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1. PRELIMINARIES 

In recent papers [l], [2], [3], [4], th e authors studied the Hankel, the 
Weierstrass-Hankel, and the Poisson-Laguerre transforms. An analogous 
development is undertaken here for the Weierstrass-Laguerre transform, 
extending in part a similar investigation of the Laguerre transform by 
I. Hirschman in [5]. 

Let 01 > 0 and let Lna(x) denote the Laguerre polynomial of degree n 
defined by 

n = 0, l,... . U-1) 

For f(n) a real function defined for n = 0, l,..., the Laguerre transform 
f^(x) is given by 

where 

fW = f LWf(n) ~(4, U-2) 
9Z=O 

I 

p(n) = r(n -$ + 1) ’ 

By the inversion formula, we have 

f (4 = J,” LWf ^@I dQ(x), U-4) 
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and Space Administration under grant NGR 14-008-009 and of the second by the 
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with 
&2(x) = e-XxQ d.r. (1.5) 

If we define the Laguerre difference operator V, by 

V,&(n) = (n + 1) k(tz ;- 1) - (2~ + ar + 1) h(n) 7- (n + a) Iz(n - 1), (1.6) 

then, from the fact that 

V,Lna(x) = - XLn”(X), (1.7) 

we have, for an arbitrary polynomial p(x), 

MvmA (4 = PC- 4fW (1.8) 
or, by inversion, 

IPPM (n> = j;fwP(- 4LW dQb)* 

We consider the Laguerre difference heat equation 

W) 

V,u(n, t) = g u(n, t) 

whose fundamental solution is the function g(n; t) given by 

g(n; t> = j," e-tcLn~(x) f&?(x), t > .- 1, 

1 t” 
= jqq (1 + t)n+a+l * 

Corresponding to g(n; t) we define its conjugate g(n*; t) by 

A+*; q = j, e- tzLna( - 32) &2(x) 

1 (2 + t)” 
= p(n) (1 + t)n+a+1 * 

We need to introduce associated functions. To this end, let 

(1 .lO) 

(1.11) 

(1.12) 

d(k, m, ?z) = s mLkqT) L,a(x) L,*(x) m(x) (1.13) 
0 

and correspondingly 

d(k*, m, n) = 
s 

(1.14) 
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Then the associated functionf(n, m) of a functionf(n) defined for 12 = 0, I,... 
is given by 

f (n, 4 = f f@) 44 % 4 PW 
k=O 

(1.15) 

and the conjugate associated functionf(n*, m) off(n) by 

k=O 

It readily follows that 

f(n, 4 = j;m LW -Loi(4 444 

and 

(1.16) 

(1.17) 

m*, m) = (1.18) 

and the functionsf(n, m),f(n*, m) satisfy the following 

fh 0) =f(n) (1.19) 

fh 4 =f(w 4 (1.20) 

Vnf (n, m) = V,f b-5 m) (1.21) 

M- Vm>f I(4 ==f(% 4 (1.22) 

f(n*, 4 =f(m, n*) (1.23) 

Vnf@*, m) = - V,f (n*, m) (1.24) 

LPm)f 1 (m> =f@*, 4 (1.25) 

Of central importance in our theory are the associated and conjugate 
associated functions of the fundamenta1 solution g(n; t). Properties and 
asymptotic estimates of these were developed in detail in [3] and we include 
here only the results needed. 

The function associated with g(n; t) is given by 

g(n, m; t) = j,” e-%&) L,(x) &(x), t>O 

G+m+a:+l) tn+m 
n!m! (1 +t) n+m+m+1 

~$1 - t 
1 n,-mm;-n-m-a;l--. 
t2 1 (1.26) 
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so that 

e-W,/(x) -= t g(n, m; t)L,$q p(m), (1.27) 
Lo 

and the conjugate associated function is given 

dn*, m; t) = 
j 

m ectxLnL,*( - x) LnlQ(x) &2(x) 
0 

bY 

= qn + m + a + 1) (2 + t)” tm 
n!m! (1 + t) n+m+a+1 

( 1 
x zF, - n, - m; - n - m - a; 1 + - 

t2 + 2t 1 ’ 
(1.28) 

where upon 

e-FLn~( - x) = f g(n*, m; t) Lma(x) p(m) 
Wk=O 

(1.29) 

and also 

et”CL,a(x) = f g(n* , m; t)La(- 2) f(m). (1.30) 
W&=0 

As may readily be established from their series representations the functions 
g(n, m; 0, g(n*, m; t) have the following asymptotic estimates. 

