance from f (z) to ∂f (γ u), and let η1 be a curve of minimal length in f (γ u) connecting f (z)

to f (y). Define η0 = f −1(η1). Denote by η̇1(x) the tangent vector to the curve η1 at the point x.
Then, ∥∥Df −1(w)η̇1(x)

∥∥ � C
∥∥η̇1(x)

∥∥,

where

C = max
x∈M

{∥∥Df −1(x)
∥∥}

� 1.

Hence,

length(η0) � C length(η1).

Noting that η0 is a curve connecting z to y ∈ ∂γ u, this implies that length(η0) � δ1/2. Hence

length(η1) � C−1 length(η0) � C−1δ1/2.

Thus f (γ u) contains the disk γ u
1 of radius C−1δ1/2 around f (z). Moreover,

dist
(
f (z), f (w)

)
� λδs < δs,

and so, by the choice of δs , we have that γ u
1 is also a center-unstable disk. Making now γ u

1 play
the role of γ u and f 2(z) play the role of f (z) we prove that:

(a) f (γ u
1 ) contains a center-unstable disk of radius C−2δ1/22 centered at f 2(z);

(b) dist(f 2(z), f 2(w)) � λ2δs < δs .

Item (a) gives in particular that f 2(γ u) contains a center-unstable disk of radius C−2δ1/22 cen-
tered at f 2(z). Arguing inductively we are able to prove that f j (γ u) contains a disk of radius
C−j δ1/2j � C−N0δ1/2N0 around f j (z), for each 1 � j � N0. Hence, we just have to take
δ2 = C−N0δ1/2N0 . �
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3.2. Partition on the reference leaf

The construction that we are going to explain below requires the use several constants. First
we take δ1 > 0 as in (8), and 0 < δ2 < δ1 as in Lemma 3.2. Then we take δ0 > 0 and ε > 0 so
that

δ0 � δ2 and ε � δ0.

Next we describe the construction of the (mD mod 0) partition P of the unstable disk of radius
δ0 centered at p contained in D. For that we consider the following neighborhoods of p in D

Δ0
0 = Bu(p, δ0), Δ1

0 = Bu(p,2δ0), Δ2
0 = Bu(p,

√
δ0) and Δ3

0 = Bu(p,2
√

δ0),

and the cylinders over these sets,

Ci =
⋃

x∈Δi
0

Ws
δs

(x), for i = 0,1,2,3.

Letting π denote the projection from C 3 onto Δ3
0 along local stable leaves, we have

π
(

Ci
) = Δi

0, for i = 0,1,2,3.

We say that a center-unstable disk γ u u-crosses Ci if π(γ u) = Δi
0.

Remark 3.3. To simplify the exposition we shall pretend that each center-unstable disk γ u u-
crossing Ci is still a disk centered at a point in Ws

δs
(p) with the same radius of Δi

0. Actually, the

radius of such a disk γ u is proportional to the radius of Δi
0, with the proportionality depending

only on the height of the cylinder and the angles of the two fiber bundles in the dominated
splitting.

Let ∂uC 3
1 denote the top and bottom components of ∂C 3, i.e. the set of points z ∈ ∂C 3 such that

z ∈ ∂Ws
δs

(x) for some x ∈ Δ3
0. By the domination property, we may take δ0 > 0 small so that no

center-unstable disk contained in C 3 and intersecting Ws
δs/2(p) can reach ∂uC 3. For 0 < σ < 1

given by Lemma 2.5, let

Ik = {
x ∈ Δ1

0: δ0
(
1 + σk/2) < distD(x,p) < δ0

(
1 + σ (k−1)/2)}, k � 1,

be a partition (LebD mod 0) into countably many rings of Δ1
0 \ Δ0

0.
We are now able to start with the construction of the partition P of Δ0. The construction

requires that we introduce inductively several objects. In particular, we will consider sequences
of sets (Δn), (An), and (Bn). For each n � 0, the set Δn is that part of Δ0 that has not yet been
partitioned up to time n. The set Δn is the disjoint union of An and Bn, where An is essentially
the part of Δn where new elements of partition may be appear in the next step of the construction,
and Bn is some protection that we put around the sets previously constructed in order to avoid
overlaps. For technical reasons, a small neighborhood Aε of each An will also be considered.
n
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3.2.1. First step of induction
We fix R0 some large integer, and we ignore any dynamics occurring up to time R0. Let

k � R0 + 1 be the first time that Δ0 ∩ Hk �= ∅. For j < k we define formally the objects

Aj = Aε
j = Δj = Δ0 and Bj = ∅.

