The Weierstrass-Laguerre Transform

Deborah Tepper Haimo
AND
Frank M. Cholewinskı*

Southern Illinois University, Edwardsville, Illinois
Clemson University, Clemson, South Carolina
Submitted by Samuel Karlin

1. Preliminaries

In recent papers [1], [2], [3], [4], the authors studied the Hankel, the Weierstrass-Hankel, and the Poisson-Laguerre transforms. An analogous development is undertaken here for the Weierstrass-Laguerre transform, extending in part a similar investigation of the Laguerre transform by I. Hirschman in [5].

Let $\alpha \geqslant 0$ and let $L_{n}{ }^{\alpha}(x)$ denote the Laguerre polynomial of degree n defined by

$$
\begin{equation*}
L_{n}^{\alpha}(x)=\frac{x^{-\alpha} e^{x}}{n!}\left(\frac{d}{d x}\right)^{n}\left(x^{n+\alpha} e^{-x}\right), \quad n=0,1, \ldots \tag{1.1}
\end{equation*}
$$

For $f(n)$ a real function defined for $n=0,1, \ldots$, the Laguerre transform $f^{\wedge}(x)$ is given by

$$
\begin{equation*}
f^{\wedge}(x)=\sum_{n=0}^{\infty} L_{n}{ }^{\alpha}(x) f(n) \rho(n), \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho(n)=\frac{n!}{\Gamma(n+\alpha+1)} . \tag{1.3}
\end{equation*}
$$

By the inversion formula, we have

$$
\begin{equation*}
f(n)=\int_{0}^{\infty} L_{n}^{\alpha}(x) f^{\wedge}(x) d \Omega(x), \tag{1.4}
\end{equation*}
$$

[^0]with
\[

$$
\begin{equation*}
d \Omega(x)=e^{-x} x^{\alpha} d x \tag{1.5}
\end{equation*}
$$

\]

If we define the Laguerre difference operator ∇_{n} by
$\nabla_{n} h(n)=(n+1) h(n+1)-(2 n+\alpha+1) h(n)+(n+\alpha) h(n-1)$,
then, from the fact that

$$
\begin{equation*}
\nabla_{n} L_{n}{ }^{\alpha}(x)=-x L_{n}{ }^{\alpha}(x) \tag{1.7}
\end{equation*}
$$

we have, for an arbitrary polynomial $p(x)$,

$$
\begin{equation*}
\left[p\left(\nabla_{n}\right) f\right]^{\wedge}(x)=p(-x) f^{\wedge}(x) \tag{1.8}
\end{equation*}
$$

or, by inversion,

$$
\begin{equation*}
\left[p\left(\nabla_{n}\right) f\right](n)=\int_{0}^{\infty} f^{\wedge}(x) p(-x) L_{n}^{\alpha}(x) d \Omega(x) \tag{1.9}
\end{equation*}
$$

We consider the Laguerre difference heat equation

$$
\begin{equation*}
\nabla_{n} u(n, t)=\frac{\partial}{\partial t} u(n, t) \tag{1.10}
\end{equation*}
$$

whose fundamental solution is the function $g(n ; t)$ given by

$$
\begin{align*}
g(n ; t) & =\int_{0}^{\infty} e^{-t x} L_{n}^{\alpha}(x) d \Omega(x), \quad t>-1 \\
& =\frac{1}{\rho(n)} \frac{t^{n}}{(1+t)^{n+\alpha+1}} \tag{1.11}
\end{align*}
$$

Corresponding to $g(n ; t)$ we define its conjugate $g\left(n^{*} ; t\right)$ by

$$
\begin{align*}
g\left(n^{*} ; t\right) & =\int_{0}^{\infty} e^{-t x} L_{n}^{\alpha}(-x) d \Omega(x) \\
& =\frac{1}{\rho(n)} \frac{(2+t)^{n}}{(1+t)^{n+\alpha+1}} \tag{1.12}
\end{align*}
$$

We need to introduce associated functions. To this end, let

$$
\begin{equation*}
d(k, m, n)=\int_{0}^{\infty} L_{k}^{\alpha}(x) L_{m}^{\alpha}(x) L_{n}^{\alpha}(x) d \Omega(x) \tag{1.13}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
d\left(k^{*}, m, n\right)=\int_{0}^{\infty} L_{k^{\alpha}}^{\alpha}(-x) L_{m}^{\alpha}(x) L_{n}^{\alpha}(x) d \Omega(x) . \tag{1.14}
\end{equation*}
$$

Then the associated function $f(n, m)$ of a function $f(n)$ defined for $n=0,1, \ldots$ is given by

$$
\begin{equation*}
f(n, m)=\sum_{k=0}^{\infty} f(k) d(k, m, n) \rho(k) \tag{1.15}
\end{equation*}
$$

and the conjugate associated function $f\left(n^{*}, m\right)$ of $f(n)$ by

$$
\begin{equation*}
f\left(n^{*}, m\right)=\sum_{k=0}^{\infty} f(k) d\left(k, m, n^{*}\right) \rho(k) . \tag{1.16}
\end{equation*}
$$

