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7. Bpectrnl wirneture for the M/M/1 procesy

Ab o limsration of the spectral structure exhibited in the previaus
wetlans (see | 1u]), we digenss the quene-length pracess V(¢ iar the
M/M/V quene | 10). This pracess is u birth—death process with transition
b8 Ay S h 0@ 0,4, =4, p> |, and py = 0. We successively treat the
passage-time densities (dawnward and upvard), the transition probabil-
ities end the classification of the process.

1.1. The downward passage-time densities

It has been shown in Sectlon 4 that the half-plane of convergence of
a,(s), n 2 1, terminates at a branch point 8, . This branch point is inde-
pendent of n and has the value —(v'A —v/p)?. We note that |§;| > 0if
the queue is ransient or posit've recurrent, whereas |8 | = 0 in the null-
recurrent case,
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7.2. The upward passage time densities

The abscissa of convergence 8, of o5 (s) is a simple pole for all n > 0
and the sequence {f} };g is strictly monotonic in the sense that §_; <
B, < O (see Theorem 4.3). By (2.2), ff = —\, and hence the poles S},
start at —A and movc to the right as n increases from 0 to «. We now
show that lim {f} : # >} = 0 in the positive-recurrent -ase and that 3
is uniformly bounded (upper bound) by — (/A —+/u)? in the transient
case.

Lemma 7.1. For the queue-length process the abscissae of exponential
convergence oj the upward passage-time densities satisfy:

lim 8} =0 if A<,
n—»co
lim Bi< —(VA-vm?2<0 if A>upu.
n-—ro

Proof. If the process is positive recurrent, p,, = \,/n, =AMu=p <1, s0
that we may apply [12, Theorem 3.1] which states that

E -t
7.1 lim e [T"]T= l—p.
et 2,=0E[r’.]
From (2.4),

lim .,./E['r“] E()\ﬂ)‘lz) ﬂ,>27\ l2e,

n—oo j n=0

and hence by (7.1), lim {{},: n >} = o, On the other hand, ¢} < |8}1"!
by (3.4). Combining the last two results, one has lim {8} : n >0} = 0,

We now consider the transient case. In addition to the process N(t)
wiin state space {0, 1,2, ...}, we consider the homogeneous birth—death
process H(:) defined on the state space {...-2, -1,0, 1, 2, ...} with tran-
sition rates A, = A\ and n,, = u for all 12 We now show that S{{,,(r) >>.
Sn(T), where Sy(7) is the e.d.f. of ¥}, and H and N stand for the homo-
geneous and the queue-length process, respectively.

Consider fig. 7.1 with B a set of states entered at r = 0, W have
By = {n-1,n-2,..,1,0} and By = {n—-1,n-2,..,,1,0,—-1,-2,...}. The
sundom variables Ty and Ty, denoting the random dwell time in B, have
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a non-defective c.d.f. Sy (7) and Sy (1) since A > u. Moreover, from the
nature of botl. processes it follows that Sy, (1) = S{,(7). To see this, we
note that for n = 0 in Fig. 7.1, SN(7) = Uy(7), where Ug(7) is the Heavi-
side function of unit jump at the point zero. Clearly 5,,(7) = Sy (7). and
the result then follows f...m Theorem 4.6 and induction on 1. By P. 3.3,
Br.n = Brn» Which means that the abscissa of onvergence of af,(s) tor
the queue-length process does not exceed the abscissa of convergence of
071,(s) for the homogeneous process.

On the other hand, oﬁ,,(s) is independent of n and satisfies

01 () = N(s+u+A—pof(s)~! .

Hence B, = — (VA — /)2 for all #, by a reasoning similar to that for
the downward passage-time densities (see Section 7.1). This means that
forA> u,

lim B, < ~(WA-vVw?<0,
H—roo0
which completes the proof of the lemma.

