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Abstract

We develop various order-explicit multistep schemes of exponential &tting for systems of ordinary di)erential
equations. The schemes may be applied to systems whose linear part is nondiagonal. Various precisions can
be achieved by employing the various order schemes. Comparisons of accuracy and e8ciency of numerical
solutions are mentioned in the examples. The numerical results show that the schemes are highly accurate
and computationally e8cient.
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1. Introduction

In the last decade, a lot of research has been performed in the area of numerical solutions of
initial-value problems related to systems of &rst-order ordinary di)erential equations. The numerical
method treated in this paper is the so-called “exponential time di)erencing” (ETD) scheme [2,6], or
shortly “exponential &tting”(EF) [8]. Explicit exponential &tting with second- and fourth-order accu-
racy was constructed by employing Hermite interpolants and was used in delayed recruitment/renewal
equation [9]. Both explicit ETD schemes of arbitrary order and Runge–Kutta ETD schemes were
derived for sti) systems [3]. Runge–Kutta EF scheme with &fth-order accuracy was developed [1].
Although explicit ETD schemes of arbitrary order have been proposed [3], the implementation of
the higher-order ETD schemes does not previously seem to have been carried out. To develop EF
methods further, in this paper we derive new variable order-explicit multistep EF schemes, which are
more extensive and practical than those methods previously given. We also carry out higher-order
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explicit multistep EF schemes. We then demonstrate the accuracy and e8cacy of the new schemes
via application to a variety of test cases and comparison with other analytical and numerical results.
The numerical results show that the schemes are highly accurate and computationally e8cient.

2. The explicit multistep EF schemes

The explicit ETD schemes of arbitrary order have been derived elsewhere [3], but here we give
a more extensive method, which can be applied to systems whose linear part is nondiagonal. The
nth-order system of &rst-order di)erential equations for initial value problems are in the form



ẏ 1 = f1(t; y1; : : : ; yn);

...

ẏ j = fj(t; y1; : : : ; yn);

...

ẏ n = fn(t; y1; : : : ; yn):

(1)

We introduce the vectors

y = (y1; y2; : : : ; yn)T; f = (f1; f2; : : : ; fn)T:

Eq. (1) is expressed as

ẏ = f(y; t): (2)

Introducing a constant matrix H, we rearrange Eq. (2) as

ẏ − Hy = F; (3)

where

F= f(t; y)− Hy (4)

and the constant matrix H should satisfy det(H) �= 0.
We multiply (3) through by an integrating factor exp(−Ht), then integrate from tk to tk+1 to give

yk+1 = exp(Hh) · yk +
∫ tk+1

tk

expH(tk+1 − t) · F(t) dt: (5)

Let tk+1 = tk + h, Eq. (5) is expressed as

yk+1 = exp(Hh) · yk +
∫ tk+h

tk

expH(tk + h− t) · F(t) dt: (6)

Let t = tk + 
, we have

yk+1 = exp(Hh) · yk +
∫ h

0
expH(h− 
) · F(tk + 
) d
: (7)
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On the right-hand side of (7) there appears the unknown solution F(tk + 
). But since the approx-
imations yk−i; : : : ; yk−1; yk at time points tk−i; : : : ; tk−1; tk are known, the values Fk−i; : : : ;Fk−1;Fk at
time points tk−i; : : : ; tk−1; tk are also available by formula (4). It is natural to replace the function
F(tk + 
) in (7) by interpolating polynomial N(tk + 
) through the points (tk ;Fk); (tk−1;Fk−1); : : : ;
(tk−i;Fk−i). Although any form of the interpolating polynomial can be used for the derivation, it is
most convenient to use the Newton backward-di)erence formula. The Newton interpolating polyno-
mial formed through (tk ;Fk); (tk−1;Fk−1); : : : ; (tk−i;Fk−i) can be expressed as

N(tk + 
) =
j∑
s=0

(−1)s
i∑
j=s

(−1)j

 −


h
j


(

j

s

)
Fk−s; (8)

where


 −


h
j


=

(−

h

)(−

h

− 1
)

· · ·
(−

h

− j + 1
)

j!
; and


 −


h
0


= 1: (9)

