
JOURNAL OF COMBINATORIAL THEORY (A) 17, 219-226 (1974) 

Group Ramsey Theory 

ANNE PENFOLD STREET 

Department of Mathematics, University of Queensland, 
St. Lucia, Queensland, 4067, Australia 

AND 

EARL GLEN WHITEHEAD, JR.* 

Courant Institute of Mathematical Sciences, 
New York University, New York, New York 10012 

Communicated by the Managing Editors 

Received April 16, 1973 

A subset S of a group G is said to be a sum-free set if S n (S + S) = D’ . 
Such a set is maximal if for every sum-free set TC G, we have 1 T 1 < 1 S I. 
Here, we generalize this concept, defining a sum-free set S to be locally maximal 
if for every sum free set T such that S C T L G, we have S = T. Properties of 
locally maximal sum-free sets are studied and the sets are determined (up to 
isomorphism) for groups of small order. 

1. INTRODUCTION AND STATEMENT OF RESULTS 

Given an additive group G and nonempty subsets S, T of G, let S + T 
denote the set {s + t 1 s E S, t E T), -S the set {-s 1 s E S}, S the 
complement of S in G, and 1 S ( the cardinality of S. We call S a sum-free 
set in G if (S + S) C s. 

A sum-free set S C G is said to be maximal if for every sum-free set 
T L G, we have / T I < 1 S I. We denote by X(G) the cardinality of a 
maximal sum-free set in G. There is already a considerable literature on 
maximal sum-free sets in finite groups; see the bibliography of [2, Part 31. 

More generally, a sum-free set S C G is said to be locally maximal 
if for every sum-free set T such that S C T C G, we have S = T. Clearly, 
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S is a locally maximal sum-free set if and only if S u {g} is not sum-free 
for any g ES. Hence for every g ES, we have 

g = $1 + S$ (1) 
or 

g + Sl = s2 (2) 
or 

2g = s, (3) 

for some s1 , s2 , s E S. We denote by cl(G) the set of cardinalities of all 
locally maximal sum-free sets in G, so that h(G) = max /1(G). We are 
also interested in the cardinality of the smallest possible locally maximal 
sum-free set and denote it by ,u(G) = min /I(G). 

A sum-free covering of G is a collection of sum-free sets 9 = {S, ,..., S,} 
such that G* = G\(O) = &I Si . If Y and F = {T1 ,..., T,} are two 
sum-free coverings of G such that Si C Ti for i = I,..., n, we say that .Y 
is embedded in 5. The special case of a sum-free partition of G 
(or strictly, G*) where the sets Si are pairwise disjoint, has been studied 
[l, 2, 4, 5, 61 in connection with finding lower bounds on the Ramsey 
number Nk = N,(3, 2) i.e., the smallest positive integer such that coloring 
the edges of the complete graph on Nk vertices in k colors forces the 
appearance of a monochromatic triangle. 

Ramsey theory for groups involves finding the smallest number of 
sum-free sets needed to partition G*. Our first result is the following: 

THEOREM 1. Every sum-free partition of G* can be embedded into at 
least one covering of G* by locally maximal sum-free sets. 

It has been shown [I, 51 that if G* can be partitioned into k sum-free 
sets, then each of these k sets has cardinality less than Nk--l . An adaption 
of this argument leads to the following result. 

COROLLARY 1. Each of the locally maximal sum-free sets of Theorem 1 
has cardinality less than N,+, . 

Theorem 1 implies that we need only consider covering of G by locally 
maximal sum-free sets, so we are interested in characterizing all locally 
maximal sum-free sets in as many groups as possible. 

Let 2, denote the cyclic group of order n, and (ZJm the direct sum of m 
copies of 2,. In the known sum-free partitions of Z, , (Z2)4, Z,,[l], 
(Z4)2 [4], (Z,)2 [6] and Z,, = (4, 6, 7, 9} u {I, 5, 8, 12) u (2, 3, 10, 1 l}, all 
the sets occurring in the partitions are locally maximal sum-free sets Si 
with the additional property that in each case Si u (Si + Si) = G, the 
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group being partitioned. It seems likely that this property might be 
important so we provide the following definition. 

DEFINITION. Let S be a locally maximal sum-free set in a group G. 
If S u (S + S) 1 G*, then S is said to fill G. [Note that two cases arise here 
if S fills G: S u (S + S) = G* if and only if S n (-S) = B ; otherwise 
S u (S + S) = G.] If every locally maximal sum-free set S in G fills G, 
then G is said to be a filled group. 

