


218 H. Callaert, J. Keikon, Birth-death processes, II 

7.2. The upward passage time densities 

The abscissa of convergence 0; of a;(s) is a simple pole for all yt > 0 
and the sequence {g>,“=O is strictly monotonic in the sense that pi_1 < 
pi < 0 (see Theorem 4.3). By (2.2), 6 = --A, and hence the poles /3; 
start at --A and move to the ri@t as y2 increases from 0 to =. We now 
show that lim d[p,‘: y2 +=) = 0 in the positive-recurrent -ase and that p,’ 
is uniformly bounded (upper bound) by --&/A --v,/~)~ in the transient 
case. 

Ismma 7.1 l For t)ae queue-length process the abscissae of expon(entia1 
convergeltce of the upward passage-time densities satisfy : 

Proof. If the process is positive recurrent, p,, = A,,,& = X/p = p < 1, so 

that we may apply [ 12, Theorem 3.11 which states that 

From (2.4), 

and hence by (Xl), lim {$ P+“) ===. On the other hand, G IQ lffr-’ 
by (3.4). Combining the last two results, one has lim {& : n =+06) = 0. 

Wr: now consider the transient case, In addition ta the process N(t) 
wii’n state space {O, 1,2, ,.J, we consider the homogeneous birth-death 
process H(,:) defined z)n the state sp~e {...-2, -l,O, 1,2, . ..) wirh tran- 
sition rates A, ==: X and ,pn = p fsr all ~2, We now shsw that &,,(T) Z%>c 

JT), where S;(7) is the cad.%. of ri, and H and N stand for the hamlam 
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Fig. ‘, .I. 

a non-defective c.d.f. SN(7) and S&) since X > p. Moreover, from the 
nature of both, processes it follows that &!&) 2 gi,@)_ To see this, tve 
note that for n = 0 in Fi:;. 7.1, SN(?) = U&=), where U&) is ahc 
side function of unit jump at the point zero. Clearly SH(7) 2 $&). and 
the result then follows fr L,Ln Theorem 4.6 and induction on IL By I’. 3.3, 

P Fn 3 $&, which means that the abscissa of &onvergcnce of oh,,(J.) Qix 
tk;e queue-length process does not exceed the absck of convergt‘lluc ot 
a;f;,(s) for the homogeneous process. 

On the other hand, oh(s) is independent of n and satisl’ies 

a$s) = X(s+p+A-pu;(s))-l . 

Hence p;t;, = -(4X - 4~)~ for all H , by a reasoning sindar to th;e t 
the downward passage-time densities (see Section 7. I ). This meatt~ tfr;rt 
for x > )1, 

which completes the proof of tlhe lemma. 

Actually lim {&,, : n+~) = --(4X ---&A)~ in the tr* IGent WW. 7 
is SO because $&(T) is stochastically monotonic incrcrrsine with IV (;I> 
may be seen from Theorem 4.6 (i)) and converges in c!istl’ibution by 
P.3.2f since 

6[7$] = (X,nJ’ 
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W -vg zz --A = p*,, -vn = -(My) < -A c p; for n 
(ii) - w,l = ---(W/J) < -(4X --&# = 0; for 11 ?JB 1, 

illustrating Theorems 4.3 and 4.4. 

7.5. The index of convergence T!, of the transition probabilltles p,Jt) 

It LIS been shown (Theorem 5.5) that PplR G y,, in the transient case 
and fiflL < r,, 6 &R in the positive-recurrent case, the only possible ex- 
ception being the case when &I, =r &R and both are poles. finL and &R 
correspond to [i: _ 1 and /3;+l (or conversely). 

For a transient queue-length process & = -(u/k--++/~)~, whereas 
0; < -(4X --+A)~ for all n (see Sections 7.1 and 7.2). Hence flnR = /3;+l 
and - (4X- v’& < 7n for all n. 