Inserting (8) into (7), we obtain the (i + 1)-step explicit EF scheme

yk+1 = exp(Hh) · yk + h

(−1)0 i∑

j=0

gj

(
j

0

)
Fk + h


(−1)1 i∑

j=1

gj

(
j

1

)
Fk−1

+ · · ·+ h
[
(−1)s

i∑
j=s

gj

(
j

s

)]
Fk−s + · · ·+ h(−1)igiFk−i: (10)

Considering Eq. (9), the (i+1)-step explicit EF scheme with (i+2)-order is consequently expressed
as

yk+1 = exp(Hh) · yk + h(g0 + g1 + · · ·+ gi)Fk − h(g1 + 2g2 + · · ·+ igi)Fk−1

+ · · ·+ (−1)sh
(
gs

(
s

s

)
+ gs+1

(
s+ 1

s

)

+ · · ·+ gi

(
i

s

))
Fk−s + · · ·+ h(−1)igiFk−i; (11)

where

gj =
∫ 1

0
expHh(1− 
) · (−1)j

(−

j

)
d
: (12)

We now demonstrate the calculation of the coe8cients gj.



174 C. Tang et al. / Journal of Computational and Applied Mathematics 169 (2004) 171–182

Let A=H−1=h, T= exp(Hh)

gj =
∫ 1

0
expHh(1− 
) · (−1) j

(−

j

)
d


= (−1) j
[
(−A)

∫ 1

0
[expHh(1− 
)]′

(−

j

)
d


]

= (−1) j
{
(−A)

[
I ·

(−

j

)
− T ·

(−

j

)
−

∫ 1

0
expHh(1− 
)

(−

j

)′
d


]}

...

= (−1) j
j∑
s=0

(−As+1)


I ·

(−

j

)(s)∣∣∣∣∣∣

=1

− T ·
(−

j

)(s)∣∣∣∣∣∣

=0


 ; (13)

where
(

−

j

)(s)∣∣∣∣

=1

denotes the sth-order derivative of the function (−
)(−
− 1) : : : (−
− j + 1)=j!

at the point 
 = 1, and
(

−

j

)(s)∣∣∣∣

=0

is the sth-order derivative of the function (−
)(−
 − 1) : : :

(−
 − j + 1)=j! at the point 
 = 0. When the integral calculation of gj is transformed to the sum
calculation of gj, Eq. (11) can be used to implement the arbitrary order calculation.
Since(−


0

)(0)∣∣∣∣∣∣

=1

=

(−

0

)(0)∣∣∣∣∣∣

=0

= 1: (14)

Di)erentiating the expression
(

−

j

)
gives(−


j

)(s)∣∣∣∣∣∣

=1

=
s!
j!
Bj−sj ;

(−

j

)(s)∣∣∣∣∣∣

=0

=
s!
j!
Bj−sj−1; (15)

where the symbol Bj−sj denotes the constant

Bj−sj =
Cj−sj∑
m=1

pm and B0j = 1: (16)

The symbol pm is the product of all elements in mth-combination. For example,

C23 = 3; B23 = 3× 2 + 3× 1 + 2× 1 = 11;

C35 = 10; B35 = 5× 4× 3 + 5× 4× 2 + 5× 3× 2 + 4× 3× 2 + 5× 4× 1 + 5× 3× 1

+4× 3× 1 + 5× 2× 1 + 4× 2× 1 + 3× 2× 1 = 225:
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Hence, from Eq. (13),

g0 =−H−1

h
(I − T); (17)

gj =−H−1

h
I −

j∑
s=1

(
H−1

h

)s+1 [ s!
j!
(Bj−sj I − Bj−sj−1T)

]
; j = 1; : : : ; i: (18)

Here the arbitrary-precision arithmetic is used to calculate gj. The local truncation error for the
(i + 1)-step explicit EF scheme is O(hi+2).
For example, to derive the seven-step explicit EF scheme, consider Eq. (11) with i = 6,
The seven-step explicit scheme EF7 is, consequently,

yk+1 = exp(Hh) · yk + h(g0 + g1 + g2 + g3 + g4 + g5 + g6)Fk

−h(g1 + 2g2 + 3g3 + 4g4 + 5g5 + 6g6)Fk−1
+h(g2 + 3g3 + 6g4 + 10g5 + 15g6)Fk−2

−h(g3 + 4g4 + 10g5 + 20g6)Fk−3
+h(g4 + 5g5 + 15g6)Fk−4 − h(g5 + 6g6)Fk−5 + hg6Fk−6; (19)

where the coe8cients g0; g1; : : : ; g6 can be easily evaluated by Eqs. (17) and (18).
In the foregoing, we have derived the explicit EF schemes of arbitrary order in a matrix form. It

is inconvenient to implement the matrix calculation if the number of Eq. (1) n is very large. In that
case, Eq. (1) is transformed equally to the following form:



ẏ 1 − c1y1 = F1(t; y1; : : : ; yn);
...