Actually lim {8y, : n>o} = —(/\ ~+/p)? in the tr: 'sient case. 1his
is s0 because Sy, (7) is stochastically monotonic increasing with n (as
may be seen from Theorem 4.6 (i)} and converges in distribution by
P.3.2f since

n . " Y+
E[T:l] = (7‘n"n)_11 gj = I‘“‘}‘g‘l:é”":‘)’i—“ )

which is bounded from above by (> — ) ! < o
It is worth noting that for the jueue-length process N(g},
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(i) vy =-~N=ph —¥, = ~Ntu) < ~A < B} forn > 1, and
(i) —v, = ~(AHp) < ~(WN —Vw)? =4, forn> 1,
illustrating Theorems 4.3 and 4.4,

1.3. The index of convergence vy, of the transition probabilities p,,(t)

It has been shown (Theorem 5.5) that 0,z < 1v,, in the transient case
and B,; <7, < B, in the positive-recurrent case, the only possible ex-
ception bheing the case when §,; = f,g and both are poles. ,; and B,z
correspond to [} _; and B;,; (or conversely).

For a transient queue-length process g, = —(v/A—v/ u)?, whereas
B < —(/A —+/n)? for all n (see Sections 7.1 and 7.2). Hence ,g = B+
and —(v/A —v/w)? < v, forall n.

The positive-recurrent case is somewhat more complicated in that
B+ and B;,_; may satisfy either of the relations

() Bray < Br-1s
(ii) ﬁ;H =Pp-1

(iid) Brpey > By 1.

In particular, (i) is satisfied for all # if A <% u. In any of the cases (i), (ii)
ar.d (iii}, we have B,; <, < B,r. 1T B,r = Bn+ (Which is a branch point),
then v, = B,4+1-

The above results are in accordance with those iri [1], where it is
shown that vy, = — (/A —+/ [1)2 and that even in the positive-recurrent
case, vy, cannot be improved for any state n.

7.4. The classification of the process

Since lim {p,, : n->} =\/u and lim { p}, : n—>) = A/u, the classifica-
tion depends entirely on the value of A/u. It is shown in table 7.1. We
note that, by a similar reasoning as above, the quzue-length process
M/M/s has a natural houndary at infinity for every s (even for s = o),

Table 7.1
Classification cf.
AMu<l1 natural, posiiive-recurrent 6.19)
AMu=1 natural, null-recusrent (6.18)

AMu>1 natural, transient (6.16)
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8. Zxponential ergodicity for processes with entrance. exit, and regular
boundaries

The ideas developed in Sections 4 and 5 permit one to infer quickly
thiat all birth—death processes with entrance, exit or regular boundaries
are exponentially ergodic.

Theorem 8.1. Every birth—death process with an entrance boundary is
exponentially ergndic.

Proof. We have seen in Section 6 that every such bir*h—death proce.s is
positive recurrent and that E[7.. ] = lim {E[7,4]: n >} < e, Since

Two = Zy=1 Ty, and 7, is a positive random variable, it follows that 7,
is itself a positive random variable. Moreover, for the same process trun-
cated by a reflecting boundary at L, the passage time 7, will have a
log-concave probability density function (cf. [13]) and 7, converges in
distribution to 7.,,,.! Hence 7, has a log-concave p.d.f.. and by P.3.8
this is exponentially convergent with negative index. Hence 0,,(s) =

O.. n+1(5)/0., ,(s) has a negative abscissa of convergence 8, by P.3.5. The
theorem then follows from Theorem 5.1 and P.5.2.

P.8.2. Every hirth—death process with a regular reflecting boundary iy
exponentially ersodic.

Proof. The proof parallels that above completely, since E[7.4] < o and
TL» converges in distribution to 7..,,.

Theorem 8.3. Every birth—death process with a regular boundary is ¢x-
ponentially ergodic.

Proof. The regular boundary will be either reflecting, the case covered in
P.8.2, or will be completely or partially absorbing. If we denote the
process with reflecting boundary by Ng(#), and a process with absorbing
boundary by N,(¢), onc has immediately

San(7) < sgp(7)

for the downward passage time densities from state #. Conse juently,

! This is a direct consequence of Theorem 4.6 (i), a simple inductior argu nent, and ¥.3 1
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0 4,(s) will be analytic for Re (s) > Bg,, and 83, < fr, < 0. The theo
again follows from Theorem 5.1 and P.5.2.