The positive-recurrent case is somewhat more complicated in that 

P- II+1 and &_r may satisfy either of the relations 

(0 &+I < &,, 
00 &+I = G-1, 

(iii) P;+l > j3i-4. 
In particbllar, (i) is satisfied for all 12 if X < $L In any of the cases (i), (ii) 
ar.d (iii), we have PnL < *I,~ < finR. lfPnR = /3;+l (which is a branch point), 
then 7n = /3;+1. 

The above results are in accordance with those in [ 1 ] ‘, where it is 
shown that T,, = - (dh --.JjJ)2 and that even in the posirtive-recurrent 
case, 7fl cannot be imprL>ved for any state n. 

7.4. l’ik classification of the process 

Since lim { py: : n -+ -} = h/p and lim (pi : n + =) = A/p, the classifka- 
tion depends entirely on the value of h/p. It is shown in table 7.1,. We 
note that, by a simiIar reasoning as above, the queue-length process 
M/M/s has a natuxl boundary at infinity for every s (even for s = =). . 

MP c 1 

h/p = 1 

Ah > 1 
-- 

Table 7.1 
----_ 

Clnssification cf. 
---- 

natural, posi’live-recurrent (6.19’) 

natural, null-recuareut (6.18) 

natural, transient (6.16) 
--- .__ 



The ideas developed in Sections 4 and 5 permit one to intkr quickly 
that all birth-death processes with entrance, exit or regular boundrrrres 
are exponentially ergodic. 

Theorem 8.1. Every birth-death process with an eutmtlce bomdary is 
ex;Ponen tially erg?dic. 

Proof. We have seen in Section 6 that every such Fir%--death process5 is 
positive recurrent and that E[T,~] = lim {E[TJ : II -tm) < 03. Since 
7 W. = ;c;l:=, r;, and 7,- is a positive random variable, it follows that T,[=, 
is itself a positive random variable. Moreover, for the same process trun* 
cated by a reflecting boundary at L, the passage time TV,; will have a 
log-concave probability density function (cf. [ I3 1) and rLII converges iill 
distribution to T,,, .l Hence T,,, has a log-concave p.d.f.. and by P.3.S 
this is exponentially convergent with negative index. Hence u,;(s) = 
CJ ,.,,~+&)lo, n(~) has a negative abscissa of convergence 0,; by P.3.5. The 
theorem the; folliows from Theorem 5.1 and P.5.2. b 

8.8.2. Every birth-death pmwss with a regular reflecting bomdrlr~~ is . 

exponentially ers odic. 

Proof. The proof parallels that above completely, since E[ rdlou ] 

TV,, converges in distribution to T,,~. 

Theorem 8.3. Every birth-death process with a regzrl.u botr,Idary is w 
ponen tially elvgodrc. 

Proof. The regular boundary wrll be either reflecting, the case covert 
P.8.2, or will be completely or partially absorbing. If we denote the 
process with reflecting boundary by N,(t), and a process Gth absorbin!; 
boundIary by N*(t), one has immediately 

for the downward passage time delnsities from sta e !2* ~o~~~~~~~~ 
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(Jo& will be analytic for Re (s) > S;il, and Pin < pi& < 0. The theo 
again follows from Theorem 5.1 and P.5.2. 

Theare,m 8.4. Every birth-de&h process with an exit bounckrzuy is expo- 
nen tially ergodic. 

It is known that all such processes are transient and that E[q+] = 
lim {E[r,,] : y: +-} < 00. Again from P.3.2f and P.3.7, ro,, will be a 
proper random variable with a log-concave probability density function, 
as will all T,, . Clearly for such a process commencing at state n = n, one 
has rocm > r,n, forallm,sothat~~(~)=P{~~,>~}~P(~~..>~}= 
A&). Also (cf. 14, IWII.41) 

(8-l) 2 PO,(t) z P{T()Qo > t} =X()(t) l 

n=O 

The log-concavity of the density of ro,, implies that A,(t) is exponen- 
tially convergent with negative index from P-4.7, so that C PO,(t) and 
pOn(t) are also such, implying exponential ergodicity. Note that 

(8.2) 2 p,,(t) z P(Tm, > t ) = A,(t) G A,,(t) l 

n=O 

The structure exhibited in (8.2) was pointed out by Karlin and McGregor 
[9] via spectral theory. 