nm+” 
g(n, m; t) - - 

tn-?n 
m! (I + t)n+m+d-1 ’ n-tee 

An*, m; t) - 
(- 1)” nm+” (2 + t)n-m 

m. 1 (1 + t)n+GTz ’ n-+co 

(- 1)” nm+ar 
g(n, m*; t) N- 

p-m 

m. 
, ~--, 

(1 + qn+m+or+1 n-+ co. 

In addition, they satisfy the following Huygens-type relation. 

,fog(k w tJ&, k tz> f(4 = gh m; tl + tJ, tl , 1, > 1, 

and 

go&@, n*; tl)dk*, m; tJ ~(4 = sh m; t, - tl>, t, > t, . 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

(1.35) 
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We define the Poisson-Laguerre transform of a function 93 defined for 
n = 0, l,... by 

4% t) = t g(fi, w t) p-(m) p(m) (1.36) 
m=o 

whenever the series converges. In [3], we established the fact that if 

x=0 Ano Y m; to> dm> P( m converges conditionally for some non-negative ) 
integer n, , then the series defining the Poisson-Laguerre transform converges 
for all II = 0, l,... and 0 < t < to. 

The Weierstrass-Laguerre transform of a function CJI defined for 71 = 0, l,... 
is given by 

f(n) = f An, m; 1) dm> dm> (1.37) 
7L=O 

whenever the series converges. If it does, we know from [3] that the series 
defining f(n*), 

f(n*) = jJ g(n*, m; 1) v,(m) p(m) (1.38) 
m=o 

also converges for finite fz. 

2. L-HARMONIC FUNCTIONS 

In terms of the Laguerre difference operator V, , we have a theory analogous 
to that of harmonic functions. 

Let 
Jv = {- l,O, l,...} (2.1) 

and let f (n, m) be a function defined on Na = JV x N and satisfying the 
conditions 

f(- l,m) =f(n, - 1) =f(n,O) = 0. (2.2) 

DEFINITION 2.1. A point (n, m) in @‘, a subset of N2, is an inner point of 
9 iff 

{(n + km), (n - 1, m), (n, m + 11, tn, m - 1)) C @. (2.3) 

Otherwise, (n, m) is a boundary point. 
We denote by Q” the set of inner points of 4Y’, and by a%, the set of bound- 

ary points of %. 
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DEFINITION 2.2. A real-valued function f defined on % is called L-har- 
monic iff 

at each inner point (n, m) of $2. 
It is clear that every conjugate associated function 

is L-harmonic. 

DEFINITION 2.3. A neighborhood of a point P : (n, m) in X2 is the set 

NP = {(n, 4, (n + 1, m), (n - 1, 4, (8, m + I), (n, m - 1)). (2.5) 

DEFINITION 2.4. A subset 4 of X2 is a domain iff, given any two inner 
points P and Q, we can find a sequence of points P = P,, , PI ,..., P,, = Q 
from P to Q, where P,+, is obtained from Pk by changing one coordinate 
of Pk by either + 1 or - 1, and where {PI , Pz ,..., Pnel} C So. 

DEFINITION 2.5. A domain % is called a simple domain iff 

@=V=@“u{PE8SIP~NoforsomeQEW}. (2.6) 

THEOREM 2.6 [maximum (minimum) principle]. If f is L-harmonic on a 
finite subset S of M2, then f attains its maximum (minimum) values on 842. 

PROOF. It is clearly enough to prove the theorem for the maximum. 
Let (n, m) be an inner point of S at which f attains a maximum value M. 

