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SUMMARY

The formation of proximal cytoplasmic dilation in the
leading process (PCDLP) of migratory neocortical
neurons is crucial for somal translocation and
neuronal migration, processes that require the elab-
orate coordination of F-actin dynamics, centrosomal
movement, and nucleokinesis. However, the under-
lying molecular mechanisms remain poorly under-
stood. Here, we show that the Rac1-interacting scaf-
fold protein POSH is essential for neuronal migration
in vivo. We demonstrate that POSH is concentrated
in the PCDLP and that knockdown of POSH impairs
PCDLP formation, centrosome translocation, and
nucleokinesis. Furthermore, POSH colocalizes with
F-actin and the activated form of Rac1. Knockdown
of POSH impairs F-actin assembly and delocalizes
activated Rac1. Interference of Rac1 activity also
disrupts F-actin assembly and PCDLP formation
and perturbs neuronal migration. Thus, we have un-
covered a mechanism by which POSH regulates the
localization of activated Rac1 and F-actin assembly
to control PCDLP formation and subsequent somal
translocation of migratory neurons.

INTRODUCTION

Radial migration of neurons plays a pivotal role in neocortical

lamination (Hatten, 2002; Kriegstein, 2005; Rakic, 1990; Torii

et al., 2009). During corticogenesis, pyramidal neurons derived

from the ventricular zone (VZ) pass through a multipolar stage

to become bipolar and then undergo radial-glia-guided migra-

tion to reach their final destination within the cortex. Disturbance

of any single step will cause specific neurological syndromes

(Ayala et al., 2007; Kriegstein, 2005; Marı́n and Rubenstein,

2003; Rakic, 2003; Valiente and Marı́n, 2010).

The migration of bipolar neurons requires a concerted coordi-

nation between leading process extension and soma transloca-

tion (Ayala et al., 2007; Nadarajah et al., 2001). At the initial phase

of neuronal somal migration, the stabilization of the leading
640 Cell Reports 2, 640–651, September 27, 2012 ª2012 The Author
process is marked by an increase in volume of the proximal

leading process, referred to as the proximal cytoplasmic dilation

in the leading process (PCDLP) (Bellion et al., 2005; Schaar and

McConnell, 2005). After the formation of the PCDLP, the centro-

some moves forward and enters the leading process, and then

the nucleus translocates toward the centrosome (Ayala et al.,

2007; Tsai and Gleeson, 2005). Although PCDLP formation has

been predicated to be required for centrosomal movement and

nucleokinesis (Ayala et al., 2007; Bellion et al., 2005; Schaar

and McConnell, 2005; Umeshima et al., 2007; Valiente and

Marı́n, 2010), how it is orchestrated is still unclear.

Recent evidence indicates that F-actin assembly in the leading

process plays an essential role in centrosomal translocation and

nucleokinesis during neuronal migration (Norden et al., 2009;

Solecki et al., 2009). F-actin dynamics, centrosome transloca-

tion, and nucleokinesis are well coordinated in the PCDLP to

ensure proper somal translocation and neuronal migration (He

et al., 2010; Schaar and McConnell, 2005; Solecki et al., 2009).

However, the underlying molecular mechanism has still not

been elucidated.

POSH (plenty of SH3s) was identified initially as a Rac1-inter-

acting protein (Tapon et al., 1998). It interacts with the activated

form of Rac1, but not its inactivate form (Tapon et al., 1998; Xu

et al., 2003). We have shown previously that POSH interacts

with JIPs (c-Jun N-terminal kinase [JNK]-interacting proteins)

to serve as scaffold proteins for a JNK pathway protein complex,

the POSH-JIP apoptotic complex (PJAC) that includes Rac1 (a

member of the GTPase family), the MLK family (subfamily of

the MAP kinase kinase kinase), MKK4/MKK7 (the MAP kinase

kinase familymembers), and the JNK family (JNK1–JNK3) (Kuke-

kov et al., 2006; Xu et al., 2003, 2005). POSH plays an important

role not only in the organization of PJAC but also in the activation

of the JNK pathway (Kukekov et al., 2006; Tapon et al., 1998; Xu

et al., 2003, 2005). Studies with conditional knockout mice and in

utero electroporation (IUE) of mouse brain indicate that many

PJAC components including Rac1, DLK (a member of the MLK

family), MKK4 and MKK7, and JNKs are indispensable for radial

migration in the developing brain (Chen et al., 2007; Kawauchi

et al., 2003; Konno et al., 2005; Westerlund et al., 2011; Yama-

saki et al., 2011). An intriguing question remains to be answered

is whether and how POSH might regulate radial migration in the

developing brain.
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Figure 1. POSH Is Highly Expressed in

the Leading Process of Radially Migrating

Neurons

(A) Immunohistochemistry of coronal cortical

sections at E14.5, E16.5, and E18.5 with POSH

antibody (green). Nuclei were labeled with DAPI

(blue).

(B) POSH expression (green) in migrating neurons

in the IZ of E16.5 neocortex. Nuclei were labeled

with PI (red). POSH is concentrated in the leading

process (labeled by {).

(C and D) POSH colocalized with F-actin in

migrating neurons in the IZ and cultured cortical

neurons. E16.5 brain slices (C) and primary

cultured cortical neurons (dissected from E14.5

brain and cultured for 24 hr) (D) were fixed and

stained with POSH antibody for endogenous

POSH (green), and phalloidin for F-actin (red) and

DAPI for nuclei (blue). Enlarged view of rectangle in

(C) is shown at the bottom.

Scale bars, 10 mm.

