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1. PRELIMINARIES

In recent papers [1], [2], [3], [4], the authors studied the Hankel, the
Weierstrass-Hankel, and the Poisson-Laguerre transforms. An analogous
development is undertaken here for the Weierstrass-Laguerre transform,
extending in part a similar investigation of the Laguerre transform by
I. Hirschman in [5].

Let « >0 and let L,*(x) denote the Laguerre polynomial of degree »
defined by

Lo(ry =2 ((—j;) (xvroe2),  n=0,1,... (1.1)
For f(n) a real function defined for » =0, 1,..., the Laguerre transform
f7(x) is given by

£76) = 3 L) £(5) o), (1.2
where
n!
SR ICErE Y 9
By the inversion formula, we have
fln) = [ L)) d(e), (1.4)

* The research of the first author was supported by the National Aeronautics
and Space Administration under grant NGR 14-008-009 and of the second by the
National Science Foundation under grant GP-7167.
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with
dQ(x) = e~2x* dx.

If we define the Laguerre difference operator V,, by

(1.5)

Vah(n) = (n + 1) h(n 4 1) — @0 + a + 1) h(n) -+ (n + o) h(n — 1), (1.6)

then, from the fact that
VnLna(x) = ana(x)v

we have, for an arbitrary polynomial p(x),

[PV f1" (%) = p(— %) f (%)

or, by inversion,
[PV = [ 7 o= ) L) d(s).
We consider the Laguerre difference heat equation
Vouln, t) = 2 u(n, t)
ot
whose fundamental solution is the function g(#; t) given by
glni t) = | : 0L o(x) dQx), > — 1,

- ;('7,7 (1 + tywrati

Corresponding to g(n; t) we define its conjugate g(n*; t) by
g5ty = [ e L~ x) ()
0

L@ty
el (1 ey

We need to introduce associated functions. To this end, let

(ke m, 1) = [ Lo(5) L) Lao(x) dO)
0
and correspondingly

d(k*, m,m) = | : Li(— %) Ls(x) LX(x) dx).

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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Then the associated function f(n, m) of a function f(r) defined forn = 0, 1,...
is given by

Flnm) = gof(k) d(k, m, ) pl) (1.15)

and the conjugate associated function f(n*, m) of f(n) by

f(n*, m)= iof(k) d(k, m, n*) p(k). (1.16)
It readily follows that
Flm) = [0 L) L(e) ) (1.17)
and
£, my = [ 1) L= ) L (3) i) (118)
and the functions f(n, m), f(n*, m) satisfy the following
f (7, 0) =f(n) (1.19)
f(n, m) = f(m,n) (1.20)
Vaf(n, m) =V, f(n, m) (1.21)
[Ln{— Vuu) f1(m) = f (n, m) (1.22)
f(n*, m) = f(m, n*) (1.23)
V. f(n*,m) = — V, f(n*, m) (1.24)
Ln(Vin) f1 () = f (n*, m). (1.25)

Of central importance in our theory are the associated and conjugate
associated functions of the fundamental solution g(n;t). Properties and
asymptotic estimates of these were developed in detail in [3] and we include
here only the results needed.

The function associated with g(n; t) is given by

gl mi ) = [ oL (x) Lo(x) dQ(w), 10

_Tprtmyadl)  gvm

nlm) (1 & fyrrmtatt

><2F1(—n,~m;~n—m—a;1—7l§—). (1.26)
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so that

£

e WL, Hx) == Y g(n, m; t)L,x) p(m), (1.27)

m=0

and the conjugate associated function is given by
gn*, myt) = f e L~ ) L,%(x) dQ(x)
0

:F(n+m—§—oc+l) 2+ tpym

niml (1 + tyrrmresd
1

XzFl(—n,—~m;~n—m—a;l+f2_L,)f, (1.28)

where upon
e L X — x) = Z g(n*, m; t) L, %(x) p(m) (1.29)

m=0
and also

eeLo(x) = Y g(n*, m; 1) Lo(— x) plm). (1.30)

m=0

As may readily be established from their series representations the functions
g(n, m; t), g(n*, m; t) have the following asymptotic estimates.

m+o tn—m

g(”) m; t) ~ m! (1 + t)n+m+zx+1 ’

n—>o0 (131

(— Dmpmte (2 4 g)n-m

gn*, m; t) ~ n—-w  (132)

m! (1 + t)nemratl’
— 1) gt tn-m
g(n, m*; t) ~ ( 3n! (1 F tywtmtodi 7 —> 0, (1.33)

In addition, they satisfy the following Huygens-type relation.

