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1. INTR~O~CTION 

In 1960 the author [S] made the conjecture that a Steiner Triple System 
S(o) with a doubly transitive automorphism group G is necessarily either 
an afline space over GF(3) or a projective space over GF(2). The truth of 
this conjecture is established in this paper.’ 

W. G. Burnside [l] showed that a doubly transitive permutation group 
has a transitive normal subgroup which is either an elementary Abelian 
p-group, or a non-Abelian simple group. In his 1972 M.Sc. dissertation at 
Oxford J. I. Hall [4] showed that in the first case S(v) is an afline space 
over GF(3), and this result is given in Section 3. In the second case it is 
shown in Section 4 that S(u) is the projective space over GF(2). This proof 
depends on the classification of the finite simple groups and a listing of 
doubly transitive groups by Peter Cameron [2]. G is in almost every case 
the group PSL(d, 2). The only exception is the doubly transitive represen- 
tation of A, on 15 points. 

2. STRUCTURE OF DOUBLY TRANSITIVE PERMUTATION GROUPS 

Burnside [ 1, p. 2021 has shown the following: 

THEOREM 2.1. Zf G is a finite doubly transitive group on v points, then 
either (i) G contains a transitive normal subgroup A of order pr = v, and A is 
elementary Abelian, or (ii) G contains a normal subgroup H where H is tran- 
sitive and H is simple-non Abelian. 

* This research was supported in part by the National Science Foundation under Grant 
MCS 82-17596. 

’ It has been reported to me that a similar result has been found independently by William 
Kantor and also by Ernest Shult. But this paper is my proof of my conjecture. 
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For Steiner triple systems S with a doubly transitive automorphism 
group G we shall show in the first case that S(u) is the affme geometry 
AG(r, 3) and v = 3’ and in the second case that S(u) is the projective 
geometry PG(s, 2) and u = 2’+ ’ - 1. The proof of the first case is due to J. 
I. Hall in his 1972 Oxford dissertation for the Master of Science degree. As 
this has not been published elsewhere, the proof will be given in Section 3. 
In the second case in Section 4 we have HE G c Aut(H) and the 
classification of the finite simple groups will be used. 

3. G HAS A NORMAL ELEMENTARY ABELIAN SUBGROUP 

In this section we shall assume that the Steiner triple system S(u) has a 
group of automorphisms G doubly transitive on the u points of S(u) and 
that G has an elementary Abelian subgroup A of order pr= v, transitive 
and regular on the u points. 

THEOREM 3.1. Let S(u) be a Steiner triple system with a group of 
automorphisms G which is doubly transitive on the points of S(v) and suppose 
that G has a regular normal subgroup A which is elementary Abelian of order 
p’=u.ThenS’ h ff IS t e a me geometry AG(r, 3), p = 3 and A is the translation 
group of this geometry. 

The proof of this theorem will depend on some preliminary results. In a 
Steiner system a triangle is a set of three points which are not in a triple. 

THEOREM 3.2. Let S be a Steiner triple system in which for every point x 
there is an involution a, of S which has x as its only fixed point. Then every 
triangle of S generates an S(9). Conversely suppose that S is a Steiner triple 
system in which every triangle generates an S(9). Then for every point x of S 
there is an involution ~1, of S which has x as its only fixed point. Also ifx # y 
(wQ3 = 1. 

Proof Suppose for each point x of S there is an involution a, which 
has x for its only fixed point. If an involution interchanges points a and b 
and if abc is a triple then clearly the involution fixes c. Hence the 
involution a, interchanges y and z if and only if xyz is a triple. Thus a, is 
completely determined by the point x and the triples containing x. Let 1, 2, 
4 be a triangle of S. Then the following triples are determined: 

192-3 224, 6 

1,475 

1367 

(3.1) 
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Then we have involutions OLD, CQ with 

a, = 

a2= 

3)(4, 5)(6,7), 

3X4,6). 
(3.2) 

Applying a, to 2, 4, 6 we have (2, 4, 6) a, = 3, 5, 7, a new triple. Thus 2, 5, 
7 is not a triple and there must be a triple 2, 5, 8. Let 9 be the third point 
of the triple 1, 8, 9. We now have triples 

1,233 2,436 3, 5, 7 

L4, 5 2, 5, 8 

L6, 7 
(3.3) 

1,8,9 

and also involutions 

a, = (1)(2, 3)(4, 5)(6, 7X8,9), 

a2 = (2)(1,3X4,6)(5,8), 

a3 = (3)(1,2)(5, 7), 

a4 = (4)(1, 5)(2,6), 

4= (5x1,4)(2,8)(3, 7). 