See also Figure S1.
Here, we show that POSH is both essential and sufficient for

neuronal migration in vivo. Knockdown of POSH expression in

cortical neurons by IUE impairs PCDLP formation, centrosome

translocation, and nucleokinesis. We further demonstrate that

POSH colocalizes with the activated Rac1 and F-actin in the

cell cortex, and knockdown of POSH delocalizes activated

Rac1 and disrupts F-actin assembly. Finally, we found that

knockdown of Rac1 expression in cortical neurons also leads

to defects in PCDLP formation and neuronal migration in vivo.

Thus, our findings indicate that POSH is a regulator that controls

PCDLP formation and proper cortical neuronal migration through

localizing Rac1 activity and F-actin assembly.

RESULTS

Expression of POSH in Migratory Cortical Neurons
Because many components of the JNK pathway have been

demonstrated to play an essential role in cortical neuronal migra-

tion (Chen et al., 2007; Kawauchi et al., 2003; Konno et al., 2005;

Westerlund et al., 2011; Yamasaki et al., 2011) and POSH is

important for the activation of JNK signaling (Tapon et al.,

1998; Xu et al., 2003, 2005), we investigated whether POSH is

also involved in this process. We first examined POSH expres-

sion in embryonic mouse brain (Figures 1A and S1) and found

that POSH is expressed strongly in the VZ, subventricular zone

(SVZ), and lower intermediate zone (IZ) but weakly in the upper

IZ and cortical plate (CP) at embryonic day 14.5 (E14.5). At

E16.5, POSH expression increases in the IZ and CP. At E18.5,

it increases significantly in the CP but decreases in the IZ,

SVZ, and VZ. Interestingly, POSH is localized predominantly in

the leading process of migratory bipolar neurons in the IZ (Fig-

ure 1B). In addition it partially colocalizes with F-actin in the

leading processes of bipolar neurons both in vivo and in vitro

(Figures 1C and 1D). These cells are b-III-tubulin positive and

migrate along the radial glial fiber as reported previously by Elias
Cel
et al. (2007), Noctor et al. (2001), Rakic (1978), and Wang et al.

(2009) (Figures S1E and S1F).

POSH Is Essential for Cortical Neuronal Migration
The distinct temporal and spatial expression pattern of POSH

suggests its role in neuronal behavior during brain development.

To test this possibility, we made bicistronic constructs encoding

both dsRed and shRNA to knockdown overexpressed as well

as endogenous POSH (Figure S2). We employed IUE to deliver

POSH shRNA into neural progenitor cells of the VZ of E14.5

mouse. The most striking difference between POSH shRNA

and control (Ctrl) shRNA-transfected brains inspected at E18.5

was the distribution of neurons. In Ctrl brains, �50% of trans-

fected cells were in the CP and �25% in the IZ (Figure 2A). In

contrast only 10% or less (around one-fifth that of the Ctrl) cells

reached the CP in POSH shRNA-transfected brains. Themajority

of cells (�66%) were distributed in the IZ (Figure 2A), indicating

that POSH knockdown perturbs neuronal migration. It is note-

worthy thatmany POSH knockdown neurons tended to accumu-

late in the IZ just below the subplate of the CP (Figures 2A, 3A,

and S3). The aforementioned finding indicates that POSH plays

an important role in neuronal migration. We therefore concen-

trated on investigating the role of POSH in neuronal migration.

To validate target specificity of POSH shRNA and to ensure

the specificity of the cell-positioning phenotype for POSH

shRNA, three different shRNAs targeting different regions of

POSH were employed (Figure 2A; data not shown). To further

confirm that themigratory defectswere causedbyPOSHshRNA,

we coelectroporated POSH shRNA and Xenopus POSH into

the embryonic mouse brain and found that the migration defect

could be partially rescued by coexpression (Figure 2B). This

indicates that the phenotype was POSH dependent, and not

the result of off-target effects. Other possibilities that might

affect cell migration were excluded, including cell death (ana-

lyzed by activated caspase-3 staining), aberrant morphology of
l Reports 2, 640–651, September 27, 2012 ª2012 The Authors 641
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Figure 2. POSH Is Both Essential and Sufficient for Neuronal Migration

Coronal sections from brains electroporated at E14.5 and inspected at E18.5.

(A) POSH shRNAs reduce the fraction of cells in the CP (left panels, subplate was labeled by dashed lines). Quantification of cell distribution (right panel, refer to C

for definition of different zones). One-way ANOVA, VZ/SVZ, p = 0.0015; IZ, ***p < 0.0001; Lower CP, ***p = 0.0001; Upper CP, ***p < 0.0001.

(B) The migration defect caused by POSH knockdown can be partially rescued by coexpression of Xenopus POSH. One-way ANOVA, VZ/SVZ, p = 0.036; IZ,

***p < 0.0001; Lower CP, **p = 0.00067; Upper CP, ***p < 0.0001.

(C) Overexpression of POSH enhances neuronal migration. Coronal section outlining different zones in the neocortex (left panel). One-way ANOVA, VZ/SVZ,

p = 0.9; IZ, **p = 0.002; Lower CP, **p = 0.00032; Upper CP, ***p < 0.0001.

n, slice numbers from different brains.

See also Figure S2.
radial glia (analyzed by Nestin staining), and general brain struc-

ture (Figures S1 and 2A–2C; data not shown).

Because knockdown of POSH impairs neuronal migration,

we went on to investigate whether expression of POSH can

promote the migration of neurons. We overexpressed POSH in

the E14.5 brain. Four days later, �60% POSH-expressing cells

reached the upper CP, more than double the number of Ctrl cells

(�25%) (Figure 2C). On the other hand, POSH-expressing

cells in the IZ and lower CP dropped substantially to �27%

compared to�53% for the Ctrl. The aforementioned results indi-

cate that POSH plays a crucial role in neuronal migration.