Let (ω3
k,j )j be all the center-unstable disks in Aε

k−1 contained in hyperbolic pre-balls Vm, with

k − N0 � m � k, which are mapped by f k onto a center-unstable disk u-crossing C 3 and inter-
secting Ws

δs/4(p). Then we let

ωi
k,j = ω3

k,j ∩ f −k
(

Ci
)
, i = 0,1,2

and set R(x) = k for x ∈ ω0
k,j . We take

Δk = Δk−1 \ {R = k},
and define a function tk : Δk → N by

tk(x) =
{

s, if x ∈ ω1
k,j and π(f k(x)) ∈ Is for some j ;

0, otherwise.

Finally let

Ak = {
x ∈ Δk: tk(x) = 0

}
, Bk = {

x ∈ Δk: tk(x) > 0
}

and

Aε
k = {

x ∈ Δk: distf k+1(D)

(
f k+1(x), f k+1(Ak)

)
< ε

}
.

General step of induction
The general step of the construction follows the ideas above with minor modifications. As-

sume that the sets Δi , Ai , Aε
i Bi , {R = i} and functions ti : Δi → N are defined for each

i � n − 1. Let (ω3
n,j )j be all the center-unstable disks in Aε

n−1 contained in hyperbolic pre-
balls Vm, with n − N0 � m � n, which are mapped by f n onto a center-unstable disk u-crossing
C 3 and intersecting Ws

δs/4(p). Take

ωi
n,j = ω3

n,j ∩ f −n
(

Ci
1

)
, i = 0,1,2 (11)

set R(x) = n for x ∈ ω0
n,j , and let

Δn = Δn−1 \ {R = n}.
The definition of the function tn : Δn → N is slightly different in the general case:

tn(x) =

⎧⎪⎪⎨
⎪⎪⎩

x, if x ∈ ω1
n,j \ ω0

n,j and f n(x) ∈ Is for some j ,

0, if x ∈ An−1 \ ⋃
j ω1

n,j ,

t (x) − 1, if x ∈ B \ ⋃
ω1 .
n−1 n−1 j n,j
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Finally, we let

An = {
x ∈ Δn: tn(x) = 0

}
, Bn = {

x ∈ Δn: tn(x) > 0
}

and

Aε
n = {

x ∈ Δn: distf n+1(D)

(
f n+1(x), f n+1(An)

)
< ε

}
.

At this point we have described the construction of the sets An, Aε
n, Bn and {R = n}.

Since the components of {R = n} are taken in Aε
n−1, it could happen that these new compo-

nents intersect Bn−1. The next lemma shows that this is not the case as long as ε > 0 is taken
small enough. For notational simplicity we will drop the index j in the elements defined at (11).

Lemma 3.4. If ε > 0 is small, then ω1
n ∩ {tn−1 � 1} = ∅ for all n � 1.

Proof. Take k � 1 and let ω0
n−k be a component of {R = n − k}. Let Qk be the part of ω1

n−k

that is mapped by π ◦ f n−k onto Ik , and assume that Qk intersects some ω3
n. Recall that, by

construction, Qk is precisely that part of ω1
n−k on which tn−1 = 1, and ω3

n is contained in a
hyperbolic pre-ball Vm with n − N0 � m � n.

Let q1 and q2 be any two points in distinct components (inner and outer, respectively) of the
boundary of Qk . If we assume that q1, q2 ∈ ω3

n, then q1, q2 ∈ Vm, and so by Lemma 2.3 we have

distf n−k(D)

(
f n−k(q1), f

n−k(q2)
)
� C0σ

k/2 distf n(D)

(
f n(q1), f

n(q2)
)

(12)

for some C0 depending on N0. We also have for some C1 > 0 depending on the angle of the
stable and center-unstable spaces over K∞

distf n−k(D)

(
f n−k(q1), f

n−k(q2)
)
� C1δ0

(
1 + σ (k−1)/2) − δ0

(
1 + σk/2)

= C1δ0σ
k/2(σ−1/2 − 1

)
,

which combined with (12) gives

distf n(D)

(
f n(q1), f

n(q2)
)
� C1

C0
δ0

(
σ−1/2 − 1

)
.