We now find further triples by applying the involutions 

(2, 5, 8) a, = 334, 9, 

(1,2,3)a,=4,8,7, 

(4, 8, 7) a, = 5, 6, 9. 

This adds to our information giving triples 

62, 3 2,4, 6 3,4,9 4, 7, 8 5, 699 

1,4,5 2, 578 3, 577 

1,637 

1,879 

(3.4) 

(3.5) 

(3.6) 
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and involutions 

a,= (1)(2,3)(4,5)(6,7)(8,9), 

02 = PNL 3)(4,6)(5,8), 

a3 = (3)(1,2)(4,9)(5, 7), 

~4 = (4)(1, 5)(2, 6)(3,9)(7, 8), 

us = (5)(1,4)(2, 8)(3, 7)(6,9). 

(3.7) 

(1,4,5)%=2,9,7, 

(2, 9, 7) a, = 3, 8, 6. 

This yields the triples of a complete S(9) 

1,2,3 294, 6 3,4,9 4, 7, 8 

1,475 2, 5, 8 3, 5, 7 

1, 6, 7 2, 7, 9 3,678 

1,8,9 

(3.8) 

5,6,9 

(3.9) 

a, = (1)(2, 3)(4, 5)(6, 7)(8,9), 

~2 = (2)(L 3)(4,6)(5, 8)(7,9), 

a3 = (3)(1,2)(4,9)(5, 7)(6, 8), 

a4 = (4)(1, 5)(2,6)(3, 9)(7, 8), 

us = (5)(1,4)(2,8)(3, 7)(6,9), 

u6 = (w, w, 4u 8)(5, 91, 

~7 = (7)(1, 6)(2, 9)(3, 5)(4, 8), 

a8 = (8)(1,9)(2, 5)(3,6)(4, 7), 

~9 = (9)(1, 8)(2, 7)(3,4)(5,6). 

(3.10) 

This completes the proof of the first part of the theorem since we have 
shown that given the involutions, the triangle 1, 2, 4 generates the S(9) of 
(3.9). 

For the converse part of the theorem suppose that S is a Steiner triple 
system in which every triangle generates an S(9). Let 1 be a point of S and 
let a, be the permutation which fixes 1 and interchanges x and y if 1, x, y is 
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a triple. We must prove that a, is an automorphism of S, namely, that a, 
maps triples of S onto triples of S. This is trivial for every triple through 1. 
Hence consider a triple, say, 2, 4, 6, not through 1. Let 3, 5, 7 be the third 
points of the triples containing 1, 2; 1, 4; 1, 6, respectively. 

Thus we have 

1, 2, 3 2,436 

1,425 (3.11) 

1,697 

By hypothesis the triangle 1, 2, 4 generates an S(9) whose points are l,..., 7 
as above and two further points 8, 9. Thus 1, 8, 9 is a triple. If 2, 5, 7 were 
a triple then we would have to have 2, 8, 9 as a triple and 8, 9 would 
appear in two triples, a conflict. Thus 2, 5 is in a triple with one of 8, 9, say, 
8. The remaining triple with 2 must be 2, 7, 9. This gives triples 

1,223 2,436 

154, 5 2, 5, 8 

1,637 2, 799 

1,899 

(3.12) 

We easily find that the only possible way to complete (3.12) to an S(9) 
is to add the further triples which appear in (3.9). Thus with 
a, = (1)(2, 3)(4, 5)(6, 7)(8, 9) we find (2, 4, 6) ui =3, 5, 7 and 3, 5, 7 is 
indeed a triple of S. This proves that a, is an automorphism of S and the 
proof of our theorem is complete. 

Finally, suppose that x # y, and that X, y, z is a triple. Then 

giving 

a,a,a, = a= and aI,a,ap = a2 (3.13) 

(a,ay)3 = af = 1. (3.14) 

THEOREM 3.3. Suppose that S(u) has a sharply doubly transitive 
automorphism group G of order v(v - 1) so that in G only the identity fixes 
us many us two points. Then S(v) is an uffine AG(r, 3), and the translation 
group A of AG(r, 3) is a regular normal subgroup of G of order 3’= v. 