In order to confirm the role of POSH in migration in real time,

we performed live-cell imaging analysis of bipolar neurons in

the IZ of organotypic cortical slice cultures prepared from elec-
642 Cell Reports 2, 640–651, September 27, 2012 ª2012 The Author
troporated mouse embryos. We found that the motility of

POSH shRNA-transfected cells was dramatically slower than

that of Ctrls (Figure 3A; Table S1; Movies S1 and S2). Most

of them failed to move during our observation period (4–6 hr;

Movie S2). Even for those that migrated, their waiting time

(time between somal translocations) was doubled (>214 versus

�107.5 min for Ctrls). In addition they took much longer to

migrate (�123.8 versus �89.7 min for Ctrls) and, consequently,

migrated more slowly (�0.54 versus �0.93 mm/min for Ctrls). In

contrast, cells expressing POSH had much higher motility and

moved faster (Figure 3B; Table S1; Movies S3 and S4). Com-

pared with the Ctrls, the average number of migration (nucleoki-

nesis or somal translocation) during the period of observation

for POSH knockdown neurons dropped significantly with only
s
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Figure 3. POSH Controls the Motility of

Migratory Neurons

Brains were electroporated with POSH shRNA1

(A), POSH (B), or Ctrl constructs at E14.5. Three

days later, brains were sectioned and cultured.

Live-cell imaging of slices was performed on cells

below the subplate in the IZ.

(A) Live images are of Ctrl bipolar cell or POSH

knockdown cells (left panels). The number of nu-

cleokinesis in 4 hr is analyzed in the right panel.

Mutant shRNA1, n = 4. POSH shRNA1, n = 4. Zero

times, ***p < 0.0001; once, ***p < 0.0001; twice, p =

0.09, t test.

(B) Images of Ctrl bipolar cell and POSH-ex-

pressing cell. The number of nucleokinesis in 4 hr

was analyzed in the right panel. EGFP, n = 4.

POSH, n = 4. Zero times, p = 0.0008; once, ***p <

0.0001; twice, ***p < 0.0001; three times, **p =

0.0047, t test.

n, slice numbers from different brains.

See also Movies S1, S2, S3, and S4.
�22% moving once or twice compared with �76% for the Ctrls

(Figure 3A). In contrast, migration times increased substantially

for POSH-expressing neurons (Figure 3B); about 77% of

POSH-expressing neurons moved twice or more within 4 hr

compared with �13% for the Ctrls. Therefore, POSH controls

the motility of migratory neurons.

Knockdown of POSH Impairs PCDLP Formation and
Centrosome Translocation in Bipolar Neurons
To decipher the underlying mechanism by which POSH controls

radial migration, we analyzed the morphology of migratory

neurons in the IZ in detail. We noticed that POSH knockdown

neurons formed very thin and elongated leading processes

with a large portion of cells (�83%, compared to �32% in the

Ctrl) lacking the characteristic proximal cytoplasmic dilation of

migratory neurons presented in most of Ctrl neurons (Figures

4A–4C). They looked similar to neurons that had just finished

somal movement (Tsai et al., 2005), except that their leading

processes were longer. In contrast the percentage of cells with-

out apparent PCDLP in POSH-overexpressing neurons dropped

to �16% compared to �36% in Ctrls (Figure 4C). We measured

the average width of PCDLP and found that it was significantly

narrower in POSH knockdown neurons, whereas it was wider

in POSH-overexpressing neurons (Figure 4D). This indicates

that POSH plays an essential role in PCDLP formation. PCDLP

is crucial for soma translocation during neuronal migration (Ayala

et al., 2007; Bellion et al., 2005; Schaar and McConnell, 2005).

Thus, our data suggest that POSH is likely to control the forma-

tion of PCDLP to regulate neuronal migration.

The centrosome has previously been demonstrated to move

ahead of nuclear translocation (Tsai et al., 2007; Tsai and Glee-
Cell Reports 2, 640–651, Se
son, 2005; Zhang et al., 2009). As shown

in Figures 4E and 4F, �61.6% of centro-

somes in Ctrl migratory neurons were

located in the PCDLP. However, in

POSH knockdown neurons the per-

centage dropped by more than half with
only�20% being located in the leading processes. Interestingly,

centrosomes in POSH knockdown neurons were located much

closer to or even beside the nuclei, with only 8% of centrosomes

in POSH knockdown neurons being located more than 10 mm

away from nuclei compared with 38% in Ctrl neurons (Figures

4E and 4G). These results suggest that defective PCDLP forma-

tion in POSH knockdown neurons may interrupt the entrance of

the centrosome into the leading process.

Knockdown of POSH Leads to Changes in the Assembly/
Distribution of F-Actin and Cell Morphology
F-actin has been shown to be enriched in the PCDLP, and the

actomyosin complex in this region is essential for the coordi-

nated movement of the centrosome and soma during neuronal

migration (Norden et al., 2009; Solecki et al., 2009). We found

recently that POSH is likely to regulate the formation of the

F-actin network in epidermal cells and its migration during dorsal

closure in Drosophila (Zhang et al., 2010). Given the evidence

that POSH is enriched in the leading processes and colocalizes

with F-actin (Figure 1), we examined whether POSH is engaged

in F-actin assembly to regulate radial migration. Our results

showed that F-actin filaments were concentrated in the PCDLP

in �89% of the migratory neurons in the Ctrl (Figures S4A and

S4B) compared to in only �26% of the POSH knockdown neu-

rons. In addition the amount of actin filaments in soma appeared

to decrease in POSH knockdown neurons, although not as

apparently as in the PCDLP. This suggests that POSH controls

F-actin assembly in migrating neurons, especially in the PCDLP.