On the other hand, since ω3
n ⊂ Aε

n−1 by construction of ω3
n, taking

ε <
C1

C0
δ0

(
σ−1/2 − 1

)
(13)

we have ω3
n ∩ {tn−1 > 1} = ∅. This implies ω1

n ∩ {tn−1 � 1} = ∅. �
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3.3. Product structure

Consider the center-unstable disk Δ0 ⊂ D and the partition P of Δ0 (LebD mod 0) defined in
Section 3.2. We shall use the elements of P to define the s-subsets that give rise to the hyperbolic
structure. Given an arbitrary element ω ∈ P , we have by construction some R(ω) ∈ N such that
f R(ω)(ω) is a center-unstable disk u-crossing C 0. We define Cω as the cylinder made by the stable
leaves passing through the points in ω, i.e.

Cω =
⋃
x∈ω

Ws
δs

(x).

The sets Cω, with ω ∈ P , are by definition the pairwise disjoint s-subsets Λ1,Λ2, . . . which
define the Markovian structure.

Now we define inductively some sets of center-unstable manifolds u-crossing C 0 that will
give rise to the family Γ u. The first one is

Γ0 = {Δ0}.

Having defined Γj , for some j � 0, we define

Γj+1 = {
f R(ω)(Cω ∩ γ ): ω ∈ P and γ ∈ Γj

}
.

Observe that each element of Γj is equal to an iterate of a subset of Δ0. In particular, the ele-
ments of each Γj are unstable manifolds. Moreover, since by construction f R(ω)(ω) intersects
Ws

δs/4(p), then according to the choice of δ0 and the invariance of the stable foliation, we have

that each element of Γj must u-cross C 0.
Since the union of the leaves of the sets Γj , with j � 0, is not necessarily compact, we still

need to take accumulation points of that union. Let

Δ∞ =
⋃
j�0

⋃
γj ∈Γj

γj .

Given x ∈ Δ∞, there are (jk)k → ∞, disks γjk
∈ Γjk

and points xk ∈ γjk
converging to x as

k → ∞. Using the domination property and Ascoli–Arzela theorem we conclude that the disks
γjk

converge to a disk γ∞ containing x. Since the disk γ∞ is accumulated by disks u-crossing
C 0 then it also must u-cross C 0. We define Γ∞ as the set of all these accumulation disks. Finally,
we take

Γ u =
⋃
j�0

Γj ∪ Γ∞.

3.4. Backward contraction and bounded distortion

The backward contraction property (P3) follows from Lemma 3.5 below. Bounded distor-
tion is typically a consequence of backward contraction together with some Hölder control of
log|detDf u|. Property (P4) follows naturally from Proposition 2.1 together with Lemma 3.5
exactly as in the proof of [5, Proposition 2.8].
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Lemma 3.5. There is C > 0 such that, given ω ∈ P and γ ∈ Γ u, we have for all 1 � k � R(ω)

and all x, y ∈ Cω ∩ γ

distf R(ω)−k(Cω∩γ )

(
f R(ω)−k(x), f R(ω)−k(y)

)
� Cσk/2 distf R(ω)(Cω∩γ )

(
f R(ω)(x), f R(ω)(y)

)
.

Proof. Recall that, by construction, for each ω ∈ P there is a hyperbolic pre-ball Vn(ω)(x) con-
taining ω associated to some point x ∈ D with σ -hyperbolic time n(ω) satisfying R(ω) − N0 �
n(ω) � R(ω). Taking δs, δ0 < δ1/2, it follows from (8) that n(ω) is a

√
σ -hyperbolic time for

every point in Cω ∩γ . Then, recall (7), this implies that for all 1 � k � n(ω) and all x, y ∈ Cω ∩γ

we have

distf n(ω)−k(Cω∩γ )

(
f n(ω)−k(x), f n(ω)−k(y)

)
� σk/2 distf n(ω)(Cω∩γ )

(
f n(ω)(x), f n(ω)(y)

)
.

Since the difference between R(ω) and n(ω) is at most N0, the result follows with C depending
only on N0 and the derivative of f . �
3.5. Regularity of the foliations

Here we prove property (P5). This is standard for uniformly hyperbolic attractors, and we
shall adapt classical ideas to our setting. We begin with the statement of a useful result on vector
bundles whose proof can be found in [15, Theorem 6.1].