Then 
M = f (n, m) =f(n + 1, m) =f(n - 1, m) 

=f(n, m + I) =f(n, m - 1). (2.7) 

For, if any one of f(n + 1, m), f(n - 1, m), f (n, m + l), f (n, m - 1) is 
strictly less than M = f (n, m), it follows that 

(n + l)f(n + 1, m) + (n + a)f(n - 1,m) + (m + l)f(n, m + 1) 

+(m+a)f(n,m-1)<2(n+m+f++)f(n,m) 

(24 
or 

q lf(n, 4 < 0, (2.9) 

contrary to the assumption that f is L-harmonic. Repeating the argument a 
finite number of times, we find a boundary point at which f takes on the 
maximum value M. 
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COROLLARY 2.7. If f is L-harmonic on a finite domain (52 of X2, then f does 
not attain a local maximum (minimum) on ??1° unless f is constant on %C. 

THEOREM 2.8. Let f be defined on the boundary 3 of a finite simple domain @. 
Then there exists a unique L-harmonic function g on 02/ which coincides with f 
ona%. 

PROOF. We note, first, that the uniqueness follows from the preceding 
theorem. For, if g, and g, are two such functions, then g = g, - g, is L-har- 
monic on % and is identically zero on 8%. But then g E 0 on @ so that g, = g, 
on CL. 

Now, let Pr , Pa ,..., P, be all the inner points of TV, and Qi , Q2 ,..., QS 
all its boundary points. Consider the r equations 

0 g(Pd = 0, h = 1, 2 ).‘., r, (2.10) 

in the r unknowns g(PJ,...,g(P,). The system (2.10) can be written in the 
form 

gl alca(Pj) = b, k = I, 2 ,...! r, (2.11) 

where 

b, = f c?sjf (Q>j)* 
j=O 

(2.12) 

We note that if f = 0 on 2@, then g = 0 on %! and (2.11) reduces to the homo- 
genous system 

which admits only the trivial solution. It follows, therefore, by Cramer’s 
rule, that the system (2.13), and equivalently (2.1 l), must have a unique 
solution g, which is the function sought. 

3. FORMAL APPROACH 

Before proceeding to a rigorous development of the inversion theory we 
seek, let us illustrate its essence by deriving it formally. We need a suitable 
definition for the difference operator e- vn so that the inversion formula 

eTv” i. .dn, m; 1) v(m) f(m) = P-(n) (3-I) 
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will hold. To this end, we formally set 

where V, is given by (1.2). Then we have, using (2.3), 

= etzLna(x). 

Now, if 

f(n) = j, LaMfA4(4 d44, 

it follows, formally, that 

eetvy(n) = jff [ew”V~L~(x)lfA(x) dQ(x) 

= flJ etxL,“(x) f ^(.x) dQ(x). 
“0 

But, by (1.30), 

etzLsa(x) = i g(n* , m; Wma( - 4 f(m), 
m=o 

and so 

eetv”f(n) = i g(n*, m; t) p(m) jot”(x) L,“( - x) d-Q(x) 
V&=0 

= $o&*y m; Wm*> f(m). 

We are thus led to the following definition 

e+y(n) = ;y f g(n*, m; t>f(m*) f(m), 
?TZ=O 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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which yields the inversion formula. For, let 

fb) = f gh m; 1) 944 p(m), n = 0, 1, 2 ,..., (3.9) 
V&=0 

with y(m) defined for m = 0, 1,2 ,... . Then 

e-V(n) = jiy f g(n*, m; W(m*) f(m) 
m=o 

k=O 

m m 

= $ z. d4 ~(4 C &*, m; t)g(m*, k 1) p(m) 
m=O 

= i$! f An, k 1 - t> m I44 
k=O 

where the last equality follows from (1.35). Hence 

m = lim 
I t+1- 0 

e-cl-t)zLn”(x) cf(x) &2(x) 

and the inversion is established. 

4. INVERSION 

Our principal inversion theorem depends on the following fundamental 
inversion formula derived in [3]. 

40912311-4 
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THEOREM 4.1. If q(m) is a real-valued junction defined for m == 0, I, . . . . 
and the Weierstrass-Laguerre transform 

converges for some nonnegative integer n,, , then 

ky+ i g(n, m; t> e(m) f(m) = 9+-f). 
WMO 

(4.1) 

(4.2) 

We need, in addition, the following readily established estimate. See [3]. 