To unequivocally delineate the role of POSH in F-actin

assembly, we cotransfected GFP-fused G-actin together with

POSH shRNA and found that POSH knockdown affected F-actin
ptember 27, 2012 ª2012 The Authors 643
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Figure 4. POSHKnockdown Inhibits PCDLP

Formation and Interrupts Centrosomal

Translocation in Bipolar Neurons

(A) Coronal sections around the subplate from

brains electroporated at E14.5. POSH shRNA1

inhibits the formation of PCDLP at E18.5. Scale

bar, 10 mm.

(B) Tracings of representative transfected neurons

from (A).

(C) Quantification of neurons without dilation. Left

panel: ***p < 0.0001, t test. Right panel: ***p <

0.0001, t test.

(D) The average width of PCDLP. Left panel: ***p <

0.0001, t test. Right panel: *p = 0.0162, t test.

(E) The localization of the centrosomes (labeled

by arrowheads) in migrating neurons in the

IZ (centrosome, Centrin-GFP; nucleus, DAPI;

migrating neurons, dsRed). Scrambled shRNA:

Upper panels. POSH shRNA1: Lower panels.

Scale bar, 20 mm.

(F) The percentage of neurons with a centrosome

in the leading process. ***p < 0.0001, t test.

(G) Distance between centrosome and nucleus.

Only those centrosomes localized in front of

nuclei were counted.%5 mm, *p = 0.012; 5–10 mm,

p = 0.747; R10 mm, ***p = 0.00021, t test.

n, number of slices from different brains except in

(D), which is neurons from different brains.

See also Figure S3.
assembly and distribution in bipolar neurons in vivo (Fig-

ure 5A). We further examined the role of POSH in cultured cells.

First, we electroporated brains with POSH shRNA at E14.5 and
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cultured the dissected neurons 12 hr

later. Surprisingly, most POSH knock-

down cells could not attach to the

plate and generate typical axon or

dendrites. As a result, we analyzed only

those neurons cultured for less than

12 hr that could attach to the plate and

showed no signs of cell death as evalu-

ated by nuclear staining and mor-

phology. As shown in Figure 5B, well-

organized F-actin was detected in the

lamellipodia of Ctrls. In POSH knock-

down cells, however, very few typical

lamellipodia were found, indicating a

defect in the actin mesh network. Al-

though processes with multiple branches

could be detected in some cells, no well-

organized actin filaments could be iden-

tified in them (Figure 5B). To further

confirm the effect of POSH knockdown

on F-actin assembly, we knocked down

POSH in HeLa cells and noticed the

emergence of process-like structures

(Figure S4C). Interestingly, most F-actin

bundles in these POSH knockdown cells

were concentrated at the front of the

process-like structures, whereas cortical
circumferential F-actin and stress fibers mostly disappeared. All

these results indicate that POSH plays an essential role in

F-actin assembly.



Figure 5. POSH Knockdown Interrupts the Normal Assembly of

F-Actin and Cell Morphology

Coronal sections in the IZ from brains electroporated at E14.5 and analyzed

at E18.5.

(A) POSH regulates the organization of F-actin in migrating neurons. Bipolar

neurons (dsRed) in the IZ from brains electroporated with G-actin-GFP

together with Ctrl or POSH shRNA at E14.5 were inspected at E18.5 for the

distribution of G-actin (green).

(B) Cortex NPCs transfected with either Ctrl or POSH shRNA at E14.5 were

dissected 12 hr after transfection and inspected <12 hr after culture. Well-

organized F-actin (green) was detected in Ctrl neurons (upper panels), but not

in POSH knockdown neurons (lower panels; red, outlined). F-actin was also

present in those untransfected cells (labeled by arrows) around the POSH

knockdown cell.

Scale bars, 10 mm.

See also Figure S4.
POSH Is Required for the Proper Localization of
Activated Rac1
It has been shown previously that Rac1 plays an important role

in F-actin assembly and lamellipodia formation (Albertinazzi

et al., 1999; Etienne-Manneville and Hall, 2002; Fukata et al.,

2003). The phenotype of POSH knockdown cells described

above implicates the deregulation of Rac1 activity. In addition

POSH is known to interact directly with Rac1 (Tapon et al.,

1998; Xu et al., 2003), suggesting that POSH may regulate

F-actin assembly via Rac1. To validate this, we investigated

the relationship between POSH and Rac1 in cortical neuronal
Cel
migration. We found that endogenous POSH, Rac1, and F-actin

partially colocalized with each other in the neocortex, especially

in the leading process of migratory neurons (Figures S5A–S5C).

In HeLa cells, endogenous POSH colocalized with F-actin and

the transfected activated form of Rac1 (CA Rac1) at the leading

edge of lamellipodia (Figure 6A). In POSH knockdown cells,

however, we hardly found the typical lamellipodia induced by

CA Rac1 and noticed instead that CA Rac1 failed to localize at

the cell margins (Figure 6B). We also examined the localization

of Rac1 in bipolar neurons in the neocortex. In Ctrl cells, trans-

fected wild-type (WT) Rac1 tended to localize along the plasma

membrane of the PCDLP in contrast to the diffused expression

pattern in POSH knockdown bipolar neurons (Figure 6C). More

Ctrl or POSH knockdown bipolar neurons were shown in Fig-

ure S6, including one of the few POSH knockdown neurons

that had the dilation of the leading process. This indicates that

POSH regulates the localization of Rac1.