Theorem 8.4. Every birth—death process with an exit boundury is expo-
nentialiy ergodic.

It is known that all such processes are transient and that El7,.] =
lim {E[rg,] : n >} < oo, Again from P.3.2f and P.3.7, 7. will be a
proper random variable with a log-concave probability density function,
as will all 7,,,. Clearly for such a process cornmencing at state n = 0, one
has 74, > 7,,. for all m, so that 4,,(x) =P{7,,. >x} < P{ry.>x}=
Ag(x). Also (cf. [4,XVIL.4])

(8.1) n;)) Pon(t) =P{7g.> 1} =Ay(0) .

The log-concavity of the density of 7., implies that 4 y(¢) is exponen-
tially convergent with negative index from P.4.7, so that Z p,,(¢) and
Po.(t) are also such, implying exponential ergodicity. Note that

(8.2) ’E}O Pn(t) = P{T e >t} = A, (1) S Ay(t) .

The structure exhibited in (8.2) was pointed out by Karlin and McGregor
[9] via spectral theory.

9. Exponential ergodicity for processes with naturai bc ndaries

The resuits of this section are based on the analytic theory of con-
tinucd - ctiens, o zxposition of which has been given by Wall [25].
The recursicr ~ol.i.on (2.3) may be written in the form
9.1) o) =., B,()+ 05!,
where

(9.2) o, = "qvn/pn J
(9.3) Bn(s) = — (s+v,)/(w,p,) .

From (9.1), we then have a representation of 07(s) as the continued
fraction
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(&4
t
[

94)  oj(s) = — -
51(S)+m-;:-

The continued fraction is defined to be the limit of the sequence of
approximants 07 /(s) obtained from (9.1) by setting o5 (s) equal to zero.
provided the sequence corve: es >3 N goes to infinity. For the natural
case here treated, the boundary at infinity is inaccessible. Such trunca-
tion at infinity then does not alter the process, and (9.4) is a valid ex-
pression for o7 (s), for both recurrent and transient cases. For a regular
boundary, (9.4) would be valid only if the boundary is totally absorb-
ing, and the classi.al definition of the continued fraction would not be
suitable.

An equivalent continued fraction to (9.4) (the approximants coincide
with those of (9.4)) is given by (cf. [25,p. 19])

aj(s)
a3(s)
1 —...

(9.5) 01(s) = -

where
(9.6) a1(s) = q, {v (V1+S)_1} 3

4

v
(9.7) a;(s) =Pn-14n s+

n-—-\ n

. nz=2.
Vo1 SHv,

When lim inf», = 0, we have seen in P.5.3 that the. process cannot be
exponentially ergodic. We may therefore restrict examination to the
case v, > »* > 0. For this case we have the following sufficient condition
for exponential ergodicity.

Theorem 9.1. IJ for the natural birth—death process N(t) one has
@Dy, >v*>0,n>0,
(i) limsup p,_; 9, < %>

then N(t) is exponentially ergodic.

Proof. We may write

Pnot Vn V. —€ V- €

®eoy e e
an(S) Pn-14n Vo) —€ Uy —€ vn—l“‘€+(3+e) Y, - € tisre)
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Clearly v, (v, —€)"! < v* (*—¢)~! when e < v*. Also

v,—€
<1, =0, w c(s+e)= 0.
b e+ (5%¢) 1 nz=0, hen Reo(ste)

if we denote lim sup p,,_, g,, by §, we then have
limsup la; ()< ¢ (" »*—€)"1}> <%, when Re(s+e)>0
n—oo

if 0 < e < v* (1 —+/4%). This implies that for some positive integer K,
lay(s)1 < % for all n > K. We may then call on WorpitzKky’s Theorem
[25, p. 42] which implies that the sequence of approximants for the
continued fraction

ag(s)
“l‘&ﬂ (s)
_ a;(+2(s)

ok(s) =
1 —_

1

converges uniformly over the domain D = {s: Re (s+€) > 0}. The approxi-
mants of og(s} are all analytic functions of s in D, and the uniform con-
vergence guarantees that og(s) will be analytic in D. Hence the ex»honen-
tial ergodicity of the process N(¢) follows from P.5.2.