It readily follows that

$$
\begin{equation*}
f(n, m)=\int_{0}^{\infty} f^{\wedge}(x) L_{n}{ }^{\alpha}(x) L_{m}{ }^{\alpha}(x) d \mu(x) \tag{1.17}
\end{equation*}
$$

and

$$
\begin{equation*}
f\left(n^{*}, m\right)=\int_{0}^{\infty} f^{\wedge}(x) L_{n}^{\alpha}(-x) L_{m}^{\alpha}(x) d \mu(x) \tag{1.18}
\end{equation*}
$$

and the functions $f(n, m), f\left(n^{*}, m\right)$ satisfy the following

$$
\begin{align*}
f(n, 0) & =f(n) \tag{1.19}\\
f(n, m) & =f(m, n) \tag{1.20}\\
\nabla_{n} f(n, m) & =\nabla_{m} f(n, m) \tag{1.21}\\
{\left[L_{n}\left(-\nabla_{m}\right) f\right](m) } & =f(n, m) \tag{1.22}\\
f\left(n^{*}, m\right) & =f\left(m, n^{*}\right) \tag{1.23}\\
\nabla_{n} f\left(n^{*}, m\right) & =-\nabla_{m} f\left(n^{*}, m\right) \tag{1.24}\\
{\left[L_{n}\left(\nabla_{m}\right) f\right](m) } & =f\left(n^{*}, m\right) . \tag{1.25}
\end{align*}
$$

Of central importance in our theory are the associated and conjugate associated functions of the fundamental solution $g(n ; t)$. Properties and asymptotic estimates of these were developed in detail in [3] and we include here only the results needed.

The function associated with $g(n ; t)$ is given by

$$
\begin{align*}
g(n, m ; t)= & \int_{0}^{\infty} e^{-t x} L_{n}(x) L_{m}(x) d \Omega(x), \quad t>0 \\
= & \frac{\Gamma(n+m+\alpha+1)}{n!m!} \frac{t^{n+m}}{(1+t)^{n+m+\alpha+1}} \\
& \quad \times{ }_{2} F_{1}\left(-n,-m ;-n-m-\alpha ; 1-\frac{1}{t^{2}}\right) . \tag{1.26}
\end{align*}
$$

so that

$$
\begin{equation*}
e^{-t x} L_{n}^{\alpha}(x)=\sum_{m=0}^{\infty} g(n, m ; t) L_{m}^{\alpha}(x) \rho(m), \tag{1.27}
\end{equation*}
$$

and the conjugate associated function is given by

$$
\begin{align*}
g\left(n^{*}, m ; t\right)- & \int_{0}^{\infty} e^{-t x} L_{n}{ }^{\alpha}(-x) L_{m^{\alpha}}(x) d \Omega(x) \\
= & \frac{\Gamma(n+m+\alpha+1)}{n!m!} \frac{(2+t)^{n} t^{m}}{(1+t)^{n+m+\alpha+1}} \\
& \quad \times{ }_{2} F_{1}\left(-n,-m ;-n-m-\alpha ; 1+\frac{1}{t^{2}+2 t}\right), \tag{1.28}
\end{align*}
$$

where upon

$$
\begin{equation*}
e^{-t x} L_{n}^{\alpha}(-x)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) L_{m}{ }^{\alpha}(x) \rho(m) \tag{1.29}
\end{equation*}
$$

and also

$$
\begin{equation*}
e^{t x} L_{n}{ }^{\alpha}(x)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) L_{m}{ }^{\alpha}(-x) \rho(m) \tag{1.30}
\end{equation*}
$$

As may readily be established from their series representations the functions $g(n, m ; t), g\left(n^{*}, m ; t\right)$ have the following asymptotic estimates.

$$
\begin{align*}
g(n, m ; t) \sim \frac{n^{m+\alpha}}{m!} \frac{t^{n-m}}{(1+t)^{n+m+\alpha+1}}, & n \rightarrow \infty \tag{1.31}\\
g\left(n^{*}, m ; t\right) \sim \frac{(-1)^{m} n^{m+\alpha}}{m!} \frac{(2+t)^{n-m}}{(1+t)^{n+m+\alpha+1}}, & n \rightarrow \infty \tag{1.32}\\
g\left(n, m^{*} ; t\right) \sim \frac{(-1)^{m} n^{m+\alpha}}{m!} \frac{t^{n-m}}{(1+t)^{n+m+\alpha+1}}, & n \rightarrow \infty . \tag{1.33}
\end{align*}
$$

In addition, they satisfy the following Huygens-type relation.