We further inspected whether POSH regulates the location

of endogenous Rac1 activity. Ctrl shRNA or POSH shRNA

was transfected into HeLa cells together with a fluorescence

resonance energy transfer (FRET)-based indicator of Rac1

(pRaichu10113) (Itoh et al., 2002). FRET analysis confirmed

previous reports that most Rac1 activity is at the leading edge

of lamellipodia in Ctrl cells (Figure 6D) (Machacek et al., 2009).

In POSH knockdown cells, most of Rac1 activity was observed

inside the cell instead of at the cell membrane (Figure 6D). Taken

together, these results indicate that POSH plays an essential role

in regulating the localization of the activated Rac1 to cell mem-

brane to Ctrl cell morphology.

Interference with Rac1 Activity Disrupts PCDLP
Formation and Perturbs Neuronal Migration
Our results described above show that POSH regulates the

localization of activated Rac1 (Figure 6) and that Rac1 likely

plays a role in the onset or the speed of cortical neuronal migra-

tion (Chen et al., 2007; Govek et al., 2011). Thus, we investigated

whether Rac1 plays a similar role to POSH during neuronal

migration. In agreement with previous reports, we found that

expression of either dominant-negative Rac1 (DN Rac1) or CA

Rac1 inhibited neuronal migration (Figures 7A and S7C) (Kawau-

chi et al., 2003; Konno et al., 2005). The inhibition of neuronal

migration induced by DN Rac1 could be rescued by overexpres-

sion of POSH (Figure S7A). However, when the expression of

endogenous Rac1 was knocked down at the same time, the

defect could not be rescued (Figure S7B). This suggests that

POSH does not interact with the DN Rac1, but it can interact

and promote the localization/activity of endogenous Rac1 to

rescue DN Rac1-incurred migration defect. Interestingly, coex-

pression of POSH with CA Rac1 led to the arrest of most cells

even further in the VZ/SVZ (Figure S7C).

Because overexpression of dominant mutants could poten-

tially block the activity of the Rho-GTPase family in general, it

may not reveal the specific or physiological functions of Rac1.

In addition, expression of either DN Rac1 or CA Rac1 also inter-

rupts the formation of leading processes in many newborn

neurons (Chen et al., 2007; Govek et al., 2011). To address this

concern, we adopted shRNAs to knockdown Rac1 and ex-

pressed WT Rac1 instead of dominant mutants in E14.5 mice.
l Reports 2, 640–651, September 27, 2012 ª2012 The Authors 645
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Figure 6. POSH Regulates the Localization of the Activated Form of Rac1

(A) POSH colocalized with F-actin and CA-Rac1 at cell edge. CA Rac1-GFP was transfected into HeLa cells. Twenty-four hours later, cells were stained with

POSH antibody for endogenous POSH, phalloidin-FITC for F-actin. Enlarged view of rectangle is shown in the lower panels.

(B) Cell shape and localization of CA Rac1-GFP were affected by POSH knockdown. Ctrl shRNA or POSH shRNA was transfected into HeLa cells together with

CA Rac1-GFP. The cell shape (dsRed) and location of Rac1 (green) were examined.

(C) POSH knockdown affects localization of Rac1 inmigrating neurons. Bipolar neurons (dsRed) are frombrains electroporatedwith Ctrl or POSH shRNA together

with WT Rac1-GFP at E14.5 and inspected at E18.5 for the distribution of Rac1. Enlarged views of rectangles are shown in the right panels.

(D) POSH regulates the location of Rac1 activity. Ctrl shRNA or POSH shRNA was transfected into HeLa cells together with pRaichu10113. The location of Rac1

activity was analyzed by FRET. FRET efficiency (E%) images are presented in quantitative pseudocolor (upper panels). The indicated linear intensity scans of

FRET efficiency for the Ctrl and POSH knockdown cells were analyzed with ImageJ (lower panels).

Scale bars, 10 mm.

See also Figures S5 and S6.
Cell distribution was inspected at E18.5. Interestingly, overex-

pression of WT Rac1 promoted neuronal migration with �56%

of Rac1-expressing cells reaching the upper CP as opposed to

�26% for Ctrl cells (Figure 7A). Meanwhile, knockdown of

Rac1 by RNAi suppressed migration (�3.6% and �24% for

Rac1 knockdown neurons and Ctrls that reached the upper

CP, respectively) (Figure 7B). Because we have shown above

that POSH controls the localization of Rac1 activity, we tried

next to determine whether Rac1 expression-induced neuronal

migration requires POSH or not by cotransfecting WT Rac1

with POSH shRNA or Ctrl shRNA. As shown in Figure 7C, co-

transfection of WT Rac1 and Ctrl shRNA enhanced neuronal

migration to a similar extent as expressing WT Rac1 alone.
646 Cell Reports 2, 640–651, September 27, 2012 ª2012 The Author
However, in brains cotransfected with WT Rac1 and POSH

shRNA, we noticed that some cells expressing WT Rac1 alone

(green) reached the CP, whereas cells expressing mainly

POSH shRNA (red) or both POSH shRNA and WT Rac1 (yellow)

failed to do so (Figure 7C). To further confirm the relationship

between POSH and Rac1, cell lysates from E18 brains were sub-

jected to immunoprecipitation with Rac1 antibody and western

blotting with POSH and Rac1 antisera. Analysis of the immuno-

precipitates revealed clear interactions between the endoge-

nous proteins (Figure 7D). These results indicate that Rac1-

mediated facilitation of radial migration requires POSH.

Finally, we investigated whether Rac1 plays a similar role

to POSH in the formation of PCDLP. Our data showed that
s
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Figure 7. Rac1 Controls Neuronal Migration

and PCDLP Formation

Coronal sections are from brains electroporated at

E14.5 and inspected at E18.5.