Proof. Here G is a Frobenius group and it is well known that the iden- 
tity and the u - 1 elements of G displacing all points form a transitive 
regular normal elementary Abelian subgroup A of order p’ = D for some 
prime p. Since u - 1 is even G contains an involution a, fixing a single 
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point. Since A is transitive and regular the conjugates of a, under A give 
for every point w  of S an involution a, which has w  as its only fixed point. 
Thus the hypothesis of Theorem 3.2 holds. If x fy we have (cL,cL~)~ = 1. We 
cannot have a,aY = 1 as a, # a,,. Hence a,aY is an element of order 3. 
Clearly a,ay does not fix x or y. If a,ay tixed r # x, y then 

a,= ... (rs) ..., ay = . . . (sr) . . 

and a,a, would fix both r and s which is impossible in G. Hence a,aY fixes 
no point and so is an element of the transitive regular normal Abelian sub- 
group A of order p’. Thus p = 3 and IA 1 = 3’ = V. 

Now suppose that 1, 2, 3 is a triple of S. Then a, = (1)(2, 3) *. . and 
a, = (2)( 1, 3). . . so that a,~,= (1, 3,2)* *. = a E A and (1,3,2) is a cycle of 
a E A. Clearly (1, 2, 3) is a cycle of u-’ E A. In general if x, y, 2 is a triple of 
S then (x, y, z) is a cycle of some a E A and (x, z, y) is a cycle of u-i E A. 
Each of the u - 1 nonidentity elements of A contains u/3 three cycles. Hence 
together they contain V(V - 1)/3 three cycles and for each of the (u - 1)/6 
triples of S there are two 3 cycles. This accounts for all 3 cycles in A so that 
every 3 cycle appearing in an element of A comes from a triple of S(u). 
Since A is elementary Abelian, A is a translation group for S(u) which must 
then be the affine geometry AG(r, 3). 

THEOREM 3.4. Let S(u) be a Steiner triple system on points 1, 2,..., u and 
let G be u doubly transitive group of uutomorphisms of S(u). Let H= GI,z, 
and let F(H) be the fixed points of H. Then the action of No(H) on F(H) is a 
sharply doubly transitive group on F(H). 

Proof Let IF(H)/ = m and without loss of generality suppose 
F(H) = { 1, 2,..., m}. Then if r, SE F(H) we will have G,,zG,,,. But as G is 
doubly transitive we have I G,,,I = IG1,2/ so that G,, = Gl,*. Hence if x E G 
x = (j;:::.) then x- 1G1,2~ = G,, = G 1.2 = H and x- ‘Hx = H. Thus NJ H) is 
doubly transitive in its action on F(H). If y = ($:::) E No(H) and if y moved 
some point rEF(H) then as LEG,,, r would not be in F(H). Hence in 
N,(H) no element except the identity fixes as many as 2 points of F(H). 
This proves our theorem. 

We are now in a position to prove our Main Theorem 3.1. Here S(u) is a 
Steiner triple system on u points and its doubly transitive automorphism 
group G contains a transitive regular normal Abelian subgroup A of order 
pr = 0 for some prime p, 

Let H = G1,2. Then from Theorem 3.4 No(H) is a sharply doubly tran- 
sitive group on F(H). If I F(H)1 = m the order of No(H) on F(H) is 
m(m - 1). Now F(H) is a Steiner triple system on m points and by 
Theorem 3.3, F(H) is an a&e (3, s) space with 3” = m (possibly s = 1 and 
m = 3). If 1, 2, 3 is a triple then 3 E F(H). Let a = (... 1, 2 ,...) be the unique 
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element of A taking 1 into 2. Then for IzEH=G~,~ h-‘a/~=(... 1, 2, . ..)EA 
and so h-‘ah = a. Hence H centralizes a and so F(H) is a union of orbits of 
Q. Since up = 1 it follows that p divides IF(h)1 = m = 3’. Thus p = 3, and A is 
of order 3’ = v. 