ẏ m − cmym = Fm(t; y1; : : : ; yn);
...

ẏ n − cnyn = Fn(t; y1; : : : ; yn);

(20)

where Fm(t; y1; : : : ; yn) = fm(t; y1; : : : ; yn)− cmym, m= 1; 2; : : : ; n
The (i + 1)-step explicit EF scheme is expressed as

ym;k+1 = exp(cmh) · ym;k + h(gm;0 + gm;1 + · · ·+ gm; i)Fm;k − h(gm;1 + 2gm;2 + · · ·+ igm; i)Fm;k−1

+ · · ·+ (−1)sh
(
gm;s

(
s

s

)
+ gm;s+1

(
s+ 1

s

)
+ · · ·+ gm; i

(
i

s

))
Fm;k−s

+ · · ·+ h(−1)igm; iFm;k−i; (21)
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where

gm;0 =−c
−1
m

h
(1− exp(cmh));

gm;j =−c
−1
m

h
−

j∑
s=1

(
c−1m
h

)s+1 [ s!
j!
(Bj−sj − Bj−sj−1 exp(cmh))

]
; j = 1; : : : ; i; m= 1; : : : ; n:

For example, the ray equation is


dx1
dt

= p1;

dx2
dt

= p2;

dp1
dt

=−c−3 9c9x1 ;

dp2
dt

=−c−3 9c9x2 ;

(22)

where c(x1; x2) = 1− 0:2 sin(3�x1) sin(0:5�x2).
If the matrix form is adopted, Eq. (22) should be transformed equally to the following form:




dx1
dt
dx2
dt
dp1
dt
dp2
dt




−




0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0







x1

x2

p1

p2


=




0

0

−x1 − c−3 9c9x1
−x2 − c−3 9c9x2



: (23)

If not, Eq. (22) is transformed equally to


dx1
dt

− x1 = p1 − x1;
dx2
dt

− x2 = p2 − x2;
dp1
dt

− p1 =−c−3 9c9x1 − p1;

dp2
dt

− p2 =−c−3 9c9x2 − p2:

(24)
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Table 1
The results for Eq. (25) by various methods

Method NFCN ERR

Four-step EF 20 4.7664e−010
Adams–Bashforth–Moulton 48 1.8886e−006
ode113 98 1.8669e−009
ode45 230 8.5109e−010

3. Examples and numerical results

In this section we test the described various order explicit multistep EF schemes on a set of
examples. A multistep method normally needs the starting values. The starting values in the present
multistep method are evaluated by the explicit one-step EF scheme. The following cases have been
considered.

Example 1.

y′′ − y = t: (25)

Initial conditions are y(0) = 1, y′(0) = 1.
Introducing ẏ 1 = y2, Eq. (25) is expressed as[

ẏ 1

ẏ 2

]
−

[
0 1

1 0

][
y1

y2

]
=

[
0

t

]
: (26)

We choose the four-step explicit EF scheme with the &xed stepsize h=0:1, and compare with Adams–
Bashforth–Moulton and the solvers of Matlab. The following solvers are used for comparison: ode45
[4] and ode113 [10]. ode45 is based on an explicit Runge–Kutta (4,5) formula. ode113 is a variable
order Adams–Bashforth–Moulton solver. We list the results in Table 1.
We use the following abbreviations:
NFCN: number of function evaluations

• ERR: the discrete rms error, is de&ned by

ERR =

[∑n
l=1(ya − ye)2l

]1=2
n1=2

;

ya is a numerical solution, ye is an exact solution.