(A) Rac1 controls neuronal migration. Coronal

sections from brains electroporated with GFP,

WT Rac1, and DN Rac1 (left three panels).

Quantification of cell distribution in the VZ/SVZ,

IZ, lower CP, and upper CP (right panel; refer

to Figure 2B for definition of different zones).

One-way ANOVA, VZ/SVZ, ***p < 0.0001; IZ,

***p < 0.0001; Lower CP, p = 0.208; Upper CP,

***p < 0.0001.

(B) Rac1 is essential for neuronal migration.

Coronal sections are from brains electroporated

with Ctrl or Rac1 shRNA (left panels). Quantifica-

tion of cell distribution (right panel). One-way

ANOVA, VZ/SVZ, p = 0.042; IZ, p = 0.042; Lower

CP, *p = 0.002; Upper CP, **p = 0.00018.

(C) Rac1 expression-induced neuronal migration

requires the presence of POSH. Representative

coronal sections from brains transfected with WT

Rac1 together with Ctrl shRNA (left panel) or

POSH shRNA (right panel).

(D) Endogenous POSH interacts with Rac1 in

the embryonic brain. Cell lysate from the E18

brain was subjected to immunoprecipitation (IP)

with anti-Rac1 or IgG antibodies as indicated.

Immunocomplexes were probed separately for

POSH and Rac1.

(E) Knockdown of Rac1 affects the formation

of PCDLP. Coronal sections around the sub-

plate from brains electroporated with Ctrl or

Rac1 shRNA (left two panels). Quantification

of neurons without dilation (right panel): ***p <

0.0001, t test.

n, slice numbers from different brains.

See also Figure S7.
knockdown of Rac1 expression resulted in defect in PCDLP

formation of migrating neurons similar to that caused by knock-

down of POSH (Figure 7E). It should also be noted that the

number of cells shown in Rac1 shRNA-transfected brains (Fig-

ure 7E) is apparently less than that in the Ctrl due to the

effect of Rac1 RNAi on migration. Thus, our results demonstrate

that POSH-dependent cell cortical localization of activated

Rac1 is required for PCDLP formation and subsequent neuronal

migration.

DISCUSSION

In this study we have characterized a new player in neuronal

migration, POSH, which is the scaffold protein for PJAC. We

found that POSH is predominantly expressed in the PCDLP

of migratory neurons. POSH knockdown by RNAi impairs forma-
Cell Reports 2, 640–651, Se
tion of the PCDLP, and subsequent

centrosome translocation, nucleokinesis,

and neuronal migration. Detailed analysis

revealed that POSH knockdown delo-

calizes activated Rac1 and disrupts

F-actin assembly. Therefore, POSH con-
trols neuronal migration by localizing activated Rac1 and F-actin

assembly for formation of the PCDLP.

POSH Plays a Crucial Role in Cortical Neuronal
Migration
Neuronal migration requires a sophisticated interplay of complex

molecular machines in its multiple steps (Ayala et al., 2007; Go-

vek et al., 2011; Kawauchi and Hoshino, 2008; Kriegstein, 2005;

Marı́n and Rubenstein, 2003; Rakic, 2003; Valiente and Marı́n,

2010). POSH is expressed in the IZ where it is concentrated in

the leading process of migrating neurons and colocalizes with

F-actin. This implies that POSH may play a role in radial migra-

tion. Our results show that knockdown of POSH expression by

RNAi dramatically reduces the percentage of neurons distrib-

uted to the CP by around 80%, whereas overexpression of

POSH increases the percentage of cells reaching the upper CP
ptember 27, 2012 ª2012 The Authors 647



by 2.4-fold (Figure 2). The role of POSH in neuronal migration is

further supported by live-cell imaging analysis of bipolar neurons

in the IZ, which indicates that POSH controls the motility of

migratory neurons. It is interesting to note that many POSH

knockdown neurons accumulate in the IZ just below the subplate

of the CP. Together with the evidence that POSH expression

increases sharply at the subplate, this indicates that POSH

may play an important role in neuronal migration, especially

from the IZ into the CP.

POSH Controls the PCDLP Formation and Centrosome/
Nuclei Translocation
Recent studies have demonstrated that the formation of a

cytoplasmic dilation in the proximal leading process precedes

centrosome and nuclear translocation, and that nuclei translo-

cate into these dilations in saltatory movements. PCDLP forma-

tion has been presumed to be essential for nucleokinesis and

neuronal migration (Bellion et al., 2005; Schaar and McConnell,

2005). However, the factors that control the formation of PCDLP

remain unknown. We found that POSH knockdown bipolar

neurons show curved, thinner, and longer leading processes

(Figures 4A, 4B, 5A, 6C, and S4A) as previously reported for

LIS1 knockdown cells and, more recently, by our group for

CRMP2 knockdown cells (Sun et al., 2010; Tsai et al., 2005).

However, the most striking abnormal morphology is the failure

of a large portion of neurons accumulated in the IZ below the

subplate of the CP to form PCDLP. Therefore, it seems that

POSH plays a crucial role in the establishment and perhaps

maintenance of the proximal dilation in the leading process.

We postulate that the narrowed vessel in the proximal part of

the leading process caused by POSH knockdown may physi-

cally block the translocation of nuclei and centrosomes into the

leading process, consequently blocking neuronal migration.

Another possibility for the blockage of the translocation of nuclei

and centrosomes is that it is a secondary effect of POSH knock-

down on the localization of activated Rac1 and F-actin assembly

as discussed below.