Now a = (1, 2, t) ,.... As h -‘ah = a for h E H it follows that t E F(H), and 
by Theorem 3.3 that (1,2, t) is a triple of F(H), since a E N,(H). Hence 
(1,2,~)=(1,2,3).Nowu-‘=(1,3,2) ,.... Since G is doubly transitive there 
will be an element gEG such that g-‘(1,2,3)g=(x,y,z) if x, y, z is an 
arbitrary triple of S. As A is normal in G there will be a b E A with 
b = . . . (x, y, z) . . . . Hence every triple of S(x, y, z) gives two 3-cycles in A, 
namely, (x, y, z) and (x, z, v). As before each of the u - 1 nonidentity 
elements of A contains u/3 cycles. Hence in all there are u( u - 1)/3 3-cycles 
in A and these consist precisely of two 3 cycles for each of the u(u - 1)/6 
triples in S(u). Thus every 3-cycle in A corresponds to a triple of S(u) and 
as A is elementary Abelian, it is the translation group of the necessarily 
affine triple system S(u) = AG(r, 3). This completes the proof of 
Theorem 3.1. 

4. G HAS A SIMPLE NON-ABELIAN NORMAL SUBGROUP 

Peter Cameron [2] has given a list of the doubly transitive groups con- 
taining a minimal normal subgroup T which is simple non-Abelian. In his 
list n is the degree of the doubly transitive group and k is the maximal 
degree of transitivity of a group with socle T. Here is his list. 

T n k Remarks 

A,,n>5 

PSL(d, q), da 2 

PW3,q) 
‘B*(q) (Suzuki) 
*G,(q) (Ree) 
PSpW, 2) 
PSpW, 2) 
PSL(2, 11) 
PSL(2,8) 

A, 
M, 1 (Mathieu) 

n 

q3+ 1 
q*+ 1 
q3+ 1 

22”- I + p I 

22d- 1 -2”-’ 

11 
28 
15 
11 

n Two representations 
ifn=6 

3ifd=2 (d,q)#(2,2),(2,3) 
2 if d > 2 Two representations 

ifd>2 
2 q>2 
2 q=22’“f’>2 
2 q=3 2a+l,3 

2 d>2 
2 d>2 
2 Two representations 
2 
2 Two representations 
4 
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M,, (Mathieu) 12 
M,, (Mathieu) 12 
M,, (Mathieu) 22 
M,, (Mathieu) 23 
M,, (Mathieu) 24 
Higman Sims 176 
CO, (Conway) 276 

3 
5 Two representations 
3 
4 
5 
2 Two representations 
2 (4.1) 

If G is one of these groups and is the automorphism group of a Steiner 
triple system S(n), then we must have n = 1 or 3 (mod 6) and G,,z must fix 
a third point, namely, the third point of a triple 1, 2, x. 

Hence for A, on n points we have n 3 7 but this group is triply transitive 
and G,,2 does not fix a third point. 

For PSL(d, q) if q = 2, n = 2“- 1 and this is the projective space 
PG(d- 1, 2) which is a Steiner triple system. This is the projective case of 
the conjecture. If q > 2, then without loss of generality we may suppose the 
representation to be on the points of PG(4 q). The group will have a sub- 
group fixing a line of q + 1 points and so these must form a Steiner system 
with q = 22’+ ‘. But the subgroup taking the line into itself is triply tran- 
sitive on the q + 1 > 3 points which is impossible since the subgroup fixing 
two points must fix a third point. This disposes of the groups PSL(d, q). 

For PSU(3, q), n = q3 + 1 so that if we have n E 1 or 3 (mod 6) 
necessarily q is an odd power of 2, q = 22”+ ’ > 2. This case will be dis- 
cussed later. 

For zB2(q) the Suzuki groups of degree n = q2 + 1 with q = 22a+ ’ > 2 we 
have n E 2(mod 3) which is impossible. For *G2(q) with n = q3 + 1 and 
q=32~+l > 3, n is even which is impossible. 

Of the remaining cases the only one for which the degree n is congruent 
to 1 or 3 mod 6 is the representation of A, on 15 points. 

The array (the plane of order 2) 

1 2 4 

2 3 5 

3 4 6 

4 5 7 

5 6 1 
6 7 2 

7 1 3 

(4.2) 

is fixed by PSL(2,7) of order 168 which is of index 15 in A,. Acting on this 
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by a = (1, 2, 3,4, 5, 6, 7) and /? = (3,4, $6, 7) which generate A7 we get for 
the 15 arrays appropriately numbered 

a= (1)(2,4, 10, 3, 6, 11, 8)(5, 9, 13, 7, 15, 14, 12), 

p=(l, 2, 3, 4, 5)(6, 7, 8,9, lO)(ll, 12, 13, 14, 15). 
(4.3) 

The involution z = (3, 5)(6,7) has the representation 

t= (1)(6)(14)(2,5)(3,4)(7, 10)(8,9)(14 w(13, 15). (4.4) 

Hence if G = (a, /I) on the 15 points l,..., 15 is the automorphism group of 
an S( 15) then 1, 6, 14 must be one of the triples. Under the action of G this 
leads to 35 triples which are the projective geometry PG(3,2). The second 
representation comes from this, the first, by an outer automorphism of A, 
in S7 and is essentially the same as this. 