Lemma 3.6. Let p :Y → X be a vector bundle over a metric space X endowed with an admissi-
ble metric. Let D ⊂ Y be the unit ball bundle, and F :D → D a map covering a homeomorphism
f :X → X. Suppose 0 � κ < 1 and that for each x ∈ X, the restriction Fx :Dx → Dx has Lips-
chitz constant Lip(Fx) � κ . Then

1. there is a unique section σ0 :X → D whose image is invariant under F ;
2. let Lip(f ) = c < ∞ and 0 < α � 1 be such that κcα < 1. Then σ0 satisfies a Hölder condi-

tion of exponent α.

For the sake of completeness, let us mention that a metric d on E is admissible if there is a
complementary bundle E′ over X, and an isomorphism h :E ⊕E′ → X ×A to a product bundle,
where A is a Banach space, such that d is induced from the product metric on X × A.

Theorem 3.7. Let f : M → M be a C1 diffeomorphism and let K ⊂ M be a compact invariant
set with a dominated splitting TKM = Ecs ⊕Ecu. Then the fiber bundles Ecs and Ecu are Hölder
continuous on K .

Proof. We consider the center-unstable bundle, the other one is similar. For each x ∈ K let Lx

be the space of bounded linear maps L(Ecu
x ,Ecs

x ). For each x ∈ K , let Lx(1) denote the unit ball
around 0 ∈ Lx , and define Γx : Lx(1) → Lf (x)(1) as the graph transform induced by Df (x):

Γx(μx) = (
Df

∣∣ Ecs
x

) · μx · (Df −1
∣∣ Ecu )

.
f (x)
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Consider L(Ecu,Ecs) the vector bundle over K whose fiber over x ∈ K is Lx , and let D be its
unit ball bundle. Then Γ : D → D is a bundle map covering f |K with

Lip(Γx) �
∥∥Df

∣∣ Ecs
x

∥∥ · ∥∥Df −1
∣∣ Ecu

f (x)

∥∥ � λ < 1.

Let c be a Lipschitz constant for |K , and choose 0 < α � 1 small so that λcα < 1. By Lemma 3.6
there exists a unique section σ0 :X → D whose image is invariant under F and it satisfies a
Hölder condition of exponent α. This unique section is necessarily the null section. �

The next result gives precisely (P5)(a).

Corollary 3.8. There are C > 0 and 0 < β < 1 such that for all y ∈ γ s(x) and n � 0

log
∞∏

i=n

detDf u(f i(x))

detDf u(f i(y))
� Cβn.

Proof. As we are assuming that Df is Hölder continuous, it follows from Theorem 3.7 that
log|detDf u| is Hölder continuous. The conclusion is then an immediate consequence of the
uniform contraction on stable leaves. �

Now we are going to prove (P5)(b). We start by introducing some useful notions. We say that
φ : N → P , where N and P are submanifolds of M , is absolutely continuous if it is an injective
map for which there exists J : N → R, called the Jacobian of φ, such that

LebP

(
φ(A)

) =
∫
A

Jd LebN .

Property (P5)(b) can be restated in the following terms:

Proposition 3.9. Given γ, γ ′ ∈ Γ u, define φ :γ ′ → γ by φ(x) = γ s(x)∩ γ . Then φ is absolutely
continuous and the Jacobian of φ is given by

J (x) =
∞∏
i=0

detDf u(f i(x))

detDf u(f i(φ(x)))
.

One can easily deduce from Corollary 3.8 that this infinite product converges uniformly. The
remaining of this section is devoted to the proof of Proposition 3.9. We start with a general result
about the convergence of Jacobians whose proof is given in [17, Theorem 3.3].

Lemma 3.10. Let N and P be manifolds, P with finite volume, and for each n � 1, φn : N → P

an absolutely continuous map with Jacobian Jn. Assume that

1. φn converges uniformly to an injective continuous map φ : N → P ;
2. Jn converges uniformly to an integrable function J : N → R.

Then φ is absolutely continuous with Jacobian J .
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For the sake of completeness, let us mention that there is a slight difference in our definition
of absolute continuity of maps. Contrarily to [17], and for reasons that will become clear in later,
we do not impose continuity of the maps φn. However, the proof of [17, Theorem 3.3] uses only
the continuity of the limit function φ, and so it still works in our case.