Corollary 9.2. If for the natural birth—deuth process N(t) orne has
@ v,>v*>0,
{d) lim{A,/p,,:n->2}=0#1,0< 0 < oo,

then N(t) is exponentially ergodic.

The proof is immediate since lim {p,_, g,:n~>=}=0 (146)"2 < L.

It is worth noting that all basic linear birth—death processes with
A\, =na; + By, p, =na,, ay, ay and B, positive, are natural processes as
the reader will verify from (6.9), (6.11) and (6.12). Hence by Corollary
9.2, all such pi-scesses are exponentially ergodic when a,; # a,. When
9 =1, ie., a) =a,, ine canrot have exponential rgodicity as h: s been
shown analytically [1].

We remark that Theorem 9.1 provides a sufficient condition for expo-
nential ergodicity which seems far from necessary. The condition does
not seem able, for exanple, to handle sequences {A,,, i, } for which \, /u,,
fluctuates.
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10. Uniformity of exponential convergence

A simple identity plays a useful role in the discussion of convergence.
and its uniformity.

P.10.1. Let N(¢) be any irreducible Markov chain in continuous iime and
let e, =lim {p,,(t) : t>=}. Thei for any m, n = 0, one has

(10.1) 25 {Ppn() —2,} {Py(t) —€,} = Py (20) ¢, .

n=0

Proof. The statement is obtained trivially from the Chapman—Kolmogorov
equation 2, p,.,(s) p,,',(t) = pn,(§11) when one has transience ov nuli
recurrence. For positive recurrence, where e, # 0, one also has £, ¢, = 1,
2, Pmn=1,and Z, e, ,, =e,, and the lemma follows.

P.10.2. If N(¢t) is reverzible in time (cf. [ 11, 16, 19])), positive recurrent,
and irreducible, then

3

(10.2) ng el (Pmn (D) — e, 32 =€t {pym(20) — e} .

To establish this, cne employs P.10.1 with » = m. One then uses the rela-
tion e, p,m(t) = €y, Pma(t) for time reversible processes, and the positiv-
ity of e, for all m implied by the izre tucibility.

P.10.3. If N(¢) is reversible in time, transient or null rec::-»ent, and irre-
ducible, then

(10.3° 230 T 02O =75 P 2D,
n"-:

where T, is the poreatial coefficient for state m associaied with the
reversible process.

Again this follows from P.10.1 for » = m. One has e, = 0 for all #. and
T Dmn(1) = Ty Dy (2) fOr 2'1 m and n.

The positivity of the summands in (10.2) and (10.3) gives rise t0 4
useful inequality:



226 H. Callaert, J. Keiison, Birth—death processes, II

P.10.4. For ary irreducible, time-reversible Markov chain in coninuous
time, and any m,n 2 0,

(10.4) Ymn < min {v,,,v,1}.

Proof. We note from (10.2) and (10.3) that for all m, n,
(10.5) 71 (pn(®) — €, < T HPum(28) —e,,} .

The proof then follows directiy from P.3.1c (i).
The inequality (10.4) permits a quick derivation of an important
result obtained previously by Callaert [1].

P.10.5. Let N(1) be any basic birth—death process. Then

(10.5)  v,<7vy foraln.

Proof. For any basic birth—death process, one has s, (7) * p,,,, (T) =
Pom(7), so that a,,(s) {s7,,,,(s)} =sm,,,(s). It is known that o, (s) is
the reciprocal of a polynomial of degree m with all roots real and

simple (see [13]). Hence v, = ¥,,- But (10.4) implies that vy, < %,
and the theorem follows.

For the transient case, a stronger result proven by Kingman [17] ina
more general setting is available.

P.10.6. If a basic birth—dearh process is transient and exponentially
ergodic, then

Yon =Yia =Yn Joradlm,n.

Proof. From (10.1) and the nonnegativity of p,,,(¢). one has for all m,n,

Pnn(D) Dpa(8) < ppp,, (28) .