$$
\begin{equation*}
\sum_{k=0}^{\infty} g\left(k, m ; t_{1}\right) g\left(n, k ; t_{2}\right) \rho(k)=g\left(n, m ; t_{1}+t_{2}\right), \quad t_{1}, t_{2}>1, \tag{1.34}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{\infty} g\left(k, n^{*} ; t_{1}\right) g\left(k^{*}, m ; t_{2}\right) \rho(k)=g\left(n, m ; t_{2}-t_{1}\right), \quad t_{2}>t_{1} \tag{1.35}
\end{equation*}
$$

We define the Poisson-Laguerre transform of a function φ defined for $n=0,1, \ldots$ by

$$
\begin{equation*}
u(n, t)=\sum_{m=0}^{\infty} g(n, m ; t) \varphi(m) \rho(m) \tag{1.36}
\end{equation*}
$$

whenever the series converges. In [3], we established the fact that if $\sum_{m=0}^{\infty} g\left(n_{0}, m ; t_{0}\right) \varphi(m) \rho(m)$ converges conditionally for some non-negative integer n_{0}, then the series defining the Poisson-Laguerre transform converges for all $n=0,1, \ldots$ and $0<t \leqslant t_{0}$.
The Weierstrass-Laguerre transform of a function φ defined for $n=0,1, \ldots$ is given by

$$
\begin{equation*}
f(n)=\sum_{n=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m) \tag{1.37}
\end{equation*}
$$

whenever the series converges. If it does, we know from [3] that the series defining $f\left(n^{*}\right)$,

$$
\begin{equation*}
f\left(n^{*}\right)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; 1\right) \varphi(m) \rho(m) \tag{1.38}
\end{equation*}
$$

also converges for fiuite n.

2. L-Harmonic Functions

In terms of the Laguerre difference operator ∇_{n}, we have a theory analogous to that of harmonic functions.

Let

$$
\begin{equation*}
\mathscr{N}=\{-1,0,1, \ldots\} \tag{2.1}
\end{equation*}
$$

and let $f(n, m)$ be a function defined on $\mathscr{N}^{2}=\mathscr{N} \times \mathscr{N}$ and satisfying the conditions

$$
\begin{equation*}
f(-1, m)=f(n,-1)=f(n, 0)=0 . \tag{2.2}
\end{equation*}
$$

Definition 2.1. A point (n, m) in \mathscr{U}, a subset of \mathscr{N}^{2}, is an inner point of \mathscr{O} iff

$$
\begin{equation*}
\{(n+1, m),(n-1, m),(n, m+1),(n, m-1)\} \subset \mathscr{U} . \tag{2.3}
\end{equation*}
$$

Otherwise, (n, m) is a boundary point.
We denote by \mathscr{U}^{0} the set of inner points of \mathscr{U}, and by $\partial \mathscr{U}$, the set of boundary points of \mathscr{U}.

Definition 2.2. A real-valued function f defined on \mathscr{U} is called L-harmonic iff

$$
\begin{equation*}
\square f(n, m)=\left(\nabla_{n}+\nabla_{m}\right) f(n, m)=0 \tag{2.4}
\end{equation*}
$$

at each inner point (n, m) of \mathscr{U}.
It is clear that every conjugate associated function

$$
f\left(n, m^{*}\right)=L_{m}{ }^{\alpha}\left(\nabla_{n}\right) f(n)
$$

is L-harmonic.
Definition 2.3. A neighborhood of a point $P:(n, m)$ in \mathscr{N}^{2} is the set

$$
\begin{equation*}
N_{P}=\{(n, m),(n+1, m),(n-1, m),(n, m+1),(n, m-1)\} . \tag{2.5}
\end{equation*}
$$

Definition 2.4. A subset \mathscr{U} of \mathscr{N}^{2} is a domain iff, given any two inner points P and Q, we can find a sequence of points $P=P_{0}, P_{1}, \ldots, P_{n}=Q$ from P to Q, where P_{k+1} is obtained from P_{k} by changing one coordinate of P_{k} by either +1 or -1 , and where $\left\{P_{1}, P_{2}, \ldots, P_{n-1}\right\} \subset \mathscr{U}^{0}$.

Definition 2.5. A domain \mathscr{Z} is called a simple domain iff

$$
\begin{equation*}
\mathscr{U}=\mathscr{U}^{0}=\mathscr{U}^{0} \cup\left\{P \in \partial \mathscr{U} \mid P \in N_{Q} \text { for some } Q \in \mathscr{U}^{0}\right\} . \tag{2.6}
\end{equation*}
$$

Theorem 2.6 [maximum (minimum) principle]. If fis L-harmonic on a finite subset \mathscr{U} of \mathscr{N}^{2}, then f attains its maximum (minimum) values on $\partial \mathscr{U}$.