9. Exponential ergodicity for pcocesses with natural ba ndaries 

That rasu!ts lad fk section are based on the analytic theory of con- 
tinucd < .:ctio:s, ;,p- exposition of which has been given by Wall [ 251. 
The recut+- -%~oti (2.3) may be written in the form 

(9-l) o,(s) =. y1 ra’jJS) + ~,+&w 9 

where 

(9-2) Qtn = --qnlpjj 9 

(9.3) 

From (9.1), we then have a representation of o&s) as the continued 
fraction 
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(9.4) 
% 

O&S) = - 

&(s) + a2 . 
/3*(s) + . ..- 

The continued fraction is defined to be the limit of the sequence of 
approximants OiJi(s) obtained from (9.1) by setting UN(S) equsl to zero. 
provided the sequence con VC+S zr Iv goes to infinity. For the natural 
case here treated,, the boundary at infinity is inaccessible. Such trunca- 
tion at infinity th\en does not alter the process, and (9.4) is a valid exm 
pression for oi(s]l, for both recurrent and transient cases. For a regular 
boundary, (9.4) would be valid only if the boundary is totally absorb- 
ing, and the classkal definition of the continued fraction would not be 
suitable. 

An equivalent continued fraction to (9.4) (the approximants coincide 
with those of (9.4)) is given by (cf. [ 25, p. 191) 

(9.5) Oi(S) = - 
$(S) 

l-1 
Ql;ca l 
- .-. 

where 

(9.7) 
%k- I 

al*I(s)=Pn-lCln s+vn_l A: t-2.2. 
n 

When lim vE = 0, we in P.S.3 c 
exponentially ergodic. We 

v, > v* 8. we h#dve 
. 

Theorem 9.1. if for the natural birth-deanth process N(t) one has 
(i) Vn > V* 3 0, n 2 0, 

(ii) limSUp/?,_~qn<$, 

then N(t) is exponentially ergo&c. 

Proof. We may write 
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Clt:arly vm (iv,, - e)-l < v* (v* - c 1-l when e < v* . Also 

I 
Vn -- E 

-- Gl, 
Vn - e + (S+E) I 

n 2 0, when Rc(s+e) 2 0. 

If we denote lim SUP Pn_1 Qn by 5, we then have 

limsup la:(s) I< c {v* (r)* - E)-~~)~ < 8, when Re (s+e) > 0 
n-r- 

if 0 < e < v* (1 -$q). This implies that for some positive integer K, 
IQ;(S) I< $ for all n 3 K. We may then call on Worpitzky’s Theorem 
125, p. 421 which implies that the sequence of approximants for the 
continued fraction 

u&s) = 
ai (si 

al;+1 (s) 
1 - -- 

. . . 

converges uniformly over the domain D =: {s: Re (s+e) 22 0). The approxi- 
mants of UK(S) are all analytic functions of s in D, and the uniform con- 
vergence guarantees that OK(S) will be analytic in D. Tfehce the exyonen- 
tiall ergoc!icity of the plroceds N(t) follows from P.5.2. 

Corollary 9.2. If for the natural birth-death process N(t) one has 
(i) v, > v* > 0, 

(ii) lim{Xn/&:n+00)=8 # 1,0<6Gw, 
then N(t) is exponentially ergodic. 

The proof is immediate since lim (pn_1 qn : n -+ =) = 8 ( 1+8)-2 < $. 
It is worth noting that all basic linear birth-death processes with 

Xn=ncYl*PltPn= n QC~, aI, a2 and pl positive, are natural processes as 
the reader will verify fi;om (6.9), (6.11) and (6.12). FIence by Corollary 
9.2, all such g~~esses are exponentially ergodic when or 1 + q. when 
6 = 1, i.e., al = ar2, :ne canr.ot have exponential f?rg;odicity as 1~: s been 
shown analytically [ 11. 