Now let us consider the group PSU(3, q) of order (q3 + 1) q3(q2 - 1) 
with n = q3 + 1 points with q an odd power of 2, q > 2. G as a permutation 
group is necessarily the identical representation and an irreducible 
representation of degree q3. This is the “Steinberg character” and is unique. 
Hence G is the representation of PSU(3, q) on the q3 + 1 isotropic points. 

PSU(3, q) is given by 3 by 3 matrices X over F,z in terms of the 
involutory automorphism of F,, z , x + x4 = X. Here X belongs to PSU(3, q) 
if and only if 

X‘TT = I. (4.5) 

We have observed that if q3 + 1 = u has u c 1 or 3 (mod 6) then q must 
be an odd power of 2. For q = 2 there is a group but it is solvable. Here 
Fqz = F4 and we take as the elements of F4 0, 1, a, b where a2 = b, 
b2=a,ab= 1 and b=a+ 1. 

In general a point (x, y, z) is isotropic if and only if 

xx+yy+zz=o. 

The 23 + 1 = 9 isotropic points for PSU(3,2) are 

1 = (0, 1, 11, 
2 = (1, 1, O), 

3=(LO, 11, 

4=(La,O), 

5=(LO,a), 

6 = (Lb, Oh 

7=CLO,b), 

8 = (0, 1, a), 
9 = (0, 1, b). 

(4.6) 

(4.7) 
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The group PSU(3,2) is generated by 

M=[: i i] and R=[H i ~1. (4.8) 

The involution z = M2 

1 0 0 

7= I 0 0 1 
0 1 0 1 (4.9) 

has the following action on the 9 points: 

7 = (1 W, 3)(4, 5)(6, 7)(& 9). 

Hence the triples containing 1 must be 

1 2 3 

1 4 5 

1 6 7 

1 8 9 

(4.10) 

(4.11) 

The action of G on these triples gives exactly the triples of S(9) as in (3.9). 
Now consider cases in which q = 22”+ ’ > 2 and u = q3 + 1 = 26” + 3. Here 7 

of (4.9) is an involution in PSU(3, q). What are the tixed points of 7? 

(4 y, z) 7 = (x7 z, Y). (4.12) 

If (x, z,y)= t(x,y, z) for some t, then t= 1 and y=z, (x, y, z)= (x,y, y). If 
this is an isotropic point, then 

xX+yj+yj=O or xX=0. (4.13) 

But xX = 0 implies x=0 so that a fixed point is (0, y, y) = (0, 1, 1) = 1. 
Hence 7 is an involution in G which has point 1 as its only fixed point. By 
the transitivity of G for every point x there is a unique involution a, which 
has x as its only fixed point. From Theorem 3.2 every triangle of S(u) 
generates an S(9). But it has been shown by B. Fischer [3] that if every 
triangle of S(u) generates an S(9)’ then u = 3’, a power of 3. Hence we must 
have 

q3 + 1 = 3’. (4.14) 

2 This is also a consequence of Theorem 4.5 of the author’s [6]. But this approach involves 
the complicated theory of Moufang loops. 
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Here (q+l)(q2-q+1)=3’ so that q=3”-1 for some s. Then 
q* - q + 1 = 32” - 3.3” + 3. Here if s > 1 3*” - 3S+ ’ + 3 is not a power of 3 
and so q=Zza+l > 2 is not possible. This completes all cases. Our result is 

THEOREM 4.1. Zf a Steiner triple system S(v) has a doubly transitive 
automorphism group G where G has a normal subgroup H which is transitive 
and simple non-Abelian then S(v) is the projective space PG(d - 1,2) and G 
is PSL(d, 2), d > 2 on 2d- 1 points except for the single cases in which G is 
A7 acting on the 15 points of PG(3,2). 
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