Proof. It is clearly enough to prove the theorem for the maximum.
Let (n, m) be an inner point of \mathscr{U} at which f attains a maximum value M. Then

$$
\begin{align*}
M & =f(n, m)=f(n+1, m)=f(n-1, m) \\
& =f(n, m+1)=f(n, m-1) \tag{2.7}
\end{align*}
$$

For, if any one of $f(n+1, m), f(n-1, m), f(n, m+1), f(n, m-1)$ is strictly less than $M=f(n, m)$, it follows that

$$
\begin{align*}
(n+1) f(n+1, m) & +(n+\alpha) f(n-1, m)+(m+1) f(n, m+1) \\
& +(m+\alpha) f(n, m-1)<2(n+m+\alpha+1) f(n, m) \tag{2.8}
\end{align*}
$$

or

$$
\begin{equation*}
\square f(n, m)<0 \tag{2.9}
\end{equation*}
$$

contrary to the assumption that f is L-harmonic. Repeating the argument a finite number of times, we find a boundary point at which f takes on the maximum value M.

Corollary 2.7. If f is L-harmonic on a finite domain \mathscr{U} of \mathscr{N}^{2}, then f does not attain a local maximum (minimum) on \mathscr{U}^{0} unless f is constant on \mathscr{U}^{0}.

Theorem 2.8. Let fbe defined on the boundary ∂ of a finite simple domain \mathscr{U}. Then there exists a unique L-harmonic function g on \mathscr{H} which coincides with f on $\partial \mathscr{U}$.

Proof. We note, first, that the uniqueness follows from the preceding theorem. For, if g_{1} and g_{2} are two such functions, then $g=g_{1}-g_{2}$ is L-harmonic on \mathscr{U} and is identically zero on $\partial \mathscr{U}$. But then $g \equiv 0$ on \mathscr{U} so that $g_{1} \equiv g_{2}$ on μ.

Now, let $P_{1}, P_{2}, \ldots, P_{r}$ be all the inner points of μ, and $Q_{1}, Q_{2}, \ldots, Q_{s}$ all its boundary points. Consider the r equations

$$
\begin{equation*}
\square g\left(P_{k}\right)=0, \quad k=1,2, \ldots, r \tag{2.10}
\end{equation*}
$$

in the r unknowns $g\left(P_{1}\right), \ldots, g\left(P_{r}\right)$. The system (2.10) can be written in the form

$$
\begin{equation*}
\sum_{j=1}^{r} a_{k j} g\left(P_{j}\right)=b_{k} \quad k=1,2, \ldots, r \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\sum_{j=0}^{s} c_{k j} f\left(Q_{j}\right) . \tag{2.12}
\end{equation*}
$$

We note that if $f \equiv 0$ on $\partial \mathscr{U}$, then $g \equiv 0$ on \mathscr{U} and (2.11) reduces to the homogenous system

$$
\begin{equation*}
\sum_{j=1}^{r} a_{k j} g\left(P_{j}\right)=0 \tag{2.13}
\end{equation*}
$$

which admits only the trivial solution. It follows, therefore, by Cramer's rule, that the system (2.13), and equivalently (2.11), must have a unique solution g, which is the function sought.

3. Formal Approach

Before proceeding to a rigorous development of the inversion theory we seek, let us illustrate its essence by deriving it formally. We need a suitable definition for the difference operator $e^{-\nabla_{n}}$ so that the inversion formula

$$
\begin{equation*}
e^{-\nabla_{n}} \sum_{n=0}^{\infty} g(n, m ; 1) q(m) \rho(m)=q(n) \tag{3.1}
\end{equation*}
$$

will hold. To this end, we formally set

$$
\begin{equation*}
e^{-t \Gamma_{n}}=\sum_{k=0}^{\infty} \frac{\left(-t \nabla_{n}\right)^{k}}{k!}, \tag{3.2}
\end{equation*}
$$

where ∇_{n} is given by (1.2). Then we have, using (2.3),

$$
\begin{align*}
e^{-t \nabla_{n}} L_{n}^{\alpha}(x)=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} & \left(-\nabla_{n}\right)^{k} L_{n}^{\alpha}(x) \\
& =\sum_{k=0}^{\infty} \frac{(t x)^{k}}{k!} L_{n}^{\alpha}(x) \\
& =e^{t x} L_{n}{ }^{\alpha}(x) \tag{3.3}
\end{align*}
$$

Now, if

$$
\begin{equation*}
f(n)=\int_{0}^{\infty} L_{n}^{\alpha}(x) f^{\wedge}(x) d \Omega(x) \tag{3.4}
\end{equation*}
$$

it follows, formally, that

$$
\begin{align*}
e^{-t \nabla_{n}} f(n) & =\int_{0}^{\infty}\left[e^{-t \nabla_{n}} L_{n}^{\alpha}(x)\right] f^{\wedge}(x) d \Omega(x) \\
& =\int_{0}^{\infty} e^{t x} L_{n}^{\alpha}(x) f^{\wedge}(x) d \Omega(x) \tag{3.5}
\end{align*}
$$