Interestingly, knockdown of POSH expression in primary

cultured cortical neurons has been reported recently to induce

axon outgrowth (Dickson et al., 2010). This scenario is similar

to our finding that POSH knockdown leads to longer leading

processes in themigratory neuron in vivo even though it happens

on the other side of the bipolar neuron. It will be interesting in the

future to study whether POSH regulates axon specification or

outgrowth in vivo and whether Rac1 and F-actin assembly are

involved.

POSH Regulates the Distribution/Assembly of F-Actin
Actomyosin and F-actin dynamics function as themain drivers of

the coordinated movement of the centrosome and soma during

neuronal migration. Enrichment of F-actin in PCDLP has been

assumed to play an essential role in neuronal migration (Norden

et al., 2009; Solecki et al., 2009). We found that POSH knock-

down leads to the decrease or even loss of F-actin bundles in

bipolar neurons, especially in proximal leading processes. In

addition, well-organized F-actin structure and cell morphology

are disturbed or affected in cultured POSH knockdown corti-

cal neurons and HeLa cells. These results suggest that the
648 Cell Reports 2, 640–651, September 27, 2012 ª2012 The Author
decreased F-actin levels in migrating POSH knockdown neurons

may account for their defects in radial migration.

Other genes regulating F-actin levels in migratory neurons

have been reported recently. LIS1 plays an important role in

radial migration, and its haploinsufficiency results in a reduced

F-actin content in cultured migrating cerebellar granule cells

(Tsai et al., 2005; Kholmanskikh et al., 2006). Knockdown of

lamellipodin (Lpd) also results in a reduction in F-actin levels in

bipolar pyramidal neurons (Pinheiro et al., 2011). Depletion of

POSH and LIS1 reduces F-actin levels locally in different parts

of the leading process of migrating neurons. POSH knockdown

affects F-actin assembly mainly in PCDLP, whereas LIS1 knock-

down does so mainly at the leading edge of migratory neurons

(Kholmanskikh et al., 2006). Interestingly, it is the knockdown

of POSH but not LIS1 that affects PCDLP formation, although

both of them disturb radial migration. Knockdown of Lpd leads

to decreased F-actin levels throughout bipolar neurons and

causes some bipolar pyramidal neurons to adopt a tangential,

rather than a radial-glial, migration mode (Pinheiro et al., 2011).

It remains to be seen whether the influence of F-actin assembly

in different parts of migratory neurons causes different morpho-

logical changes and affects their migration pattern differently.

We have previously shown that POSH is required, in addition

to cortical F-actin, for adherens junction formation in epidermal

cells during dorsal closure in Drosophila (Zhang et al., 2010).

Thus, it will be intriguing to investigate in the future whether

POSH plays an additional role in neuronal migration by regulat-

ing the interaction between migratory neurons and radial glial

fibers.

POSH Regulates the Localization of Rac1 Activity and
Cell Morphology in Both Neuronal and Non-Neuronal
Cells
The role of Rac1 in F-actin assembly, lamellipodia formation, and

cell migration has been extensively studied by Albertinazzi et al.

(1999), Etienne-Manneville and Hall (2002), and Fukata et al.

(2003). We noted here that most primary cultured POSH knock-

down neurons fail to form well-organized F-actin and lamellipo-

dia. In addition to deregulated F-actin assembly, themorphology

of POSH knockdown HeLa cells is also reminiscent of abnor-

mal Rac1 activity. We therefore investigated the relationship

between POSH and Rac1 in more detail and provide several

pieces of evidence indicating that POSH regulates the localiza-

tion of Rac1 and its activity. First, POSH interacts with Rac1

and colocalizes with Rac1 and F-actin. In the embryonic brain,

endogenous POSH interacts with Rac1, and POSH, Rac1, and

F-actin partially colocalize with each other. Endogenous POSH

colocalizes with the activated form of Rac1 and F-actin at the

leading edge of lamellipodia in cultured cells. Second, POSH

controls the localization of Rac1. In POSH knockdown HeLa

cells, CA Rac1 does not localize at the cell margin and fails to

induce F-action assembly and lamellipodia formation as it

does in Ctrl cells. In bipolar neurons in the IZ, WT Rac1 tends

to have a diffused expression pattern in the leading process in

POSH knockdown cells in contrast to localizing along the plasma

membrane of the PCDLP in the Ctrl. Third, POSH influences the

localization of Rac1 activity. Rac1 activity was detected at the

leading edge of Ctrl cells as determined by FRET analysis. In
s



contrast, most Rac1 activity in POSH knockdown cells was

located inside the cell.

Together with previous biochemical studies showing that

POSH interacts directly only with the activated form of Rac1

(Tapon et al., 1998; Xu et al., 2003), our results indicate that

POSH is likely to play a role in anchoring or possibly recruiting

activated Rac1 to the cell cortex of cultured cells and the plasma

membrane of the PCDLP in bipolar neurons. The activated Rac1

regulates F-actin assembly and the formation of lamellipodia in

cultured cells and the PCDLP formation in bipolar neurons.

Rac1 Is Required for PCDLP Formation and Neuronal
Migration
Deletion of Rac1 in the VZ using Foxg1-Cre mice disturbs radial

migration (Chen et al., 2007). Expression of DN Rac1 and CA

Rac1 by IUE also affects the distribution of neurons (Kawauchi

et al., 2003). We confirmed their results and found that the inhi-

bition of neuronal migration induced by DN Rac1 but not CA

Rac1 can be rescued by overexpression of POSH. It is possible

that POSH does not interact with the DN Rac1. However, it can

interact and promote the localization/activity of endogenous

Rac1 to rescue neuronal migration. On the other hand, POSH

interacts with CA Rac1 and inhibits the migration furthermore,

leading to the arrest of most cells in the VZ/SVZ.