Finite abelian filled groups are fully characterized. 

THEOREM 2. A Jinite abelian group G is a filled group if and only if 
it is (1) an elementary abelian 2-group 

or (2) Z3 
or (3) Z, . 

For nonabelian groups, we have only necessary conditions. 

THEOREM 3. Let G be a finite nonabelian filled group. Then 

(1) For any normal subgroup N < G, the factor group G/N is a jilled 

group ; 
(2) G = G’ or G/G’ is an elementary abelian 2-group or G/G’ s Z, 

and / G / is even, where G’ is the commutator subgroup of G. 

These conditions are certainly not sufficient, as we can see from the 
following examples. We consider first the case where the commutator 
factor group is an elementary abelian 2-group; in both of the following 
cases, S is a locally maximal sum-free set which does not fill G. 

(1) G = D, > the dihedral group of order 2n, where n = 6k + I, 
denoted by G = (a, b / an = b2 = I, ab = ba-I). Choose 

S = (azk+l ,..., a4k, azkflb ,..., a4”b}. 

(2) G = Q, the quaternion group of order 8. Let S be the set consisting 
of the only element of order 2. 

However, we find by direct computation that D, , D, , D, and DO 
are filled groups. 

For the case in which G = G’, we know that A, , the alternating group 
of degree five, is not filled by the locally maximal sum-free set 

s = {(14)(23X (12)(35), (13)(45), (15)(24), (25)(34), (12)(34), 

(15)(23), (14)(25), (24)(35), (14)(35), (I23), (245)). 

So by (1) of Theorem 3, SL(2, 5) is also not a filled group. We have no 
other results for this case. 
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2. PROOFS OF THEOREMS 

Proof of Theorem I. Let Y = {S, ,..., S,} be a sum-free partition of G*. 
For each i, adjoin elements of G* to Si maintaining sum-freeness, until 
a locally maximal sum-free set, say Ti , is obtained. (Ti may not be unique.) 
Now F = (TI ,..., T,} is a covering of G* by locally maximal sum-free 
sets, and by construction, 9 is embedded in 9. 

Proof of Corollary 1. 

Let 9 = {T 1 T is a locally maximal sum-free set; T 1 Si for some i.> 

Let TO be a maximal element of 9, i.e., for every T E 8, / T j < 1 TO j. 
Suppose, without loss of generality, that TO 3 S, . Consider 9? = 
{To, &\T,, ,..., S,\T,}. Now 9 is a sum-free partition of G*, for T,, 1 S, 
and TO n (S,\TJ = o for all i = 2,..., k. By the results of [l, 51, we have 
j TO 1 < NkV1 and the corollary follows. 

We need one preliminary result in order to prove Theorems 2 and 3. 

LEMMA 1. Let G be a finite group and let N < G. Suppose that S is a 
locally maximal sum-free set in G/N and that S does notjill GIN. Let T be 
the subset of G consisting of all the elements of G belonging to the cosets 
of N contained in S. Then T is a IocalIy maximal sum-free set in G which 
does notjll G. 

Proof. Since S is a locally maximal sum-free set in G/N, we see at once 
that T is a locally maximal sum-free set in G. 

If T fills G, then we must have T w (T + T) = G, since T and T + T 
consist of complete cosets of N. Hence, for every g E T, we have 
g = I, + t, for some tl , t2 E T. So for every g + NE G/N\S, we have 
g + N = (tl + N) + (tz + N) and S u (S + S) = G/N. But this is a 
contradiction, 

Proof of Theorem 2. 

(i) First we check that the groups listed in the statement of the theorem 
are filled groups. 

In 2, , the only locally maximal sum-free sets are (1) and 12); in Z5 , 
the only locally maximal sum-free sets are {I, 4) and (2, 3). Clearly these 
are filled groups. 

Now let G be an elementary abelian 2-group and let S _C G be a locally 
maximal sum-free set. Let g ES, so that g satisfies at least one of the 
conditions (l)-(3). Since G has exponent 2, (3) cannot hold and (1) is 
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equivalent to (2). So we have g = s1 + s2 E S + S; hence S u (S + S) = G, 
and G is a filled group. 

(ii) To show that no other finite abelian group G is filled, it is sufficient 
by Lemma 1 to find a quotient group H of G, such that H is not a filled 
group. Since G is abelian, it can be written as a direct product of cyclic 
groups; we choose H = 2, for some n and consider several cases. 