But, by (1.30),

$$
\begin{equation*}
e^{t x} L_{n}{ }^{\alpha}(x)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) L_{m}^{\alpha}(-x) \rho(m) \tag{3.6}
\end{equation*}
$$

and so

$$
\begin{align*}
e^{-t \nabla_{n}} f(n) & =\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) \rho(m) \int_{0}^{\infty} f^{\wedge}(x) L_{m}{ }^{\alpha}(-x) d \Omega(x) \\
& =\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(m^{*}\right) \rho(m) . \tag{3.7}
\end{align*}
$$

We are thus led to the following definition

$$
\begin{equation*}
e^{-\nabla_{n}} f(n)=\lim _{t \rightarrow 1^{-}} \sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(m^{*}\right) \rho(m), \tag{3.8}
\end{equation*}
$$

which yields the inversion formula. For, let

$$
\begin{equation*}
f(n)=\sum_{m=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m), \quad n=0,1,2, \ldots \tag{3.9}
\end{equation*}
$$

with $\varphi(m)$ defined for $m=0,1,2, \ldots$ Then

$$
\begin{aligned}
e^{-\nabla_{n}} f(n) & =\lim _{t \rightarrow 1^{-}} \sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(m^{*}\right) \rho(m) \\
& =\lim _{t \rightarrow 1^{-}} \sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) \rho(m) \sum_{k=0}^{\infty} g\left(m^{*}, k ; 1\right) \varphi(k) \rho(k) \\
& =\lim _{t \rightarrow 1^{-}} \sum_{k=0}^{\infty} \varphi(k) \rho(k) \sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) g\left(m^{*}, k ; 1\right) \rho(m) \\
& =\lim _{t \rightarrow 1^{-}} \sum_{k=0}^{\infty} g(n, k ; 1-t) \varphi(k) \rho(k)
\end{aligned}
$$

where the last equality follows from (1.35). Hence

$$
\begin{aligned}
e^{-\nabla_{n}} f(n) & =\lim _{t \rightarrow 1^{-}} \sum_{k=0}^{\infty} \varphi(k) \rho(k) \int_{0}^{\infty} e^{-(1-t) x} L_{n}^{\alpha}(x) L_{k}^{\alpha}(x) d \Omega(x) \\
& =\lim _{t \rightarrow 1^{-}} \int_{0}^{\infty} e^{-(1-t) x} L_{n}^{\alpha}(x) \varphi^{\wedge}(x) d \Omega(x) \\
& =\int_{0}^{\infty} \varphi^{\wedge}(x) L_{n}^{\alpha}(x) d \Omega(x) \\
& =\varphi(n)
\end{aligned}
$$

and the inversion is established.

4. Inversion

Our principal inversion theorem depends on the following fundamental inversion formula derived in [3].

409/23/I-4

Theorem 4.1. If $\varphi(m)$ is a real-valued function defined for $m=0,1, \ldots$, and the Weierstrass-Laguerre transform

$$
\begin{equation*}
\sum_{m=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m) \tag{4.1}
\end{equation*}
$$

converges for some nonnegative integer n_{0}, then

$$
\begin{equation*}
\lim _{t \rightarrow 0^{\prime}} \sum_{m=0}^{\infty} g(n, m ; t) \notin(m) \rho(m)=\varphi(n) \tag{4.2}
\end{equation*}
$$

We need, in addition, the following readily established estimate. See [3].
Lemma 4.2. For a a positive number and $|r|<1$,

$$
\begin{equation*}
\sum_{k=0}^{\infty} k^{\alpha} r^{k}=O\left\{\frac{[\alpha]+1}{(1-r)^{[\alpha]+2}}\right\}, \quad n \rightarrow \infty \tag{4.3}
\end{equation*}
$$

where $[\alpha]$ denotes the greatest integer in α.
From the asymptotic relation (1.31), the following result is immediate.
Lemma 4.3. If the series

$$
\begin{equation*}
\sum_{m=0}^{\infty} g(n, m ; t) \varphi(m) \rho(m), \quad n=0,1, \ldots \tag{4.4}
\end{equation*}
$$

converges, then so does the series

$$
\begin{equation*}
\sum_{m=0}^{\infty} m^{n}\left(\frac{t}{1+t}\right)^{m} \varphi(m) . \tag{4.5}
\end{equation*}
$$

We are now ready to prove the main theorem leading to the inversion desired.