When one takes logarithms, divides by ¢, and permits ¢ to go to +eo, then
from P.3.1c (i) one obtains y,,, + v, < 2v,,,, i-€., Ypn = ¥, From

P.10 4, however, one has v,,, < v,. Hence v,,,, = v, for all m,n and the
statement follows.
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The uriiformity of the convergence contained in P.10.5 may be pre-
sented for arbitrary initial di tribution when the spectral representation
of Karlin and McGregor [8] is available.

Theorem 10.7. Let N(t) be any entrance or natural positive recurrent

basic birth—death process for which a,, = P{N(0)=m} and Z;.q e} o2,
< oo, Let pi(2) =P{N(¢) =k}, and let

-] lﬁ
(10.7) H®)= [kz?(,) e,;l {pk(t)nek}z] .

Then H(?) is finite for all t, monotonic decreasing and log-convex. More-
over, for any such initial distribution,

(10.8) H(t) < H(0) exp [yot] .

Proof. From (10.1), we infer as for (10.2) that
(109)  Z1 €5" Punl®) Pra(®) = 7' pe(20)

Let py,(t) = ZX _o &,y Dma(2). 1f we multiply (10.9) by ay,a, and sum
over m,r from 0 to K, we obtain

©o

K
(10.10) Z%e;lp,(,,(t )= E 2 e lay, p(D o, .
. n=h &4

The Karlin—McGregor [8] representation states that

(10.11) pp2D=¢e, [ Qn(x)Q,(x) e > p(dx).
0

where Q,, (x) is a polynomial of degree m. Hence

2
O (x)}? e™ 2! p(dv)

(10.12) "Z;% e;lpk (1) =

0 J
o K K X
<[ { L oy, Qm(x\} pldx) = Z ey PR = 20 et
g (m=0 n=Y

2 We note that for the positive-recurrent case, ep/eg = my/rg = my. Hence (10.11) cumnendes
with [8, (1.7)] with p(dx) = y(dx)/eq.
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From (10.9), p,(?) is monotonic increasing with XK. From (10.12), for

Pt} = lim {pg, (r) : K>}, we have Z,_, e; ! p2(¢) < Z;.q 65 a2 when
the latter is finite. Also from (10.12), and P.10.5,

def \Ig\
(10.13) B = T &7 pk0) = 25 ez

= n=f

oo "E‘ 2
=/ { 2 ap Qm(x)} e 2 p(dx)
oo K‘ 2
< exp [2v74 ¢] f {mzo o, Qm(x)} p(dx) =Hf((0) exp [2yg tl.
0+ -

it foilows from dominated convergence that H%(¢) ~ H%(t), and
H?(t) < HX(0) exp [2y, 1] .

From (10.13) we see that H,Z((t) is completely monotonic for every value
of K. The limit of a convergent sequence of completely monotonic
functions is completely monotonic, hence log-convex, and H(¢) will aiso
be log-convex. This completes the proof.

It is somewhat curious that birth—death processes are essentially 2,
processes. One consequence is that not all initiai distributions are finite
in that they have a finite 2, norm 7. ¢ * aZ. The set of all distribu-
tions finite in this norm is a convex set which includes the distributions
with p,(0) =6, ,, and the ergodic distribution. The £, character of
birth—death processes plays a key role in the work of Karlin and
McGregor [8] and Kendall [ 15, 16].

It is also worth noting that for a transient or null-recurrent process a
comparable theorem is readily available, stating that the norm

o Y%
H(t = {E n,;lp,%(t)}
(k=0
is monotonic decreasing and log-convex with
H(r) < H(0) exp [vq ¢] .

When v, = 0, one does not have exponential decay of the ncrm. But one
still has monotonic log-convex decay of the norm. This is a consequence
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of the reversibility of the process in time. Similar results may be expected
for any time-reversible chain.

11. Finite and infinite spectral span

Definition 11.0. Let g(¢) be completely inonotonic on (0, ¢) aad have
the representation

lal
(L) g)= [ e *p@x), O<Ifi<lali<e,
181

where p(dx) is a measure for all 0 < ¢# < 0. The interval of support
(181, la 1) will be said to have spectral span |a| — |fI.