We remark that Theorem 9.1 provides a sufficient condition for expo- 
nential ergodicity which seems far from necessary. The condition does 
not seem able, for exa le, to handle sequences {A,, pn) for which Xn/pd 
fluctuates. 
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IO. Uniformity of expmentiai convergence 

A sirnoPe identity plays a useful role in the discussion of convergence. 
and its ukformity. 

P. P 0.1. Let N(t) be any irreducible Markov chain in continuous time a& 
let en = lim [p,(t) 1 t +-a}. The;1 for any m, n 2 0, one has 

(10.1) izi IPmn(lt) - LDpi 1 (pnr(t) -e,,I =pmr(2t) -- e, l 

= 

Proof. The statement is obtained trivially from the Chapman-Kolmogorev 
equation En pm,(S) p,,;(t) = pmr(S+t) when one has transience 01’ ~111 
recurrence. For positive recurrence, where en # 0, one also has Z&I e,, =G I, 

x nPmn=1~andxnen18r = e,, and the lemma follows. 

P. 10.2. If N( t) is reverzlble in time (cf. [ 1 1, 16, 19]), positiw w~tw~w, 

and irreducible, then 

OQ 

(10.2) C eil {Pmn(f) -en}’ = e,’ (Prflm(2t) -emI 9 
n4 

To establish this, cne employs P. 10.1 with P = m. One then uses the tel;l- 
tion en p,(t) = em pm,(t) for time reversible processes, and the positit- 
ity of e, for all m implied by the ixekcibility. 

P. 10.3. If N(t) is reversible in time, transient or null rec;xrent, arrd irrc- 
ducible, then 

where r, is the poreliztial coe,fficient for state m associated with t?i@ 

rev ersible process. 

Ap,ain this follows from P. 10.1 for r = m. One has en = 0 for ;t)l M+ ;%!I 
n, pm*(t) = ?T~ p,(t) for ~11 VI and n. 

The positivity of the summands in (10.2) and ( 1 3 gives I+~ to hi 
useful inequality : 
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P. 10.4. For any irreducible, time-rewrsibie Markov chain in con3nuous 
time, and any m,n 2 0; 

Proof. We note from (10.2) and (i 0.3) that for all m, n, 

The proof then follows directiy from P.3. lc (i). 
The inequality (10.4) permits a quick derivation of an important 

result obtained previously by Callaert [ I]. 

P.lO.5. Let N(r) be any basic birth-death process. Then 

(10.5) yn G 70 for all n . 

Proof. For any basic birth-death process, one has sorn (7) * 2;,&) = 
PO&), so that Q&) M,, (s)} = srOm(s). It is known that (J~Js) is 
the reciprocal of a polynomial of degree m with all roots real and 
simple (see [ 13 ] ). Hence 70m = TV. But (10.4) implies that rOrn G ci’oj 
and the theorem follows. 

For the transient case, a stronger result proven byy Kingman [ 171 in a 
more general setting is available. 

P. 10.6. If a basic birth-dearh process is trunsient and exponentially 
ergodic, then 

%nn = YY,,I = Yn &or all m, n . 

Proof. From (10.1) and the nonnegativity of p,,(t). one has for all m, n, 

When one takes logarithms, divides by t, and permits t to go to +a~, then 
from P.S. 1 c (i) one obtains 7mn + lfn < 2rmn, i.e., 7mn > 7,. From 
P. 10 4, however, one has 7mn < T~. Hence 7mn = ^/n for all 
statement follows. 
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The ukformity of the convergence contamed in I?. 10.5 may be pre- 
sentr:d for albitrary initial di :tribution when the spectral represerntatiorr 
of Karlin and McGregor [ 81 is available. 