Theorem 4.4. Let $\varphi(m)$ be a real-valued non-negative function defined for $m=0,1, \ldots$ and let the series

$$
\begin{equation*}
\sum_{m=0}^{\infty} g(n, m ; 2) \varphi(m) \rho(m) \tag{4.6}
\end{equation*}
$$

converge. Then, if

$$
\begin{equation*}
f(n)=\sum_{m=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m) \tag{4.7}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
e^{-t \nabla_{n}} f(n)=\sum_{m=0}^{\infty} g(n, m ; 1-t) \varphi(m) \rho(m) \tag{4.8}
\end{equation*}
$$

where

$$
\begin{equation*}
e^{-t \nabla_{n}} f(n)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(m^{*}\right) \rho(m) \tag{4.9}
\end{equation*}
$$

Proof. Since the series (4.6) converges, it follows that the WeierstrassLaguerre transform converges, and so, also, the series

$$
\begin{equation*}
f\left(n^{*}\right)=\sum_{k=0}^{\infty} g\left(n^{*}, k ; 1\right) \varphi(k) \rho(k) . \tag{4.10}
\end{equation*}
$$

Hence we have

$$
\begin{align*}
e^{-t \nabla_{n}} f(n) & =\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(m^{*}\right) \rho(m) \\
& =\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) \rho(m) \sum_{k=0}^{\infty} g\left(m^{*}, k ; 1\right) \varphi(k) \rho(k) \\
& =\sum_{k=0}^{\infty} \varphi(k) \rho(k) \sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) g\left(m^{*}, k ; 1\right) \rho(m) \tag{4.11}
\end{align*}
$$

provided the double series converges and the change in order of summation is justified. This follows from the fact that by the estimates (1.32), (1.33), the right-hand side of (4.11) is dominated by

$$
\frac{1}{2^{\alpha+1} n!t^{n}(1+t)^{n+\alpha+1}} \sum_{k=0}^{\infty} \frac{\varphi(k)}{6^{k} k!k^{\alpha}} \sum_{m=0}^{\infty} m^{n+k+\alpha}\left[\frac{3 t}{2(1+t)}\right]^{m}
$$

or, by an appeal to Lemma 4.2, by

$$
A_{n} \sum_{k=0}^{\infty}\left(\frac{1+t}{6-3 t}\right)^{k} \varphi(k) \frac{(n+k+[\alpha]+1)!}{k!k^{, \alpha]}} \sim A_{n} \sum_{k=0}^{\infty}\left(\frac{1+t}{6-3 t}\right)^{k} k^{n+1} \varphi(k) .
$$

and the series converges by the hypothesis and Lemma 4.3. Applying (1.35) to the right-hand side of (4.11), we obtain (4.9) and the proof is complete.

As a consequence of this theorem and Theorem 4.1, we have our principal result.

Theorem 4.5. Under the conditions of Theorem 4.4

$$
\lim _{t \rightarrow 1^{-}} e^{-t \nabla_{n}} f(n)=\varphi(n)
$$

5. Representation

Our goal here is to characterize those functions which are WeierstrassLaguerre transforms of positive functions.

We need to consider Laguerre temperatures defined as $C^{\mathbf{1}}$ solutions of the Laguerre difference heat equation. We denote by H the class of all Laguerre temperatures. In [3] it was shown that a convergent Poisson-Laguerre transform belongs to H in its region of convergence. In addition, if we set

$$
\begin{equation*}
e^{-t \nabla_{n}} f(n)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; t\right) f\left(n^{*}\right) \rho(n) \tag{5.1}
\end{equation*}
$$

then the function

$$
\begin{equation*}
u(n, t)=e^{-(1-t) \nabla_{n} f(n)} \tag{5.2}
\end{equation*}
$$

belongs to H for $0<t<1$ provided that

$$
\begin{equation*}
f\left(n^{*}\right)=o\left(n g\left(n^{*} ; 1\right)\right), \quad n \rightarrow \infty \tag{5.3}
\end{equation*}
$$

To establish our principal result, we state a representation theorem for Laguerre temperatures proved in [3].

Theorem 5.1. A necessary and sufficient condition that

$$
\begin{equation*}
u(n, t)=\sum_{m=0}^{\infty} g(n, m ; t) \varphi(m) \rho(m) \tag{5.4}
\end{equation*}
$$

with $\varphi(m)$ nonnegative and the series converging for $n=-1,0, \ldots, 0<t<c$ is that $u(n, t)$ be a nonnegative Laguerre temperature there.

- We need, in addition, the following result.