Consider now γ, γ ′ ∈ Γ u and φ :γ ′ → γ as in Proposition 3.9. The proof of the next lemma
is given in [17, Lemma 3.4] for uniformly hyperbolic diffeomorphisms. Nevertheless, one can
easily see that it is obtained as a consequence of [17, Lemma 3.8] whose proof uses only the
existence of a dominated splitting.

Lemma 3.11. For each n � 1, there is an absolutely continuous πn : f n(γ ) → f n(γ ′) with
Jacobian Gn satisfying

1. limn→∞ supx∈γ {distf n(γ ′)(πn(f
n(x)), f n(φ(x)))} = 0;

2. limn→∞ supx∈f n(γ ){|1 − Gn(x)|} = 0.

We consider the sequence of consecutive return times for points in Λ,

s1 = R and sn+1 = sn + R ◦ f sn, for n � 1.

Notice that these return time functions are defined Lebγ almost everywhere on each γ ∈ Γ u and
are piecewise constant.

Remark 3.12. Using the sequence of return times one can easily construct a sequence of (Lebγ

mod 0 on each γ ∈ Γ u) partitions (Pn)n by s-subsets of Λ with sn constant on each element
of Pn, for which (P1)–(P5) hold when we take sn playing the role of R and the elements of Pn

playing the role of the s-subsets. Moreover, the constants C > 0 and 0 < β < 1 can be chosen
not depending on n.

We define, for each n � 1, the map φn : γ → γ ′ as

φn = f −snπsnf
sn . (14)

It is straightforward to check that φn is absolutely continuous with Jacobian

Jn(x) = |det(Df sn)u(x)|
|det(Df sn)u(φn(x))| · Gsn

(
f sn(x)

)
. (15)

Observe that these functions are defined Lebγ almost everywhere. So, we may find a Borel set
F ⊂ γ with full Lebγ measure on which they are all defined. We extend φn to γ simply by
considering φn(x) = φ(x) and Jn(x) = J (x) for all n � 1 and x ∈ γ \ F . Since F has zero Lebγ

measure one still has that Jn is the Jacobian of φn.
Proposition 3.9 is and immediate consequence of Lemma 3.10 together with the next one.

Lemma 3.13. The maps φn converge uniformly to φ, and the Jacobians Jn converge uniformly
to J .
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Proof. It is enough to prove the convergence of each sequence restricted to F , i.e. restricted to
the set of points where the expressions of φn and Jn are given by (14) and (15) respectively.

Let us prove first that φn converges uniformly to φ. Using the backward contraction on unsta-
ble leaves given by (P3), recall Remark 3.12, we may write for x ∈ γ

distγ ′
(
φn(x),φ(x)

) = distγ ′
(
f −snπsnf

sn(x), f −snf snφ(x)
)

� Cβsn distf sn (γ ′)
(
πsnf

sn(x), f snφ(x)
)
.

Since sn → ∞ as n → ∞ and distf sn (γ ′)(πsnf
sn(x), f snφ(x)) is bounded by Lemma 3.11, we

have the uniform convergence of φn to φ.
By (15) we have

Jn(x) = |det(Df sn)u(x)|
|det(Df sn)u(φ(x))| · |det(Df sn)u(φ(x))|

|det(Df sn)u(φn(x))| · Gsn

(
f sn(x)

)
.

Using the chain rule and Corollary 3.8 it easily follows that the first term in the product
above converges uniformly to J (x). Moreover, the third term converges uniformly to one, by
Lemma 3.11. It remains to see that the middle term also converges uniformly to one. Recalling
Remark 3.12, by bounded distortion we have

|det(Df sn)u(φ(x))|
|det(Df sn)u(φn(x))| � exp

(
C distf sn (γ ′)

(
f sn

(
φ(x)

)
, f sn

(
φn(x)

))η)
= exp

(
C distf sn (γ ′)

(
f sn

(
φ(x)

)
,πsn

(
f sn(x)

))η)
.

Similarly we obtain

|det(Df sn)u(φ(x))|
|det(Df sn)u(φn(x))| � exp

(−C distf sn (γ ′)
(
f sn

(
φ(x)

)
,πsn

(
f sn(x)

))η)
.

The conclusion then follows from Lemma 3.11. �
4. Decay estimates

In this section we obtain the metric estimates on the decay of LebD{R > n} of Theorem A.
These estimates are an adaptation of similar ones from [6, Section 5] to our setting. We start
by proving estimates arising directly from the construction preformed in Section 3.2. In the
final part of the argument we use some results that have been put into an abstract setting in [4,
Section 4.5.2] and get the desired conclusion.