Example 2. The second example is the motion of a spring with a cubic nonlinearity

y′′ + y − �y3 = 0; y(0) = 1; y′(0) = 0: (27)

This system is conservative, so the solutions satisfy the energy integral

E =
1
2
(y2 + y′2)− �

4
y4 ≡ 1

2
− �
4
: (28)

For � = 10−4 the total energy E is 0.499975, which we use to assess the accuracy of the present
method. The period of the oscillation is about 2� and we integrated to 100�. In Table 2, we list
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Table 2
The total energy at 100� with the various step schemes

Stepsize 0.5 0.4 0.3 0.2 0.1

Third-step (EF3) 0.500390 0.500210 0.500083 0.500009 0.499979
Fourth-step (EF4) 0.500166 0.500039 0.499993 0.499977 0.499975
Fifth-step (EF4) 0.499932 0.499958 0.499970 0.499974 0.499975
Sixth-step (EF5) 0.499922 0.499961 0.499974 0.499975 0.499975
Seventh-step (EF6) 0.499966 0.499976 0.499974 0.499975 0.499975

Table 3
ERR for t ∈ [0; 100�]

Method NFCN ERR

Eighth-step EF 3142 2.5841e−008
Seventh-step EF 3142 4.9542e−008
Sixth-step EF 3142 6.7664e−008
Fifth-step EF 3142 7.5058e−007
Fourth-step EF 3142 1.5163e−006
ode113 6256 3.2641e−006
ode113 7068 7.2633e−007
ode113 7824 7.0196e−008
ode45 55202 9.7695e−008

the total energy at 100� with the various step-explicit EF schemes. To get an impression of the
performance of the present method we give the discrete rms error of total energy with our method
and the solvers of Matlab in Table 3.

Example 3. The third example is the ray Eq. (22).
The Hamilton values of this system satisfy the following equation:

H (x; p) = 0:5∗{p21 + p22 − 1=c2}: (29)

When initial conditions are x1(0) = 0:5, x2(0) = 0, p1(0) = cos(1:2), p2(0) =−sin(1:2), H (x1; x2; p1;
p1) ≡ 0. We choose &xed stepsize h=0:0125, and calculate the Hamilton values for t ∈ [0; 2000] with
the various order-explicit schemes. To make it clear, we only show the Hamilton values for t ∈ [1900;
2000] in Fig. 1.
In Table 4, we list the Hamilton values at t = 100 with the various step-explicit EF schemes.

Example 4. Burgers equation is a useful model for many physically interesting problems, particularly
those of a Puid-Pow nature. Burgers equation behaves as an elliptic, parabolic or hyperbolic partial
di)erential equation. Therefore, Burgers equation has been used widely as a model equation for
testing and comparing computational techniques [7].
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Fig. 1. The Hamilton values versus time.

Table 4
The Hamilton values H for Eq. (29) at t = 100

Method H

Four-step EF −6.52379e−005
Five-step EF 3.78435e−005
Six-step EF 4.22052e−006
Seven-step EF −1.32372e−006
Eight-step EF −8.08752e−007

The &rst problem:
We consider the following Burgers equation:

9u
9t + u

9u
9x = �

92u
9x2 ; 0¡x¡ 1; t ¿ 0; (30)

Whose analytical solution is known (see [5]), the initial and boundary conditions are taken from
analytical solution. We put xi = iQx (i = 1; 2; : : : ; m− 1) and de&ne ui(t) = u(xi; t)
Discretizing the derivatives with respect to the space variables in (30), we obtain

dui(t)
dt

−
(

− 2�
(Qx)2

)
ui(t) =

�
(Qx)2

[ui+1(t) + ui−1(t)]− ui(t) ui+1(t)− ui−1(t)
2(Qx)

: (31)

We choose grid size Qx=0:1 for �=0:1, and Qx=0:01 for �=0:003, and Eq. (30) is respectively
transformed into a system of 9 ODEs and 99 ODEs. Let �=h=(Qx)2, where � is the Courant number.
Here we choose four-step explicit EF scheme and compare the results with [5,11], see Tables 5
and 6.
The second problem:
We consider the following Burgers equation [7]

9u
9t + u

9u
9x = �

92u
9x2 : (32)
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Table 5
The absolute error of numerical solution for Eq. (30), t = 1:0, � = 0:1, m= 10

xi Present method (D) AGE [5] PR AGE-IMP [5] DR AGE-CN [5] PARALLEL [11]
� = 2:5 � = 1:0 � = 1:0 � = 1:0 � = 2:5