Lemma 5.2. Let f be defined for $n=-1,0,1, \ldots$ and let $f\left(n, m^{*}\right)$ be its conjugate associated function. If

$$
\begin{equation*}
f\left(n, m^{*}\right)=O\left(g\left(m^{*} ; 1\right)\right), \quad m \rightarrow \infty \tag{5.5}
\end{equation*}
$$

then for $0 \leqslant t \leqslant 1$

$$
\begin{equation*}
\sum_{m=0}^{\infty} g(m ; t)\left[\nabla_{m} f\left(n, m^{*}\right)\right] \rho(m)=\sum_{m=0}^{\infty}\left[\nabla_{m} g(m ; t)\right] f\left(n, m^{*}\right) \rho(m) . \tag{5.6}
\end{equation*}
$$

Proof. We note that since $f\left(n, m^{*}\right)$ is L-harmonic, the series on the left of (5.6) is equal to

$$
\begin{equation*}
-\nabla_{n} \sum_{m=0}^{\infty} g(m ; t) f\left(n, m^{*}\right) \rho(m) \tag{5.7}
\end{equation*}
$$

which converges absolutely and uniformly because of (5.5). Now, defining

$$
\begin{equation*}
\delta^{+} f(n)=f(n+1)-f(n) \tag{5.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta f(n)=f(n)-f(n-1) \tag{5.9}
\end{equation*}
$$

and noting that

$$
\begin{equation*}
\nabla_{n} f(n)=(n+1) \delta^{+} f(n)-(n+\alpha) \delta^{-} f(n) \tag{5.10}
\end{equation*}
$$

we have

$$
\begin{gathered}
\sum_{m=0}^{\infty} g(m ; t)\left[\nabla_{m} f\left(n, m^{*}\right)\right] \rho(m) \\
=\sum_{m=0}^{\infty} g(m ; t)\left\{(m+1) \delta_{m}^{+} f\left(n, m^{*}\right)-(m+\alpha) \delta_{n}^{-} f\left(n, m^{*}\right)\right\} \rho(m) \\
=-\sum_{m=0}^{\infty} f\left(n, m^{*}\right)\left[\delta_{m}^{-}(m+1) \rho(m) g(m ; t)-\delta_{m}^{+}(m+\alpha) \rho(m) g(m ; t)\right],
\end{gathered}
$$

where the last equality is a result of a summation by parts, the summed part vanishing. Since the factor in brackets of the last series is. $-\left[\nabla_{m} g(m ; t)\right] \rho(m)$, the proof is established.

We now give the characterization of a function which has a LaguerreWeierstrass transform representation.

Theorem 5.3. Let f be defined on $n=-1,0,1, \ldots$ and let $f\left(n, m^{*}\right)$ be its conjugate associated function. If

$$
\begin{equation*}
f\left(n, m^{*}\right)=O\left[g\left(m^{*} ; 1\right)\right], \quad m \rightarrow \infty \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
e^{-t \nabla_{n}} f(n) \geqslant 0, \quad 0 \leqslant t<1, \quad n=0,1, \ldots \tag{5.12}
\end{equation*}
$$

then there exists a nonnegative function φ, defined for $n=0,1, \ldots$, such that

$$
\begin{equation*}
f(n)=\sum_{m=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m) \tag{5.13}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
u(n, t)=e^{-(1-t) \nabla_{n}} f(n) \tag{5.14}
\end{equation*}
$$

By (5.11), it is clear that $u(n, t)$ is well defined. Condition (5.12) implies that $u(n, t) \geqslant 0$, and we know that $u(n, t)$ is a Laguerre temperature in $0<t<1$. Hence by Theorem 5.1, there exists a nonnegative function φ such that

$$
\begin{equation*}
u(n, t)=\sum_{m=0}^{\infty} g(n, m ; t) \varphi(m) \rho(m) \tag{5.15}
\end{equation*}
$$

But by (5.14)

$$
\begin{equation*}
u(n, t)=\sum_{m=0}^{\infty} g\left(n^{*}, m ; 1-t\right) f\left(m^{*}\right) \rho(m) \tag{5.16}
\end{equation*}
$$

Let

$$
\begin{equation*}
v(n, t)=\sum_{m=0}^{\infty} g(m ; 1-t) f\left(n, m^{*}\right) \rho(m) \tag{5.17}
\end{equation*}
$$

Since (5.11) holds, the series (5.17) converges absolutely and uniformly. Applying the operator ∇_{n} to $v(n, t)$ we have

$$
\begin{aligned}
\nabla_{n} v(n, t) & =\sum_{m=0}^{\infty} g(m ; 1-t) \nabla_{n} f\left(n, m^{*}\right) \rho(m) \\
& =-\sum_{m=0}^{\infty} g(m ; 1-t) \nabla_{m} f\left(n, m^{*}\right) \rho(m)
\end{aligned}
$$

since $f\left(n, m^{*}\right)$ is L-harmonic. By the preceding lemma, we then have

$$
\begin{aligned}
\nabla_{n} v(n, t) & =-\sum_{m=0}^{\infty}\left[\nabla_{m} g(m ; 1-t)\right] f\left(n, m^{*}\right) \rho(m) \\
& =\frac{\partial}{\partial t} v(n, t)
\end{aligned}
$$

so that $v(n, t) \in H$. Further,

$$
\left.\nabla_{n} v(n, t)\right|_{n=0}=-\sum_{m=0}^{\infty}\left[\nabla_{m} g(m ; 1-t)\right] f\left(m^{*}\right) \rho(m)
$$