LEMMA 4.2. For 01 a positive number and ( r I< 1, 

f kOLrk = 0 
I 

n-co, 
k=O 

(4.3) 

where [a] denotes thegreatest integer in M. 

From the asymptotic relation (1.31), the following result is immediate. 

LEMMA 4.3. If the series 

$og(n, m; t> dm) f(m), n = 0, L.., (4.4) 

converges, then so does the series 

(4.5) 

We are now ready to prove the main theorem leading to the inversion 
desired. 

THEOREM 4.4. Let v(m) be a real-valued non-negative junction dejined for 
m = 0, I,... and let the series 

(4.6) 
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converge. Then, ;f 

f(n) = f g(n, m; 1) e(m) dm>, 
WL=O 

it follows that 

e-?f(4 = fJ s(n, m; 1 - t) v(m) p(m), (4.8) 

51 

(4.7) 

where 

ewtvy(n) = f g(n*, m; t)f (m*) p(m). 
?PL=O 

(4.9) 

PROOF. Since the series (4.6) converges, it follows that the Weierstrass- 
Laguerre transform converges, and so, also, the series 

f@*) = f &qn*, k 1) v(k) P(k). (4.10) 
k=O 

Hence we have 

emtv”f(n) = f g(n*, m; t)f (m*) p(m) 
m=0 

m m 

= z. dn*, m; t> Am) z. dm*, k 1) v:(k) ~(4 

= i. 544 d4 $og(n*, m; t)g(m*, k 1) dmh (4.11) 

provided the double series converges and the change in order of summation 
is justified. This follows from the fact that by the estimates (1.32), (1.33), the 
right-hand side of (4.11) is dominated by 

1 m p;(k) m 
2~+%2! P( 1 + t)*+~+lic=O c mm~o 

mn+k+x [&] “‘, 

or, by an appeal to Lemma 4.2, by 

k 
p?(k) (n + k + [d + I)! 

k! k/l 
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and the series converges by the hypothesis and Lemma 4.3. Applying (1.35) 
to the right-hand side of (4.1 l), we obtain (4.9) and the proof is complete. 

As a consequence of this theorem and Theorem 4.1, we have our principal 
result. 

THEOREM 4.5. Under the conditions of Theorem 4.4 

f’y evtv”f(n) = v(n). + 

5. REPRESENTATION 

Our goal here is to characterize those functions which are Weierstrass- 
Laguerre transforms of positive functions. 

We need to consider Laguerre temperatures defined as Cl solutions of the 
Laguerre difference heat equation. We denote by H the class of all Laguerre 
temperatures. In [3] it was shown that a convergent Poisson-Laguerre trans- 
form belongs to H in its region of convergence. In addition, if we set 

e’-“‘“f(n) = jjog(n*, m; t)f(n*) f(n), (5-l) 

then the function 

u(n, t) = eMa-t)v~f(n) 

belongs to H for 0 < t < 1 provided that 

f(n”) = o(ng(fl”; I)), n-+co. 

(5.2) 

(5.3) 

To establish our principal result, we state a representation theorem for 
Laguerre temperatures proved in [3]. 

THEOREM 5.1. A necessary and suficient condition that 

u(n, t) = 5 &, m; t> v(m) f(m) (5.4) 
W&=0 

with v(m) nonnegative and the series converging fm n = - 1,0 ,..., 0 < t < c 
is that u(n, t) be a nonnegative Laguerre temperature there. 

. We need, in addition, the following result. 
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LEMMA 5.2. Let f be dejked for n = - 1, 0, l,... and let f (n, m*) be its 
conjugate associated function. If 

f(n) m*> = %(m*; l)), m+co, (5.5) 

thenfor 0 f t < 1 

i. dm; t) [Vnzfh m*>l 44 = 5 F’mg(m; t)lf (n, m*) p(m). (5.6) 
m=o 

PROOF. We note that since f (n, m*) is L-harmonic, the series on the left 
of (5.6) is equal to 

- Vm ~og(m; t>f(n, m*) p(m), (5.7) 

which converges absolutely and uniformly because of (5.5). Now, defining 

a+f(fi) =f(n + 1) -f(n) (5.8) 

and 

6-f(n) =f(4 -f(n - 1) (5.9) 

and noting that 

V,f(n) = (n + 1) S+f (4 - (n + a) a-f(n), (5.10) 

we have 

jjog(m; t, Cv7rzf (a, m*)] p(m) 

= go Ami 9 {Cm + 1) Gf (n, m*) - (m + 4 Gf (n, m*)> p(m) 

= - ~of(n, m”) K.(m + 1) p(m)&; t> - G(m + 4 &4&; t)l, 

where the last equality is a result of a summation by parts, the summed part 
vanishing. Since the factor in brackets of the last series is. - [V&m; t)] p(m), 
the proof is established. 