0.1 1.59e−004 1.83e−004 2.9e−002 1.60e−004 4.23e−005
0.2 2.82e−004 3.26e−004 6.1e−002 2.66e−004 2.57e−004
0.3 2.68e−004 3.88e−004 9.4e−002 2.59e−004 6.15e−004
0.4 1.27e−004 2.93e−004 1.236e−001 7.17e−005 1.69e−004
0.5 3.17e−004 9.60e−005 1.4498e−001 3.3e−004 2.64e−003
0.6 7.83e−004 6.94e−004 1.542e−001 8.94e−004 3.78e−003
0.7 1.40e−003 1.19e−003 1.4769e−001 1.45e−003 4.44e−003
0.8 1.60e−003 1.51e−003 1.2229e−001 1.71e−003 4.46e−003
0.9 1.30e−003 1.22e−003 7.485e−002 1.34e−003 3.09e−003

Table 6
The numerical solutions for Eq. (30), t = 0:5, � = 0:003, m= 100

xi PARALLEL [11] Present method (D) AGE [5] PR AGE-IMP [5] DR AGE-CN [5] Exact solution
� = 10 � = 20 � = 1 � = 1 � = 1

0.1 1.0000 1.000000 1.0000 0.999999 1.000000 1.000000
0.2 1.0000 1.000000 1.0000 0.999999 0.999999 1.000000
0.3 1.0000 1.000000 1.0000 0.999995 0.999999 1.000000
0.4 1.0000 1.000000 1.0000 0.992646 0.999999 1.000000
0.5 1.0000 0.999996 1.0000 0.620453 1.000001 0.999986
0.6 0.9336 0.951840 0.9552 0.360375 0.953063 0.941313
0.7 0.1154 0.114505 0.1145 0.109650 0.114373 0.113837
0.8 0.1000 0.100027 0.1000 0.100049 0.100026 0.100018
0.9 0.1000 0.100000 0.1000 0.100000 0.100000 0.100000

The solution will be sought in the region −16 x6 1 for t¿ 0. Initial and boundary conditions are
taken to be

u0(x) = u(x; 0) =

{
1 if − 16 x6 0;

0 if 0¡x6 1;

u(−1; t) = 1; u(1; t) = 0:

Here we solve Eq. (32) for �= 0:01 at t = 0:92. We choose &ve-step explicit EF scheme, grid size
Qx = 0:025 and time step h = 0:01, while the time step h = 0:001 in [7]. We list the results in
Table 7, and compare them with [7] and the exact solution.
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Table 7
The numerical solutions of Eq. (32), t = 0:92, � = 0:01

xi Present method Exact solution Traditional Galerkin [7] Ref. [7]

−0.9 1.0000 1.0000 0.9956 1.0000
−0.8 1.0000 1.0000 1.0456 1.0000
−0.7 1.0000 1.0000 1.0672 1.0000
−0.6 1.0000 1.0000 1.0402 1.0000
−0.5 1.0000 1.0000 0.9831 1.0000
−0.4 1.0000 1.0000 0.9303 1.0000
−0.3 1.0000 1.0000 0.9128 1.0000
−0.2 1.0000 1.0000 0.9444 1.0000
−0.1 1.0000 1.0000 1.0159 1.0000
0 1.0000 1.0000 1.0963 1.0000
0.1 1.0000 1.0000 1.1411 1.0000
0.2 1.0000 1.0000 1.1057 1.0000
0.3 0.9999 0.9998 0.9613 0.9995
0.4 1.0043 0.9714 0.7099 0.9723
0.5 0.1428 0.1861 0.3933 0.2034
0.6 0.0017 0.0015 0.0905 0.0004
0.7 0.0000 0.0000 −0.1017 0.0000
0.8 0.0000 0.0000 −0.1154 0.0000
0.9 0.0000 0.0000 0.0091 0.0000

4. Conclusion

We have developed the various order-explicit multistep EF schemes and carried out higher-order
schemes. The present schemes can be applied to systems whose linear part is nondiagonal. We have
demonstrated the accuracy and e8cacy of the new schemes via application to a variety of test cases.
Future areas of further development include the implicit multistep EF schemes and predictor–

corrector EF schemes. This work is currently underway.
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