Lemma 4.1. There exists a0 > 0 such that

LebD(Bn−1 ∩ An) � a0 LebD(Bn−1),

for all n � 1.
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Proof. It is enough to see this for each component of Bn−1. Let C be a component of Bn−1
and let Q be its outer ring, corresponding to tn−1 = 1. Observe that by Lemma 3.4 we have
Q = C ∩ An. Moreover, there must be some k < n and a component ω0

k of {R = k} such that
π ◦ f k maps C diffeomorphically onto

⋃∞
i=k Ii and Q onto Ik , both with uniform bounded

distortion as in Corollary 2.4. Thus, it is sufficient to compare the Lebesgue measures of
⋃∞

i=k Ii

and Ik . We have

LebD(Ik)

LebD(
⋃∞

i=k Ii)
≈

[δ0(1 + σ (k−1)/2)]u − [δ0(1 + σk/2)]u
[δ0(1 + σ (k−1)/2)]u − δu

0
≈ 1 − σ 1/2,

where u is the dimension of Ecu. �
Lemma 4.2. There exist b0, c0 > 0 with b0, c0 → 0 as δ0 → 0, such that

1. LebD(An−1 ∩ Bn) � b0 LebD(An−1),
2. LebD(An−1 ∩ {R = n}) � c0 LebD(An−1),

for all n � 1.

Proof. It is enough to prove this for each neighborhood of a component ω0
n of {R = n}. Observe

that by construction we have ω3
n ⊂ Aε

n−1, which means that ω2
n ⊂ An−1, because we are taking

ε < δ0. Using the uniform bounded distortion of Corollary 2.4 we obtain

LebD(ω1
n \ ω0

n)

LebD(ω2
n \ ω1

n)
≈

LebD(Δ1
0 \ Δ0

0)

LebD(Δ2
0 \ Δ1

0)
≈

δd
0

δ
d/2
0

� 1,

which gives the first estimate. Moreover,

LebD(ω0
n)

LebD(ω2
n \ ω1

n)
≈

LebD(Δ0
0)

LebD(Δ2
0 \ Δ1

0)
≈

δd
0

δ
d/2
0

� 1,

and this gives the second one. �
Proposition 4.3. There exist c1 > 0 and a positive integer N = N(ε) such that

LebD

(
N⋃

i=0

{R = n + i}
)

� c1 LebD(An−1 ∩ Hn),

for all n � 1.

Proof. Let K0 = maxx∈Λ ‖Df −1‖ and take r = 5δ0K
N0
0 , where N0 is given by Lemma 3.1.

Recall that by Lemma 2.3, for each z ∈ f n(An−1 ∩ Hn) there is x ∈ Hn and a σ -hyperbolic
pre-ball Vn(x) ⊂ D which is sent diffeomorphically onto the center-unstable ball of radius δ1
around z. Let {zj } be a maximal set in f n(An−1 ∩ Hn) with the property that the sets Br(zj ) are
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pairwise disjoint, where each Br(zj ) is the ball of radius r centered at zj inside the hyperbolic
ball around zj . By maximality we have

⋃
j

B2r (zj ) ⊃ f n(An−1 ∩ Hn). (16)

For each j let xj ∈ Hn be the point such that f n(xj ) = zj .

Claim 1. There is 0 � k � Nε + N0 such that tn+k is not identically zero in f −n(Bε(z)).

Assume, by contradiction, that tn+k|f −n(Bε(z)) = 0 for all 0 � k � Nε + N0. This implies
that f −n(Bε(z)) ⊂ An+k for all 0 � k � Nε + N0. Using Lemma 2.7 we may find a hyperbolic
pre-ball Vm ⊂ Bε(z) with σ -hyperbolic time m � Nε . Now, since f m(Vm) is a center-unstable
disk of radius δ1, it follows from Lemma 3.1 and Lemma 3.2 that there are V ⊂ f m(Vm) and
m′ � N0 such that u-crossing C 3 and intersecting Ws

δs/4(p). Thus, taking k = m + m′ we have
that 0 � k � Nε +N0 and f −n(Vm) contains an element of {R = n+ k} inside f −n(Bε(z)). This
contradicts the fact that tn+k|f −n(Bε(z)) = 0 for all 0 � k � Nε + N0.