In P.3.13 and P.3.14, it has been seen tlat when g(¢) is bounded or
integrable, y(s) = L{g(¢)} has all its zeros and singularities on the nega-
tive interval (a, ) and is analytic elsewhere. For the passage time den-
sities s, (7), s, (r) and s,(7), we designate the interval; by (a},,3)),
(«,,B;) and (a,,,B,,), respectively. For p,,, (1), we designate the interva
by (ann’ﬁnn)'

The key theorem for the discussion of the s: .ctral span is the foliow-
ing.

Theorem 11.1. Let f(¢t) and g(t) be bounded completely monotonic
functions having Laplace transforms ¢(s) and *y(s), resre. tively, such
that

(11.2)  @(s) =G+ —vy(s) !,

and y(C+) < 1. Then the spectral spans of f(t) and g(t) are botn finite or
both infinite. When both are finite, ar < ag, Le., lagi = lagl.

Proof. By P.3.13, ¢(s) and (s) have the represeatation (3.6). We note
(from [3, Theorem la, p.416]) that a completeiy monotonic function
always has a finite index of exponential convergence. Thus |51 < = und
|Bgl <, and we need only consider o and «,. From (3.6). we see that
v(s) = 0 as s > +o0, Hence from (11.2), sp{s) = 1, and f(0+) = 1. We may
rewrite (11.2) in either the form
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1 —y(O)| _ 1 —s¢(s)
*"{ s }—l—(l—sw‘(s))

(11.3) p{l@}:’z_(i)

or

(s+p)~!
1—@GH) D))

We note that 1 — syp(s) = L{—df(z)/dt} and that « for —df/dt coincides
with ay. Similarly, {7(0) —¥(s)}/s = L{G(2)}, where G(¢t) = ;" g(u) du,
and ng = aG. If oy is finite, then 1 — sp(s) < 0 on (—w,af) by P.3.13,
and 1 — sp(s) = 0 as s » —<0 along the negative axis. It follows from
(11.3) and P.3.13 that the lcfi-hand side of (11.3), for which a = g, has
a, = ay. Suppose that one knows instead of ay finite that a, is finite.
Then one may consider form (11.4} and verify that as s + —oo, the de-
nominator of (11.4) is ultimately positive, the numerator ultimately
negative and both go to zero, in keeping with P.3.13. Hence a, finite

implies a, finite, and the theorem is proven.

(11.4)  @@s)=

Theorem 11.1 has immediate consequences for birth—death processes.

P.11.2. For any basic birth—death process, and any state n, p,,(t) and
5,(t) both have finite spectral spans or both have infinite spectral spans.
When both are finite, a,, < a,,.

Proof. The statement follows directly from (5.1) and Theorem 11.1. One
need only observe that sj(7), s, (7) and s,(7) are all completely mono-
tonic and bounded (see P.4.1a and P.4.1b), as is p,,, ().

P.11.3. All the upward passage time densities s;(r) have finite spectral
spans. Moreover, «;, is monotonic decreasing as n increases.

Proof. One observes that (2.1) has a form to which Theorem 11.1 is im-
media+tely apPIicable. Since s3(7) = Ng exp [—-A( 7], with ag =B = — N,
and a,,; < a,, the result follows by induction. (It is known, in fact, that
a,. < &, since 6;,(s) is a rational function whose poles lic between those

Gz 0549 (8) (see [131).)

P.11.4. The downward passage time densities s, (1) either have infinite
spectral spans for all n > 1 or have finite spectral spans forall n> 1.1In
the latter case, o, is monotonic increasing as n increases.
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Proof. As for P.11.3, the statement is immediate from (2.3) and Theorem
11.1, and induction.

P.11.5. If for any basic birth—death process N(t), E[1;] = 0 for n - o,
then s,(7) and p,,(7) have infinite spectral span for all n.

Proof. We have seen in P.3.10 and the accompanying footnote 1 that for
any passage time 7 with completely monotonic probability density func-
tion

(11.5)  IBIS E[rD 1< |al.
When E[7,,] - 0, one must have |a, | unbounded. From P.11.4, however,
one must then have |a,| =< for all n. Consequently for 5,(7), la,,| =

for all /i, and by P.11.2, |a,,,| = .