(a) If n = 3k + 1, k > 1, choose S = {k + l,..., 2k). 
(b) If n = 3k - 1, k 3 3, choose S = {k - l,..., 2k - 3). 
(c) If n = 3k, k 3 2, choose S = {k ,..., 2k - l}. 

In each of these cases, the set S is a locally maximal sum-free set which 
does not fill Z, . 

We have still to consider the cases where the only cyclic factor of G 
is Z,, where n = 3k - 1 for k = 1,2 and n = 3k for k = 1, i.e., the 
elementary abelian groups of exponent 2, 3 or 5. We know from (i) that 
the elementary abelian 2-groups are filled. 

(d) If G has exponent 3, but G # Z, , then choose H = Z, x Z, , 
represented as the set of ordered pairs of integers modulo 3. Let 
s = NL 01, (1, 0, (1, 2% 
(e) If G has exponent 5, but G # Z, , then choose H = Z, x Z, , 
and let s = Xl, O), (0, 11, (4, 4), (1, 3), (3, 2)). 

Again in both of these cases, the set S is a locally maximal sum-free set 
which does not fill H. 

Proof of Theorem 3. From Lemma 1, we have at once both the first 
statement of the theorem and the fact that, if G’ is a proper subgroup of G, 
then G/G’ must be an elementary 2-group or Z, or Z, . 

If G/G’ = Z, , then a coset of G’ (other than G’ itself) is a locally 
maximal sum-free set which does not fill G. 

If G/G’ = Z5, choose a E %’ so that G = urzO (iu + G’). If / G 1 is odd, 
there exists a unique element b E G, such that 2b = a; clearly b E 3a + G’. 
Then S = (a + G’}\(u) u {b} is a locally maximal sum-free set which 
does not fill G. If ( G 1 is even, we may not be able to choose a and b to 
satisfy these requirements; we have been unable to deal with this case. 

3. SUMMARY OF CALCULATIONS 

We give here a summary of preliminary calculations of locally maximal 
sum-free sets in groups of small order. In carrying out these calculations 
we used isomorph rejection [3], several results on maximal sum-free sets 

582a/17/2-6 
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[2, Part 3, Theorems 6.15, 6.16, 7.9 and Corollary 7.31, Theorem 2 and the 
following observations. 

LEMMA 2. Let S be a sum-free set in a group G. If H is a subgroup of G, 
and XER, let S,=SnH, S,=Sn(H+x). If I&l&l, then 
j S, ( < (l/2) 1 H ) for every coset of H. 

Proof. (SO + S,) u (S, + SO) = R C H + x. Since S is sum-free, 
SnR= @.ButIR~31SzI,so2(S,~<lH~andLemma2follows. 

LEMMA 3. Let H be a subgroup @index 2 in a group G, and let S be a 
locally maximal sum-free set in G. If 1 S 1 -LX 1 H /, then / S n H 1 2 1. 

ProoJ: By Corollary 7.3 of [2, Part 31, a maximal sum-free set in G 
must be a coset of a subgroup of index 2. Hence a locally maximal sum-free 
set S, with I S 1 < ) H 1, cannot be contained in the coset complementary 
to H. But this implies that I S n H I 2 1. 

TABLE I 

IGI G A(G) Locally maximal sum-free sets 

2 -G (1) 
3 23 ;;; (11 
4 24 u, 21 {2), {I,31 

G)” PI w, 111 
5 -5 PI UT 41 
6 Z, (2931 I2,31, {2,51, {1,3,51 

s3 {2,3) w23), (12~1, w2), (13), (23x 
7 z 121 t2,31, (3941 
8 Z, {2,3,41 U,6), {2,6), {3,4,5l,U, 3, 5,71 

z4 x -5 (234) {20, Ol}, (01, 11,21,31}, {lo, 11, 30, 31) 

cw {4) {ool, 011, 101,111) 

04 {3,4) {a2, b, ub}, {b, ub, uZb, db}, {a, u3, b, u2b} 

Q Q, 41 {u2}, {b, ub, u2b, db} 

9 z3 {31 {3,4,X, {l, 4971 
(-a’ I31 (01, 11,211 

10 &I 13,4,51 {3,4,5>, {4,5,61, {1,4,6,%, Cl, 3,5,7,% 
D5 {4,51 {a”, u3, u2b, uab}, {b, ub, db, db, u’b} 