Theorem 10.7. Let N(t) be anv en trance or rtaturaf positive recurreri t 
basic birth-death process for.which Q, = W(O) = m 1 and ~~=o e,$ c& 
< 00. Let pk(t) = P{N(t) =t: k}, and let 

(10.7) H(t) = 

Then H(t) is finite for all t, monotonic decreasing and log-corzvex. 
over, for any such initial distribution, 

(10.8) H(t) g H(O) exp [rot1 l 

Proof. From (10. l), we infer as for (10.2) that 

(10.9) 2 
n=O 

e;’ p&t) p,(t) = e;'p&t~ l 

Let p,KJtj = xf& a, pmn (t). If we multiply (10.9) by ~t,a, and sum 
over m, r from 0 to K, we obtain 

(10.10) E 
K K 

e;’ pin(t) = C C e;’ clt, p,Atl a, . 
n=O ??I=0 r=O 

The Karlin-McGreg or [S] representation states that ’ 

(10.11) ptnr(2t) = e, 9 Q,(x) Q#) em*” ~(dx-) 9 
0 

where Q, (x) is a polynomial of degree m. Hence 

( 

K 

(10.12) I$oe,-‘&n(t)= J %) a, 
1* 

= 
0 ??I=0 

,fx)) f-tit 

W 

1 
2 

< 
??I=0 %I 3 

2 We note that for the positive-reamer8 cae, e&o = m,+t.0 = sm. Uentc (10.11) ~~~~~~~~~ 
with [8, (1.7)] with p(dx) = $(dx)/eo. 
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From ( 10.9), pKn(t) is monotonic increasing with K. From (10.12), for 
p,(f) = lim {pKn(r) : K-j=+, we have Z,“=e e,‘pi(t) < Zi;=* e;* ai when 
the latter is finite. Also from (10.12), and P. 10.5, 

K 
(llO.13) Hi(t) def 5 e;‘&,(t) - x e,'ai 

FZ=O n=O 

It f0ilows 

POW = H#) exp 12~0 tL 

from dominated convergence that Hi(t) + H*(t), and 

U*(t) < H“(0) exp [2yo t] . 

From (10.13) we see that Hi(t) is completely monotonic for every value 
of K. The limit of a convergent sequence of completely monotonic 
functions is completely monotonic, hence log-convex, and H(t) will also 
be log-convex. This completes the proof. 

It is somewhat curious that birth-death processes are essentially II, 
processes. One consequence is that not all inititi distributions are finite 
in that they have a finite Q2 norm E&o eil c& The set of all distribu- 
tions finite in this norm is a convex set which includes the ldistributions 
with p,(ol) = 6, m and the ergodic distribution. The Q2 character of 
birth-death pr&esses plays a key role in the work of Karlin and 
McGregor [ 81 and Kendall [ 15,161. 

It is also worth noting that for a transient or null-recurrent process a 
comparable theorem is readily available, stating that the norm 

H(t) = fj 
i 

Y2 

,k=O flkl P;(t) 
I 

is monotonic decreasing and log-convex with 

H(t) G H(O) exp [y() tl l 

When y. = 0, one does not have exponential decay of t 
still has monotonic log-convex decay of the norm. This is a consequence 
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of the reversibility of the process in time. Similar results may be expected 
for any time-reversible chain. 

11. Finite and infinite spectral span 

Definition 11 .O. Let g(t) be completely ,~~onotonic on (0, t) a&Id have 
the representation 

where p(dx) is a measure fior all 0 I< t < =. The interval of support 
(IFI,la:I)willbesaidtohavespec~~~Zspanlori-iPi. 

In P.3.13 and P.3.14, it has been seen tlaat when g(t) is bounded or 
integrable, y(s) = L{g(t)} has all its zeros and singularities on the nc 
tive interval (a, p) and is analytic elsewhere. For the passage time dent- 

sities S;(T), s,(r) and S,(T), we designate the interval; by (&ji), 
(ai, Pi) and (&an, p,,), respectively. For pnn( t), we designate the irrkrv;~~ 

bY ((yfln 9 P,,>* 
The key theorem for the discussion of the SI :ctral span is the follow= . 

ing. 