We also adopted different strategies to study the specific

physiological functions of Rac1. Interestingly, when we ex-

pressed WT Rac1, it promoted neuronal migration. On the other

hand, knockdown of Rac1 by RNAi suppressed migration. This

indicates that Rac1, like POSH, is both essential and sufficient

for radial migration. Together with the evidence that expression

of either DN Rac1 or CA Rac1 inhibits migration, we have proved

the hypothesis that cycles of Rac1 activation and inactivation are

important for neuronal migration (Giannone et al., 2004). More

interestingly, Rac1 knockdown led to defective PCDLP forma-

tion in migrating neurons in a similar manner to POSH knock-

down. Furthermore, the enhanced radial migration induced by

WT Rac1 depended on the presence of POSH. Together with

our findings on the role of POSH in the regulation of F-actin

assembly and PCDLP formation, these results support the

notion that POSH-dependent cell cortical localization of acti-

vated Rac1 is required for F-actin assembly and PCDLP forma-

tion and subsequently for neuronal migration.

Rac1 is known to play important roles in the leading edge of

the axon and in the leading process of non-neuronal cells in

the formation of lamellipodia (Fukata et al., 2003; Govek et al.,

2011), and we have shown that POSH plays an important role

in lamellipodia formation in cultured cortical cells and non-

neuronal cells. Whether lamellipodia formation is involved in

the formation of PCDLP in bipolar neurons remains to be deter-

mined. If that is the case, it would be intriguing to investigate

whether POSH-dependent localization of Rac1 activity is

involved. In addition, both POSH and Rac1 have been shown

to be important for JNK activation. Therefore, the role of the

JNKs in the formation of the PCDLP and in F-actin assembly in

PCDLPs should be studied in the future.

In summary, we have uncovered two genes that are essential

for PCDLP formation. In addition, we reveal a molecular mecha-

nism for neuronmigration in which POSH recruits activated Rac1
Cel
to the plasma membrane to ensure actin remodeling and

controls the dilation of the leading processes of migratory neu-

rons, which are essential for centrosomal movement and somal

translocation and, subsequently, for neuronal migration.

EXPERIMENTAL PROCEDURES

Materials

Antibodies used were mouse monoclonal anti-Nestin (Chemicon), rabbit anti-

POSH (MBL), anti-caspase-3-cleaved form (Cell Signaling), anti-Tuj1 (Abcam),

rabbit anti-Myc (MBL), mouse anti-GAPDH (Cell Signaling), mouse anti-Rac1

(Cytoskeleton), and mouse anti-GFP (Santa Cruz Biotechnology). F-actin

was stained with FITC-phalloidin or TITRC-phalloidin (Sigma-Aldrich). Nuclei

were stained with Propidium iodide (PI) or DAPI (Invitrogen).

Plasmids

POSH shRNA oligonucleotides were inserted into pSIREN-RetroQ-DsRed

(Clontech). The following target POSH sequences were used: 50-GGTCA

GACTTCTGGATGGCAT-30 (POSH shRNA1), 50-TGCTGTGAGGACAGTTGCA

GC-30 (POSH shRNA2), and 50-CCGCCACTCCATGGAGATCAG-30 (POSH

shRNA3). Rac1 shRNA oligonucleotides were inserted into pSIREN-RetroQ-

ZsGreen (Clontech). The target Rac1 sequence was described previously by

Weiss-Haljiti et al. (2004). pCMS.EGFP.Myc-POSH was described previously

(Xu et al., 2003). pCS2 (+)-Xenopus.POSH-EGFPwas provided by Dr. Kim (Kim

et al., 2005). pcDNA3-WT Rac1-EGFP, pcDNA3-DN Rac1(T17N)-EGFP, and

pcDNA3-CA Rac1(Q61L)-EGFP were provided by Dr. Xiaobing Yuan.

Cell Culture, Transfection, and Western Blotting

Cell culture, transfection, and western blotting were performed as previously

described (Xu et al., 2003).

Animals and IUE

Micewere provided by the animal center of the Institute of Genetics and Devel-

opmental Biology (IGDB), Chinese Academy of Sciences. All experimental

procedures involved were performed according to protocol approved by the

Institutional Animal Care and Use Committee at IGDB. IUE was performed

as described previously (Sun et al., 2010; Tsai et al., 2005).

Brain Sectioning, Organotypic Slice, Time-Lapse or Confocal

Imaging

Embryonic brain sectioning and immunohistochemistry were performed using

a standard protocol as described before (Sun et al., 2010; Tsai et al., 2005).

Sections were imaged on an LSM 700 (Carl Zeiss) or Leica SP1 confocal

microscope. Excitation/emission wavelengths were 488/515, 543/572, 568/

590, and 633/690 nm. Organotypic slice preparation and time-lapse imaging

were performed as described previously (Sun et al., 2010; Tsai et al., 2005).

Quantification of Cell Distribution and the Average Width of PCDLP

Cell counts were performed as described previously (Sun et al., 2010). The

average width of PCDLP was analyzed using Imaris software. For the purpose

of standardization, the average width of PCDLP between nucleus and 20 mm

upward to the leading process was measured. All values represent mean ±

SEM, statistics for dual comparisons were generated using the Student’s

t test, and statistics for triple comparisons were generated using one-way

ANOVA: *p < 0.05, **p < 0.005, ***p < 0.0005.

FRET

A method based on FRET that quantifies the location of Rac1 activation in

living cells was used. See Extended Experimental Procedures for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, seven

figures, one table, and four movies and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2012.08.007.
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