M™s

gk, m; ;) g(n, k; 1) p(k) = g(n, m; 1, + 1,), tyte > 1, (1.34)

0

a
i

and

Y gk, n*; t,) g(k*, m; t,) p(k) = g(n, m; t, — t,), t, > 1. (1.35)

k=0
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We define the Poisson-Laguerre transform of a function ¢ defined for
n=0,1,.. by

u(n, t) = i g(n, m; t) g(m) p(m) (1.36)

m=0

whenever the series converges. In [3], we established the fact that if
Yoo &(ng , m; t,) @(m) p(m) converges conditionally for some non-negative
integer 7, , then the series defining the Poisson-Laguerre transform converges
foralln =0,1,..and 0 <<t < ¢,.

The Weierstrass-Laguerre transform of a function ¢ defined forn =0, 1,...
is given by

7o) = Y. gtn,ms 1) )l (137

whenever the series converges. If it does, we know from [3] that the series
defining f(n*),

ft) =Y glat, m; 1) g(m) olm) (1.38)

m=0

also converges for finite n.

2. L-Harmonic FuNCTIONS

In terms of the Laguerre difference operator V,, , we have a theory analogous
to that of harmonic functions.
Let
A ={—1,0,1,.} @.n

and let f(n, m) be a function defined on A2 = A" X A" and satisfying the
conditions

f(—=Lmy=f(mn, —1)=f(n,0)=0. 2.2)

DerFiNiTION 2.1, A point (z, m) in %, a subset of 42, is an inner point of
% iff
{(n+1,m)(n—1,m),(n,m+1),(n,m — 1)} C%. (2.3)
Otherwise, (n, m) is a boundary point.

We denote by %° the set of inner points of %, and by &%, the set of bound-
ary points of %.



46 HAIMO AND CHOLEWINSKI

DerFINITION 2.2. A real-valued function f defined on % is called L-har-
monic iff
1f(n,m)y =(V, 4+ V,) f(n,m) =0. (2.4

at each inner point (», m) of %.
It is clear that every conjugate associated function

S, m*) =L, V,) f ()

is L-harmonic.

DeriniTION 2.3. A neighborhood of a point P : (n, m) in A% is the set

Np={(n,m),(n -+ 1,m), (n — 1, m), (n,m + 1), (n,m — 1)}. (2.5)

DErINITION 2.4. A subset % of 4% is a domain iff, given any two inner
points P and Q, we can find a sequence of points P =Py, P, ,..., P, =0
from P to Q, where P, 1s obtained from P; by changing one coordinate
of P, by either + 1 or — 1, and where {P, , P, ..., P,_;} C %°.

DEFINITION 2.5. A domain % is called a simple domain iff

U =Y =AU V{Ped¥|PeNgforsome( € #%%. (2.6)

THEOREM 2.6 [maximum (minimum) principle]. If f is L-harmonic on a
finite subset U of A%, then f attains its maximum (minimum) values on 0.

Proor. It is clearly enough to prove the theorem for the maximum.
Let (n, m) be an inner point of % at which f attains a maximum value M.
Then

M=fnm =f(n+1L,m=Ffn—1,m)
=f(rn,m+ 1) =f(n,m—1). 2.7)
For, if any one of f(n + 1, m), f(n — 1, m), f(n,m + 1), f(rn,m — 1) is
strictly less than M = f(n, m), it follows that
n+Dfn+1,m+@+a)f(n—1m+ (m+1)f(n,m-+1)
+(m+a)f(n,m —1) <2n+m-+4a+1)f(n,m)
(2.8)

or

(3£ (n, m) <0, (2.9)

contrary to the assumption that f is L-harmonic. Repeating the argument a
finite number of times, we find 2 boundary point at which f takes on the
maximum value M.
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COROLLARY 2.7. If f is L-harmonic on a finite domain U of A%, then f does
not attain a local maximum (minimum) on U° unless f is constant on %U°.