Now, applying the operator ∇_{n} to $u(n, t)$, we have

$$
\begin{aligned}
\nabla_{n} u(n, t) & =\sum_{m=0}^{\infty} \nabla_{n} g\left(n^{*}, m ; 1-t\right) f\left(m^{*}\right) \rho(m) \\
& =-\sum_{m=0}^{\infty}\left[\nabla_{m} g\left(n^{*}, m ; 1-t\right)\right] f\left(m^{*}\right) \rho(m)
\end{aligned}
$$

by the L-harmonic property of $g\left(n^{*}, m ; 1-t\right)$. Hence

$$
\begin{align*}
\left.\nabla_{n} u(n, t)\right|_{n=0} & =-\sum_{m=0}^{\infty}\left[\nabla_{m} g(m ; 1-t)\right] f\left(m^{*}\right) \rho(m) \\
& =\left.\nabla_{n} v(n, t)\right|_{n=0} \tag{5.18}
\end{align*}
$$

or

$$
\begin{align*}
& {[u(1, t)-u(0, t)]-\alpha[u(0, t)-u(-1, t)] }=[v(1, t)-v(0, t)] \\
&-\alpha[v(0, t)-v(-1, t)] . \tag{5.19}
\end{align*}
$$

Since $u(-1, t)=v(-1, t)=0$, and clearly $u(0, t)=v(0, t)$, (5.19) yields

$$
u(1, t)=v(1, t)
$$

Inductively, we obtain

$$
\left.\nabla_{n}^{k} u(n, t)\right|_{n=0}=\left.\nabla_{n}^{k} v(n, t)\right|_{n=0}
$$

with $u(n, t)=v(n, t)$ for $n=-1,0, \ldots, k-1$, so that

$$
u(k, t)=v(k, t)
$$

Hence

$$
u(n, t)=v(n, t), \quad n=-1,0,1, \ldots .
$$

We thus have

$$
\begin{aligned}
u(n, t) & =v(n, t) \\
& =\sum_{m=0}^{\infty} g(m ; 1-t) f\left(n, m^{*}\right) \rho(m)
\end{aligned}
$$

and letting $t \rightarrow 1^{-}$, we obtain

$$
\begin{aligned}
\lim _{t \rightarrow 1^{-}} u(n, t) & =\sum_{m=0}^{\infty} \delta(0, m) f\left(n, m^{*}\right) \\
& =f(n)
\end{aligned}
$$

We now must show the convergence of the series (5.15) for $t=1$. To this end, we note that for $N>0$, we have

$$
\sum_{m=0}^{N} g(n, m ; t) \varphi(m) \rho(m) \leqslant u(n, t), \quad n=0,1, \ldots
$$

or letting $t \rightarrow 1^{-}$, we obtain

$$
\sum_{m=0}^{N} g(n, m ; 1) \varphi(m) \rho(m) \leqslant u\left(n, 1^{-}\right)=f(n)
$$

Since $g(n, m ; 1) \varphi(m) \rho(m) \geqslant 0$ for all n, m, we have

$$
\sum_{m=0}^{\infty} g(n, m ; 1) \varphi(m) \rho(m) \leqslant f(n)
$$

Hence we have the required convergence and letting $t-1^{-}$in (5.15) yields the desired representation.

References

1. F. M. Cholewinski. A Hankel convolution complex inversion theory. Memoirs Amer. Math. Soc., No. 58 (1965).
2. F. M. Cholewinski and D. T. Haimo. The Weierstrass-Hankel convolution transform. J. Anal. Math. 57 (1966), 1-58.
3. F. M. Cholewinski and D. T. Haimo. Laguerre temperatures. In "Proceedings of the Conference on Orthogonal Expansions and their Continuous Analogues." Southern Ill. Univ. Press, 1968, 197-226.
4. D. T. Haimo. Integral equations associated with Hankel convolutions. Trans. Amer. Math. Soc. 116 (1965), 330-375.
5. I. I. Hirschman, Jr. Taguerre transforms. Duke Math. J. 30 (1963), 495-510.
6. A. Erdelyi, editor; W. Magnus, F. Oberhettinger, F. G. Tricomi, research associates. "Higher Transcendental Functions," Vol. 2. New York, 1953.
7. A. Erdelyi, editor; W. Magnus, F. Oberhettinger, F. G. Tricomi, research associates. "Tables of Integral Transforms," Vol. 1. New York, 1954.
8. I. I. Hirschman, Jr. and D. V. Widder. "The convolution transform." Princeton Univ. Press, Princeton, New Jersey, 1955.
9. G. Sansone. Orthogonal functions. Interscience Publ. New York, 1959.

[^0]: * The research of the first author was supported by the National Aeronautics and Space Administration under grant NGR 14-008-009 and of the second by the National Science Foundation under grant GP-7167.