Theorem 11.1. Letf(t1 f and g(t) be bounded completely monotowk 
functions having Laiplace transforms q(s) and r(s), reyc, tivel~, weir 
that 

(11.2) q(s) = (SW - v y(s))-’ q 

and y(O+) < 1. Thelz the spectral spans of f(t) aYvtd g(t) are bot;r 
both infinite. When both are finite, cuf < cyg, i.e., Iaf I 2 lag 

Proof. By P,3.P 3, q(s) and y(s) have the represe station (3.6). WC 
(from [ 3, Theorem Pa, p. 4 161) that a compieteiy monotonic ~~~~~~i~~~ 
always has a finite index of exponential convergence- Thus 
(Pg I< 00, and -we need only consider af an 
y(s) + 0 as s + +wOd ,Henc 
rewrite (1 1.2) i,l ejither f 
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(11.3) v Mwris) + v 
1 

- s 
I 

or 
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l(11.4) q(s)= 
(s+v)-l 

1 -a (v (i+v)-‘) r(s) ’ 

We note that 1 - s&s) = L{-df(t)/dt) and that cy for -dfldt coincides 
with q. Similarly, {r(O) - y(s))/s = L{G’(t)), where c(t) = $rg(u) du, 
and fyg = crc. If q is finite, then 1 - sg(s) < 0 on (-m,arf) by P.3.13, 
and 1 - scp(s) + 0 as s + -= along the negative axis. It follows from 
(11.3) and P.3.13 that the left-hand side of (11.3), for which Q = Q, has 
CQ > CY~. Suppose that one knows instead of af finite that cyg is finite. 
Then one may consider form ( 11.4) and verify that as s + -00, the de- 
nominator of (11.4) is ultimately positive, the numerator ultimately 
negative and both& go to zero, in keeping with P 2 l 3 LJ,-- a* .J. 1 J. IIGIIWG M g finite 
implies af finite, and the theorem is proven. 

Theorem 11.1 has immediate consequences for birth-death processes. 

P.11.2. For any basic birth-death process, and any state n, p,,(t) and 
s,(t) both have finite spectral spans or both have infinite spectral spans. 
When both are finite, LY,, G cy,,. 

Roof. The statement follows directly from (5. P j and Theorem 11.1. One 
need only observe that so, s;(r) and s,(r) are all completely mono- 
tonic and bounded (see P.4.1 a and P.4.1 b), as is pnn( 0. 

PS 1.3. All the upward passage time densities S;(T) haive finite spectral 
spans. Moreover, (II;: is monotonic decreasing as n increases. 

roof. One observes that (2.1) has a form to which Theorem 11.1 is im- 
mediately applicable. Since s;f(r) = A, exp [--A, T], with ai = & = -X0, 
ancl ai+r G an+, the result follows by induction. (It is known, in fact, that 
Ix+ vrJ,l < cu,’ since o&) is a rational function whose poles lie between those 
t=: Oi+l(s) (see [ !3]).) 

l 11.4. The downward passage time densities s& ) either have infinite 
spetctral spans for all n 2 1 or have finite spectra2 spans for all n 2 1. In 
the latter case, ‘Y; is monotonic increasing as n increases. 
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roof. As for P. 11.3, the statement is immediate from (2.3) and Theorem 
11.1, and induction. 

P.11.5. If for any bask birth-dea,th process N(t), E[T;] + 0 for IZ -+ 88, 
then S,(T) and pm(~) have infinite spectral span for all n. 

Proof. We have seen in P.3.10 and the accompanying footnote 1 that for 
any passage time r with completely monotonic probability density func- 
tion 

(11.5) IPK (E[TI)-~ G Ial . 

When E[T;] + 0, one must have la, -i unbounded. From P. 11.4, however, 
one must then have la; 1 = = for all y2. Consequently for S&Q, )or,,,( = 
foral!.,r,andbyP.11.2,la,,I==. 

For entrance and regular reflecting processes, one has immediately 
from E[T,~] < 00: 

P.1 B .6. AN entrance processes, regular processes with a reflecfirlg bmrr- 
tiary at infirmity, and those natural processes f;# which E[ 7,; 1 -+ 01 us 

n -+ * have infinite spectral span for all n. 