TrEOREM 2.8. Let f be defined on the boundary ¢ of a finite simple domain % .
Then there exists a unique L-harmonic function g on U which coincides with f

ond¥.

Proor. We note, first, that the uniqueness follows from the preceding
theorem. For, if g, and g, are two such functions, then g = g, — g, is L-har-
monic on % and is identically zero on ¢%. But then g = 0 on # sothat g, = g,
on p.

Now, let P, P,,..., P, be all the inner points of g, and Oy, Qs ..., Qs
all its boundary points. Consider the 7 equations

OegP) =0, k=127, (2.10)

in the 7 unknowns g(P,)),..., g(P,). The system (2.10) can be written in the
form

Z a;8(P;) = b, k=1,2,..,1, (2.11)
i=1
where

b =3 aif(Qs)- (2.12)
=0
We note that if f = 0 on ¢%, then g = 0 on % and (2.11) reduces to the homo-
genous system

Y. aig(Py) =0, (2.13)
=1
which admits only the trivial solution. It follows, therefore, by Cramer’s
rule, that the system (2.13), and equivalently (2.11), must have a unique
solution g, which is the function sought.

3. ForRMAL APPROACH
Before proceeding to a rigorous development of the inversion theory we

seek, let us illustrate its essence by deriving it formally. We need a suitable
definition for the difference operator e~V» so that the inversion formula

Y gl m 1) (m) plm) = () 1)

n=0
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will hold. To this end, we formally set

w8 (=Y
D Y T

=0
where V,, is given by (1.2). Then we have, using (2.3),

ETLHR) = Y o (- VP L)

=0
= (tx)E
=y O
k=0 "
— eI o(x).

Now, if
f) = [ L) f () d)

it follows, formally, that

A0

e Tf (n) = | [ VL1 () dAx)

= [ e L. () ).

v

But, by (1.30),

eLa(x) = Y, g(n*, m; ) Lu(— ) p(m),

m=0

and so

f ) = ., g0 mi£) pim) [0 L(— ) 42

©

= 3 gln*, m; 1) f(m*) p(m).

m=0

We are thus led to the following definition

Vf(n) — lim Y. g(n®, m; 1) () o),

m=0

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)
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which yields the inversion formula. For, let

f(n) = iog(n, m; 1) p(m) p(m), n=01,2,.., (3.9)

with g(m) defined for m =0, 1, 2,... . Then

) = fim 3 £00% w5 ) ) o)

= lim ¥ gln*,m; 1) plm) Y. glm*, ks 1) (k) o(B)
m=0

k=0

= lim Z 9() p(R) Z g(n*, m; 1) g(m*, k; 1) p(m)

= lim ¥ g(n, k5 1 — £) p(k) p(k),
k=0
where the last equality follows from (1.35). Hence
e Tf ) = im 3, ol k) | €L ) L) d(e)
k=0

— lim [ e 0-eL a(x) p"(x) d2(x)

t->1- 0
_ j :° o~(x) L,(x) d2(x)

= ¢(n),

and the inversion is established.

4. INVERSION

Our principal inversion theorem depends on the following fundamental
inversion formula derived in [3].

409/23/1-4
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THeoREM 4.1. If @(m) is a real-valued function defined for m = 0, 1,...,
and the Weierstrass-Laguerre transform

3 el 1) ) () @)

converges for some nonnegative integer n, , then

iy 3 om0 ) ) = ). (42)

t-0

We need, in addition, the following readily established estimate. See [3].

LemmMa 4.2. For o a positive number and |r |< 1,

Z kot = O :~(T[El—il— , n— o, (4.3

k=0 — r)lere
where [a] denotes the greatest integer in o.