11 -&I 13941 {3,4,51,{4,5,6 71 
13 z13 {3,4) {3,4,51, U,3,%, {4,6,7,%, {4,5,6,7), (5, 6,7,@ 
14 &4 14,5,7) {2,5,9, 131,{4, 5, 671, {5,6,7, 8,91, (1, 3, 5,799, 11, 131 

D, {4,5,7} {a, ub, db, db}, {a”, ua, b, ub}, 
{us, d, b, ub, db}, {b, ub, u2b, db, db, db, db} 

16 (&Y {5,8) (1111, looo, 0100,0010, oool}, 
(1111,1000,1001,1010,1100,1011,1101, lllO} 
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More generally, we use the fact that no proper subset of a locally 
maximal sum-free set is locally maximal. 

In Table I, we list all nonisomorphic locally maximal sum-free sets in 
groups of orders 2,..., 11, 13 and 14. The cyclic group 2, is denoted by 
integers modulo n; the direct product Z, x ... x Zfik is denoted by 
ordered k-tuples of integers modulo n, ,..., ‘n, , respectively. Nonabelian 
groups are written multiplicatively: the quaternion group as Q = 
(a, b / a4 = 1, a2 = b2, ab = ba3); the nonabelian group of order 6 
as S3, the symmetric group of degree 3; the dihedral group as 
D, = (a, b; an = b2 = 1, ab = ba-l) for IZ 3 4. The sets listed are 
unique up to isomorphisms. 

Further results and a discussion of the techniques used in their 
computation will appear in a forthcoming paper. 

4. UNSOLVED PROBLEMS 

Theorem 1 tells us that every group can be covered by locally maximal 
sum-free sets. However, the partitions of (Z4)2 and of the additive groups 
of the finite fields, quoted earlier, are all examples of locally maximal 
sum-free partitions. This raises the following problem: which groups can 
be partitioned into locally maximal sum-free sets? 

If we consider Z1a again, we find at least three distinct ways in which 
it can be partitioned into locally maximal sum-free sets. Firstly, by 
considering the cubic residues (1, 5, 8, 12) in GF{13), and their multi- 
plicative cosets, we obtain the partition quoted earlier, 

Z,, = (1, 5, 8, 12) u (2, 3, 10, 11) u (4, 6,7,9}. 

Secondly, by considering the quartic residues (1, 3, 9) in GF{13), and their 
multiplicative cosets, we obtain the partition 

Z1, = (1, 3, 9} u (2, 5, 6) u (4, 10, 12) u (7, 8, 11). 

Finally, by considering the difference set (0, 1, 3, 9) in Z,, and its shifts 
containing 0, we obtain the partition 

Z,, = (1, 3,9> u (2, 8, 12) u (4, 5,7) u (6, 10, 11). 

Each of the sum-free sets in these partitions is locally maximal, so this 
raises a further problem: In how many ways can a group be partitioned 
into locally maximal sum-free sets? 

We notice the variation in size of the locally maximal sum-free sets, 
for example from p(G) = 1 to h(G) = 4 in the quaternion group of 
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order 8. It would be interesting to have bounds for p(G), the cardinality 
of the smallest sum-free set. The only information we have in the following. 
Let G = 2, , let h denote any element of G*, and consider the sum-free 
set R = {h,..., 2h - I>. Now 

R + R = (2h,..., 4h - 21 or {2h,..., O,..., 4h - n - 2) 

and 

R - R = (0, fl,..., f(h - 1)) = {n - h + l,..., 0 ,..., h - l}. 

If 4h - 2 > n - h, then R is certainly locally maximal. So we know 
that IZ + 2 d 5h, where p(G) < h. 

Finally, we raise the question of whether any pattern can be found 
relating 1 G 1 and the elements of A(G). The values in Table I suggest 
that an element of cl(G) must have prime divisors in common with I G 1, 
IGI + 1 or ICI - 1. ButinZ,,, we see that (5, 6, 7, 8, 9} is a locally 
maximal sum-free set, so that 5 E n(Z,,), contradicting this idea. Again 
from Lemma 1, by taking unions of appropriate cosets it follows that 

d(G) 2 1 N I . A(G/N) 

for every normal subgroup N of G. Since 5 E &(Z.J4), this shows that 
10 E (l((Z,)5) and in general 5.2n-4 E (1((Z,)“). 
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