Claim 2. f −n(Bδ1/4(z)) contains a component of {R = n + k} with 0 � k � Nε + N0.

Let k be the smallest integer 0 � k � Nε + N0 for which tn+k is not identically zero in
f −n(Bε(z)). Since f −n(Bε(z)) ⊂ Aε

n−1 ⊂ {tn−1 � 1}, there must be some component ω0
n+k

of {R = n + k} for which f −n(Bε(z)) ∩ ω1
n+k �= ∅. Recall that, by definition, f n+k sends

ω1
n+k diffeomorphically onto a center-unstable disk (of radius 2δ0) u-crossing C 1 and inter-

secting Ws
δs/4(p). Thus, the diameter of f n(ω1

n+k) is at most 4δ0K
N0
0 . Since Bε(z) intersects

f n(ω1
n+k) and ε < δ0 < δ0K

N0
0 , we have f −n(Bδ1/4(z)) ⊃ ω0

n+k , as long as we take δ0 > 0 small

so that 5δ0K
N0
0 < δ1/4. Hence, we have shown that f −n(Bδ1/4(z)) contains some component of

{R = n + k} with 0 � k � Nε + N0, and so we have proved the claim.
Since n is a hyperbolic time for xj , we have by the distortion control given by Corollary 2.4

that there is some constant C only depending on C2 and δ1 for which

LebD(f −n(B2r (zj )))

LebD(f −n(Br(zj )))
� C

Lebf n(D)(B2r (zj ))

Lebf n(D)(Br(zj ))
(17)

and

LebD(f −n(Br(zj )))

LebD(ω0
n+k)

� C
Lebf n(D)(Br(zj ))

Lebf n(D)(f n(ω0
n+k))

. (18)

Recalling that from time n up to n + k we have at most N0 iterates, from (17) and (17) we easily
deduce that there is some positive constant, that we still denote by C, for which

LebD

(
f −n

(
B2r (zj )

))
� C LebD

(
f −n

(
Br(zj )

))
and

LebD

(
f −n

(
Br(zj )

))
� C LebD

(
ω0 )

.
n+kj
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Finally, let us compare the Lebesgue measure of the sets
⋃N

i=0{R = n + i} and An−1 ∩ Hn. By
(16) we have

LebD(An−1 ∩ Hn) �
∑
j

LebD

(
f −n

(
B2r (zj )

))
� C

∑
j

LebD

(
f −n

(
Br(zj )

))
.

On the other hand, by the disjointness of the balls Br(zj ) we have

∑
j

LebD

(
f −n

(
Br(zj )

))
� C

∑
j

LebD

(
ω0

n+k

)
� C LebD

(
N⋃

i=0

{R = n + i}
)

.

We just have to take c1 = C−2. �
For completing the proof of Theorem A, it is enough to show that

LebD{E > n} = O
(
n−τ

) ⇒ LebD{R > n} = O
(
n−τ

)
.

Recall that we have defined Hn, for n � 1, as the set of points for which n is a σ -hyperbolic time.
In Corollary 2.6 we obtained the following estimate:

(m1) There is θ > 0 such that for all n � 1 and A ⊂ M \ {E > n} with LebD(A) > 0

1

n

n∑
j=1

LebD(A ∩ Hj)

LebD(A)
� θ.

In the construction of the Markov structure have taken a disk Δ of radius δ0 > 0 and defined
inductively the subsets An, Bn, {R = n} and Δn related in the following way:

Δn = Δ \ {R � n} = An ∪̇ Bn.

Moreover, we have proved in Lemma 4.1, Lemma 4.2 and Proposition 4.3 that the following
metric relations hold:

(m2) There is a0 > 0 (bounded away from 0 for all δ0) such that for all n � 1

LebD(Bn−1 ∩ An) � a0LebD(Bn−1).

(m3) There are b0, c0 > 0 with b0, c0 → 0 as δ0 → 0, such that for all n � 1

LebD(An−1 ∩ Bn)

LebD(An−1)
� b0 and

LebD(An−1 ∩ {R = n})
LebD(An−1)

� c0.

(m4) There is r0 > 0 and an integer N � 0 such that for all n � 1

LebD

(
N⋃

i=0

{R = n + i}
)

� r0 LebD(An−1 ∩ Hn).
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Estimates (m1)–(m4) are enough to use the results of [4, Section 4.5.2] and obtain the decay of
Lebγ {R > n} as in the conclusion of Theorem A.
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