For entrance and regular reflecting processes, one has immediately
from E[7.q] < oo:

P.11.6. All entrance proceszes, regular processes with a refleciing butn-
dary at infinity, and those natural processes fu. which E[t,} = Qas

n - o have infinite spectral span for all n.

When the Karlin—McGregor representation is available, a similar con-
clusion is reached for other processes of interest.

P.11.7. Let N(t) be any exit, entrance or natural process. Then a.,, .

Proof. For any such process, the Karlin—McGregor representation
(10.11) is available; i.e.,

D)=, [ Q2(x) e p(dx) .
0

Since a spectral value for the support of pyg(#) can only be removed
from that for p,,,(¢) by a zero of Q,(x), the statement follows.

One then has:
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Theorern 1 :.8. Let N(t) be a basic birtn—death process in any of the
following categories: (a) entrance, (b) exit, (c) natural, with E ['r;] -0
asn -, or E[1,]1- 0as n— . All such processes have infinite spec-
tral span.

Proof. The Karlin—McGregor representation is available for all of these
processes. When E[7}] - C or E{i,] > O, then |aj | = = or |a; | - =, and
hence |a, | - . Consequently, |a,,| > . From P.11.7, one then infers

that p(dx) has infinite span.

It should be noted that a broad class of processes exists for which the
spectral span is finite. We have in mind certain natural processes such as
M/M/s, for which it is known analytically that the spectral span is finite.
Details masy be found, for example, in [10].

The knowledge that v, is unbounded is enough to insure that the
spestral span is infinite. This conclusion is made evident from the follow-
ing theorem.

Theorem 11.9. Let N(t) be any basic birth—death process for which
Pu:(t) has a spectrai support interval bounded by |18,,,| and |a,,|. Then

(11.6)  1Bpnl SV, < lag,l .

Proof. Complete morotonicity assures the representation

lagy,l

(11.7)  p(r) = f e™*7 p,(dx) ,
'B"nl

wlhiere p, (dx) is a finite measure of mass unity, since p,,(0+) = 1. Hence

(1.8)  —pp(OD = [ xpyd)| [ pdx)

lagpl { logpl } -1
{Banl \ Bgnl

It is known, however, that (cf. P.5.2)

v,(1—a,(s))
sy, (1 —0,(s)) "

L{-ppa(M}=1—sm,(s) =

Hence —p,,{0+) = v, by the Tauberian argument. When this result is
combined with (11.8), one obtains (11.6) immediately.
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Corollary 11.10. If for any basic birth—death process, v, is unbounded,
the process has infinite spectral span (in the sense that sup,{la,,| —18,,l}

= oo,

This corollary provides a convenient alternative to Theorem 11.8 for
the natural processes. It also conveys the sense in which regular processes,
for all of which supp, = e, have infinite spectral span even though the
Karlin—McGregor representation is not applicable.

12. Skip-free processes on the full lattice

The methods and results obtained for birth—death piocesses permit
direct extension to their analogues on the full lattice of integers. In this
class is any process N(¢) on a state space N = {n: —o < n < «} which is
temporally homogeneous, Markovian, and skip-free or lattice-coninuous
in both directions. Such processes are characterized by a set of transition
rates {A,,, u, } for which A, and p, are positive for all real #. They too are
reversible in time. The notation and theory of our early sections is still
applicadle with only minor revision. For every set of state probabilities
p,(t) =P{N(t) = n}, one has

(12.1) dp,/dt = =N+ 1) pp(2) + Ny _y Py () + fpsy Py (0)
Again one finds

dpmr(t)/dt = =V Dpp(t) + 0y Dpp(8) * 5,(2) ,
wheie 5,(¢) is given by (1.5). Consequently, one still has
(12.2) w,(s)=(s+y,—v, o,,(s))‘l ,
where 0,(s) = p,_; 0n_1(5) + g, 054 (5). Clearly, exponential ergodicity
for the full lattice process is equivalent to exponential convergence for
sp—1(r) and 57, (7). To establish the exponential ergodicity, one needs
only establisii the exponential ergodicity of the two component birth--

death processes, obtained by setting up 2 boundary at a1 = 0, reflecting
in both directions.
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