We now give the characterization of a function which has a Laguerre- 
Weierstrass transform representation. 
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THEOREM 5.3. Let f be dejned on n = - I, 0, I,... and let f(n, m*) be 
its conjugate associated function. If 

f(n, m*> = Q$m*; l)J, m - cg (5.11) 

and 

e-f(n) 3 0, o<t<1, n = 0, I,..., (5.12) 

then there exists a nonnegative function 9, defined for n = 0, I,..., such that 

f(n) = 2 dn, m; 1) dm> Am> (5.13) 
m=o 

PROOF. Let 

u(n, t) = e-‘l-t’vnj(n). (5.14) 

By (5.11), it is clear that u(n, t) is well defined. Condition (5.12) implies that 
ir(n, t) > 0, and we know that u(n, t) is a Laguerre temperature in 0 < t < 1. 
Hence by Theorem 5.1, there exists a nonnegative function y such that 

u(n, t> = f gh m; t) cp(m> p(m). 
w&=0 

But by (5.14) 

u(n, t) = f g(n*, m; 1 - t)f(m*) p(m). 
m=o 

(5.15) 

(5.16) 

Let 

a(n, t) = f g(m; 1 -- t)f(n, m*) p(m). (5.17) 
9X=0 

Since (5.11) holds, the series (5.17) converges absolutely and uniformly. 
Applying the operator V, to v(n, t) we have 

V,v(n, t) = f g(m; 1 - t> V, f (a, m*) p(m) 
VL=O 

= - i. g(m; 1 - t> V,,f(n, m*) dm>, 
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since f (n, m*) is L-harmonic. By the preceding lemma, we then have 

V&n, t> = - f [V&m; 1 - t>lf(n, m*) p(m) 
V?l=O 

so that ~(11, t) E H. Further, 

V&n, t) Lo = - 5 [Vd@; 1 - t)lf Cm*> dm). 
m=O 

Now, appIying the operator V, to ~(71, t), we have 

V&n, t) = f V&n*, m; 1 - t)f(m*) p(m) 

Vi%=0 

= - z. [vm&*, m; 1 - t>lf (m*> p(m), 

by the L-harmonic property of g(n*, m; 1 - t). Hence 

V&n, t> LO = - 2 Pm&; 1 - W(m*) fW m=o 

or 
= VT&+, t> LO, (5.18) 

[u( 1, t) - U(0, t)] - cy[U(O, t) - U( - 1, t)] = [v( 1, t) - v(0, t)] 

- a[v(O, t) - v( - 1, t)]. (5.19) 

Since u( - 1, t) = v( - 1, t) = 0, and clearly ~(0, t) = ~(0, t), (5.19) yields 

U(1, t) = v(1, t). 

Inductively, we obtain 

VnkU(% t) Ia=0 = VnkV(% t) In=0 

with U(TZ, t) = ~(71, t) for n = - 1,0 ,..., k - 1, so that 

u(k, t) = v(k, t). 
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Hence 

u(n, t) = v(n, t), n = - 1, 0, l)... . 

We thus have 

u(n, t) = Zl(n, t) 

= f g(m; 1 - t)f(n, m*) p(m), 
m-0 

and letting t + l-, we obtain 

;y 4% t) = f qo, m>f(n, m*) 
WZ=O 

We now must show the convergence of the series (5.15) for t = 1. To this 
end, we note that for N > 0, we have 

or letting t -+ I-, we obtain 

Since g(n, m; 1) v(m) p(m) 3 0 for all n, m, we have 

go da, w 1) dm> dm) Gf W. 

Hence we have the required convergence and letting t - l- in (5.15) yields 
the desired representation. 
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