From the asymptotic relation (1.31), the following result is immediate.
Lemma 4.3, If the series

w

Y. g(n, m;t) (m)p(m), n=0,1,.., 4.4

m=0

converges, then so does the series

¥ ()" om. (4.5)

We are now ready to prove the main theorem leading to the inversion
desired.

THEOREM 4.4. Let o(m) be a real-valued non-negative function defined for
m =0, 1,... and let the series

o0

Y. &(n, m; 2) g(m) p(m) (4.6)

m=0
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converge. Then, if

7= 3 o m3 1) o) o) )
it follows that
T (1) = Y 80,5 1 1) () o) (438)
where
() = 3 gl ms ) ") on) 49)

Proor. Since the series (4.6) converges, it follows that the Weierstrass-
Laguerre transform converges, and so, also, the series

flr) = z 2%, & 1) (8) p(). (4.10)

Hence we have

T ) = 3 g, m5 1) n) ol

o

= 2 g(n*, m;t) p(m) kzog('n* k; 1) ¢(k) p(k)

m=0

=]

N io #(k) p(k) Y. gn*, m; 1) glm*, ks 1) p(m),  (4.11)

provided the double series converges and the change in order of summation
is justified. This follows from the fact that by the estimates (1.32), (1.33), the
right-hand side of (4.11) is dominated by

1 2 eR) &1 3w
il ek, o e [2(1 n t)] ’

or, by an appeal to Lemma 4.2, by

S (1 -tk n+ k4 + D! o AT
n ,;:0( 5) w0 k!k,[;] Ea, 2 (6=3i) #90)
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and the series converges by the hypothesis and Lemma 4.3. Applying (1.35)
to the right-hand side of (4.11), we obtain (4.9) and the proof is complete.

As a consequence of this theorem and Theorem 4.1, we have our principal
result.

THeoREM 4.5. Under the conditions of Theorem 4.4

lim &"of () = ().

5. REPRESENTATION

Our goal here is to characterize those functions which are Weierstrass-
Laguerre transforms of positive functions.

We need to consider Laguerre temperatures defined as C? solutions of the
Laguerre difference heat equation. We denote by H the class of all Laguerre
temperatures. In [3] it was shown that a convergent Poisson-Laguerre trans-
form belongs to H in its region of convergence. In addition, if we set

¢V (n) = i;o g(n*, m; t) f(n*) p(n), (5.1)
then the function
u(n, t) = & IVnf () (5.2)

belongs to H for 0 < ¢ <1 provided that
f(@*) = o(ng(n*; 1)), n—» o0, (5.3)

To establish our principal result, we state a representation theorem for
Laguerre temperatures proved in [3].

THEOREM 5.1. A necessary and sufficient condition that

u(n, t) = 3, g(n, m; t) p(m) p(m) (5.4)
m=0
with o(m) nonnegative and the series converging for n = — 1,0,..., 0 <t <¢

is that u(n, t) be a nonnegative Laguerre temperature there.

- We need, in addition, the following result.
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Lemma 5.2. Let f be defined for n = — 1,0, 1,... and let f(n, m*) be its
conjugate associated function. If

f(n, m*) = O(g(m*; 1)), m— o, (5.5)

then for 0 <t < 1

@0

2 &0m; 1) [V f (n, m*)] p(m) = i [Vmg(m; t)1f (m, m*) p(m).  (5.6)

m=0 m=0

Proor. We note that since f(#n, m*) is L-harmonic, the series on the left
of (5.6) is equal to
— Va X glm; ) f(n, m*) p(rm), (5.7)

m=0

which converges absolutely and uniformly because of (5.5). Now, defining

&f(m) =f(n +1) —f(n) (5:8)
and
8f(m) =f(m) —f(n — 1) (39)
and noting that
Vof(m) = (n + 1) 8% (n) — (n + o) 5 (m), (5-10)

we have

S g(m; 1) [V f (1, m¥)] plom)

m=0

o

= Y. glm; t){(m + 1) 87, f (n, m™) — (m + a) 87 (n, m*)} p(m)

m=0

o]

= — Y fn,m*) [8,(m + 1) p(m) g(m; t) — 83(m + &) p(m) g(m; 1)],

m=0

where the last equality is a result of a summation by parts, the summed part
vanishing. Since the factor in brackets of the last series is. — [V,,g(m; t)] p(m),
the proof is established.