When the Karlin-McGregor repzesentatlon is available, a similar con- 
clusion is reached for other processes of interest. 

Ip.11.7. Let N(t) be any exit, entrance or natural process. 771erz ~l,~ 2 a80 a 

Proof. For any such process, the Marlin-McGregor representation 
(10.11) is available; i.e., 

Since a spectral value for the support of poo(t) can only be removed 
from that for p,(t) by a zero of Q&C), tlhe statement fd 

One then has: 



232 I?. Callaert, J. Keilson, Birth-death processes, II 

Theorem 1 q 3. Let N(t) be a basic birth-deaiFh process in any of the 
foilowing categories: (a) entrance, (b) exit, (c) natural, with E[T~] + 0 
asn+=,orE[7,] --) 0 as n + 00. All such processes have infinite spec- 
tral span. 

Proof. The Karlin-McGregor representation is available for all of these 
processes. When E [ ri] ~CorEI-i,l~O,thenlar~I-+oosrla,I~~,and 
hence I a,, I + 00. Consequently, I olmn I+ 0~. From P. 11 J, one then infers 
that &LX) has infinite span. 

It should be noted that a broad class of processes exists for which the 
spectral span is finite. We have in mind certain natural processes such as 
M/M/s, for which it is known analytically that the spectral span is finite. 
Details m&y be found, for example, in [ lo]. 

The knowledge that v, is unbounded is enough to insure that the 
spectral span is infinite. This conclusion is made evident from the follow=, 
ing theorem. 

Theorem 11.9. Let N(t) be any basic birth-death process for which 
p,(t) has a spectra! support interval bounded by I B,, I and 101,~ I a Then . 

(11.6) W,,I g v,: G la,,1 . 

Proof. Completls mocotonicitv assures tlhe representation . 

where p&x) is a finite measure of mass unity, since pm@+) = 1. knee 

brnl l%ni -1 
(11.8) - p;,(w = J XP,hw $ P,QW I l 

hrnl ’ lrO*nl 

It is known, however, that (cf. P.5.2) 

Hence -p&(0+) = V~ by the Tauberian argument. When t 
combined with (11 A), one obtains (11.6) immediately. 
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C0r01lary 1 l- 10. If for any basic birth-death process, Vu is unbounded, 
the process has infinite spectral span (in the seme that s~pJ la,,I I - 

=OO* 

This corollary provides a convenient alternative to Theorem 11.8 for 
the natural processes. It also conveys the sense in which regular processes, 
for all of which SUP Vn = =, have infinite spectral span even though the 
Marlin-McGregor representation is not applicable. 

12. !!kip-free processes on the full lattice 

The methods and results obtained for birth-death processes permit 
direct extension to their analogues on the full lattice of integers. In this 
class is any process N(t j on a state space N = (n : -00 < n < Q+ which is 
temporally homogeneous, Markovian, and skip-free or lat tice-conGnuous 
in both directions. Such processes are characterized by a set of transiti 
rates (hn,p,} for which hn and pn are positive for all real n. They foo are 
reversible in time. The notation and theory of our early sections is still 
applicable with only minor revision. For every set of state probabilities 
p,(t) = P {N(t) = n}, one has 

(12.1) dP,Jdt = -(X,+EL,)p,(t) + An-1 Pj,-l(t) + Pn+l Pn+N l 

Again one finds 

whew :Fn(t) is given by (1.5). Consequently, one still has 

(12.‘2) n,,(S) z (S + Vn - Vn QntSII-’ 9 

where an(S) = P’n-l~z-1 (s) + qn CJ;+~(S). Clearly, exponential ergo 
for the full lattice process is equivalent to exponential 
s;_&(r) and V;+~ (7). To establish the exponential ergod 
only establisrs. the exponential ergodicity of the two co 
death processes, obtained by setting up 3 boundary at rt = 
in both directions. 
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