We now give the characterization of a function which has a Laguerre-
Weierstrass transform representation.
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THEOREM 5.3. Let f be defined on n = — 1,0, 1,... and let f(n, m*) be
its conjugate associated funciion. If
fln,m*) = O[gm*; 1)), m—co (5.11)
and
e Vif(n) =0, 0<t <], n=20,1,.., (5.12)

then there exists a nomnegative function ¢, defined for n =0, 1,..., such that

Foy =Y g(nm; 1) g(m) plm) (5.13)

m=0
ProoFr. Let
u(n, t) = e~ 4f (), (5.14)

By (5.11), it is clear that u(n, ¢} is well defined. Condition (5.12) implies that
u(n, t) > 0, and we know that u(n, ¢) is a Laguerre temperature in 0 < # < 1.
Hence by Theorem 5.1, there exists a nonnegative function ¢ such that

o0

u(n, t) = mgo g(n, m; t) (m) p(m). (5.15)
But by (5.14)

un, 1) — §0g<n*, s 1 — 1) f(m*) p(m). (5.16)
Let )

o 1) — éog(m; L — 1), m*) pm). (5.17)

Since (5.11) holds, the series (5.17) converges absolutely and uniformly.
Applying the operator V,, to o(n, t) we have

Vouo(n, t) = i gm; 1 — )V, f(n, m*) p(m)

= — i glm; 1 — )V, f(n, m*) p(m),
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since f(n, m*) is L-harmonic. By the preceding lemma, we then have

©

Vao(n, 1) = — Y. [Vmg(m; 1 — )]f(n, m*) p(m)

m=0

0
= —gi‘ 'v(n, t),
so that v(n, t) € H. Further,

«©

Va2, £) ey = — 3, [Vgm; 1 — 2)1f (m*) p(m).

m=0

Now, applying the operator V,, to u(n, t), we have

Vo, 1) = 3 Vagln*, m; 1 — ) f(m*) pim)

m=0

w0

= — %, [Vgl*, m; 1 =11 £ (%) p(m)

m=0
by the L-harmonic property of g(n*, m; 1 — £). Hence

o

Vs, 1) |no = — Z_o (Vig(m; 1 — )] f(m*) p(m)

= V,0(n, t) |, (5.18)
or
[u(1, £) — u(0, t)] — (0, t) — u(— 1, t)] = [=(1, t) — (0, )]

—ofv(0,2) —v(—1,8)].  (5.19)
Since #(— 1,2) =o(— 1, 2) =0, and clearly «(0, t) = v(0, #), (5.19) yields
u(l, 1) = o(1, t).
Inductively, we obtain
Vb, £) Lo = Vao(7, £) oo

with u(n, t) = o(n, t) for n = — 1,0,..., & — 1, so that

u(k, t) = ok, 1).
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Hence
u(n, t) = o(n, t), n=—101,...

We thus have
u(n, t) = o(n, t)

w

— 3 gms 1 ) )l
and letting £ — 1-, we obtain
i 401, 1) = 3 80, m) /s, )
~ (0.

We now must show the convergence of the series (5.15) for ¢ = 1. To this
end, we note that for N > 0, we have

g(n, m; t) p(m) p(m) < u(n, t), n=0,1,..,

iD=

or letting ¢ — 1~, we obtain

&(m, m; 1) p(m) p(m) < u(n, 1) = f(n).

0

M=z

m:

Since g(n, m; 1) p(m) p(m) = 0 for all n, m, we have

S g m; 1) g(m) p(m) < f (7).

m=0

Hence we have the required convergence and letting ¢ — 1~ in (5.15) yields
the desired representation.
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